Propeller Loader

by David Betz and Steve Denson

May 23,2012

1 Table of Contents

2
3

7

INTRODUCTION ... s s s sn s sn s s s sn s sn s s s aas s as s sms s e sanan s 3

COMMON USE CASES ... ss s ss s ss s sa s sn s s sas s sas s sas e sassssanansn
3.1 LOADING COG OR LMM PROGRAM
3.2 LOADING AN XMM PROGRAM

3.2.1 Cache DriversS.........

3.3 USING THE SD LOADER ..ottt ccn s s e ss s s st sas e s bbb ss b st sas s s s bassassssssasssssssennas
3.4 USING THE SD CACHE DRIVER ..ottt ses s sssms s sss st ss s s e s s e sssssssssssssssssassessssssansassssssasssssansanas
3.5 WRITING A FILE TO THE SD CARD ..ovseeisstrereisssssesssassssssssssassssssssasassens
3.6 CREATING A PEX FILE .ot s s s sm s ss b e s b e bbb bbb b s b s e e nas
3.7 CREATING A SPIN BINARY FILE ..ot ss e s e s sss s sas s s ssassssssssses s snas

100 1 0.\ 5
4.1 -B <TYPE> SELECT TARGET BOARDcctetstiiirtrc et essess s s ssss s e sns s ssss s ss s sessssssessasssssiassssssnssnas 5
4.2 -D <VAR>=<VALUE> DEFINE A BOARD CONFIGURATION VARIABLE.....cccceosriremrsremenserenssssessssseenas 5
4.3 -E WRITE THE PROGRAM INTO EEPRO M.t s e sss s sns s snas
4.4 -F WRITE A FILE TO THE SD CARD ..oousiietrcci e ssss e ssss s ss s e s s ss s ss s s ssss s ssasssssssssnas
4.5 -1 <PATH> ADD A DIRECTORY TO THE INCLUDE PATH...ccsrsrrriesserrsisssssssssesssssssssssssssssesssssssssssssssssssens

4.6 -L WRITE A PROGRAM TO THE SD CARD AND USE THE SD LOADER
4.7 -P LIST AVAILABLE SERIAL PORTS
4.8 -P <PORT> SELECT SERIAL PORT.......
4.9 -Q QUIT ON THE EXIT SEQUENCE w..uruuturesuressressressssessssessssessssessssessssessssessssessseessseessssesssssssssssssesnssesassasassncs

4.10 -R RUN THE PROGRAM AFTER LOADING .uereutureusurensssesssressssessssessssessssessssessssessssessssssssssssssssssasassessssesasses

411 -SOR-S<N>SLOW DOWN THE LOADER BY ADDING A DELAY ...cureturesrresrresssesssensssessssensssessssensenes

4.12 -SWRITE A SPIN .BINARY FILE FOR USE WITH THE PROPELLER TOOL ...cccvesureerreerresereseseneeseneens 8
4.13 -TOR-T<BAUD> ENTER TERMINAL MODE AFTER RUNNING THE PROGRAMccevureerresrrenerrensenes 8
4,14 -V VERBOSE OUTPUT ..cetureesressressssessssessssessssessssessssessssessssessssssssesssssssssesasssssssasassesassessssasassessssasassesassasasses 9
4.15 -XWRITE A .PEX BINARY FILE FOR USE WITH THE SD LOADER OR SD CACHE.......ccoeuvmeureereernenrernnes 9
416 -Z WRITE A PROGRAM TO THE SD CARD AND USE THE SD CACHE ...cveetureerreetreerreersesesensssessssensees 9
4.17 -7 DISPLAY A USAGE MESSAGE AND EXIT ..eeeoturesuressressresssessssesssensssensssessssessssessssesssssssssssssasassessssasasses 9

CONFIGURATION FILESciiiiisieiissssississsssssssssssssssnssnsssssssssssssas s sassasssssnssnssnssnssnssnssssassas sassassasns
5.1 BOARD TYPES AND SUBTYPES ...csisiuriuresssssssssse s sssssssssssssssss s s ssssssssssssss s sssssssssas s s sssssssssasossas
5.2 CONFIGURATION VARIABLES
5.3 EXPRESSIONS wucuteuiteesteessess s sesss s sesss s sesssbsss s ses s bes s esss s esss esssesssesassassnsans

STANDARD DRIVER CONFIGURATION ...cocoicmimiemisnmmsssnssssssssnssssssnsssssssssssssmssssssnssasssnssssssns
6.1 SPISD CARD DRIVER ettt sesss s sssss s s sessssssssssssssessssesssessssesssesssssssssas
6.2 CACHE DRIVERS ..ooreremrreceresseeens
6.2.1 SPI Flash Cache Driver
6.2.2 SQI FIASH CACNE DI IV ooeeeeeererreeersersernsrsersssssssssssssssssssssssssssssssssassasssssassassassassassassssassassassassassassans
6.2.3 EEPROM CACRE DYTVET cuvvrerseirserersirseisrsssrssssssssissssssssissssssssssisss
6.2.4 C3 CACNE DIIVET coorvvvrsirsevsrssrsessrissass

VARIABLE PATCHING ..ot sssss s sasss s ssssssnssssnssnsnssnsas s sanas 13

2 Introduction

The Propeller Loader, propeller-load, is a command line program you use to load
programs generated by the PropGCC toolchain into a Propeller board over a serial
connection from a PC running Windows, Mac OS x, or Linux. It can also load Spin
binary programs generated by programs like the Propeller Tool or BST.

3 Common Use Cases

3.1 Loading COG or LMM Program

Loading a COG (-mcog) or LMM (-mlmm) mode program is done in a single stage
using the Propeller chip’s boot loader. The only board configuration parameters that
are used for this type of load are the baudrate, clkfreq, and clkmode settings. The -b
option can be omitted if the default board configuration is adequate. In other words,
if the board uses an 80mhz clock with clock mode XTAL1+PLL16X and a baud rate of
115200 the -b option can be omitted. Also, if the program being loaded makes use of
variable patching as described later in this document the board type should be
specified in the load command. In general, it’s best to always specify the board type.

Examples

propeller-load —b ¢3 myprog.elf —r —t

This command loads the program myprog.elf, starts it running, and then
enters the terminal emulator.

propeller-load —b ¢3 myprog.elf —e —r -t

This command loads the program myprog.elf, writes it to the EEPROM, starts
it running, and then enters the terminal emulator.

3.2 Loading an XMM Program

Loading an XMM (-mxmmc, -mxmm-single, or -mxmm-split) program is done in two
stages. The first stage uses the Propeller chip’s boot loader to load a helper program
that contains a driver that knows how to write into the target board’s external
memory. In the second stage, the loader talks to this helper program to load the
XMM program into external memory. A board type is always required for XMM loads
since the board configuration file contains the name of the driver to use to access
external memory. This is called the cache driver and it is also used once the XMM
program is running to allow the XMM kernel to access external memory.

Examples

propeller-load —b ¢3 myprog.elf —r —t

This command loads the program myprog.elf, into external memory starts it
running, and then enters the terminal emulator.

propeller-load —b ¢3 myprog.elf —e —r -t

This command loads the program myprog.elf into external memory, writes a
flash loader to the EEPROM, starts the program running, and then enters the
terminal emulator. The -e option only makes sense when external flash
memory is available on the target board. This is because the loader that is
written to EEPROM assumes it will find the XMM program in external
memory and that requires that at least the portion of the external memory
that contains code be non-volatile. The —e option can be used on a board that
has both external flash and SRAM if either the -mxmmc or -mxmm-split
memory models are used since in those models the code is written to the
flash.

3.2.1 Cache Drivers

Cache drivers are used by XMM programs to write the program to external memory
during loading and also to access external memory at runtime. There is usually at
least one dedicated cache driver for each type of target board although some generic
cache drivers exist that will work with any board with specific memory parts. These
generic cache drivers include an EEPROM cache driver that works with boards that
have EEPROMs of 64k or larger, an SD cache driver that works with any board with
an SD card slot, and drivers that work with boards that have specific types of SPI
flash or SRAM chips.

3.3 Using the SD Loader

The SD loader provides a way to load XMM programs from an SD card. This is mostly
useful for boards that have external RAM but not flash.

Examples

propeller-load —b ¢3 —1 myprog.elf —r —t

This command writes the program myprog.elf to the SD card as autorun.pex,
loads a helper program that loads the program from the SD card into external
memory, starts it running, and then enters the terminal emulator.

propeller-load —b ¢3 —1 myprog.elf —e —r -t

This command loads the program myprog.elf, writes it to the EEPROM, starts
it running, and then enters the terminal emulator.

3.4 Using the SD Cache Driver
3.5 Writing a File to the SD Card
3.6 Creating a PEX file

3.7 Creating a Spin Binary File

4 Options

4.1 -b <type> Select target board

Use this option to select the target board type. This determines which board
configuration file is used. If this option is not specified, the value of the environment
variable PROPELLER LOAD BOARD is used. If that environment variable is not
defined, the “default” board type is used. The configuration file for the selected
board type is located by first looking in

* the directory containing the file being loaded

¢ the directory given in the environment variable PROPELLER_LOAD_PATH
* the directory containing the propeller-load program

e the directory /opt/parallax/propeller-load

Example

-b c3

This will select the c3.cfg board configuration file.

4.2 -D <var>=<value> Define a board configuration variable

Use this option to define or redefine a configuration variable. The loader will use
values set using the -D option instead of the corresponding values from the selected
board configuration file. The -D option can also be used to define new variables that
are not in the board configuration file. This could be useful if the program being
loaded makes use of the values of these additional variables through the loader’s
variable patching facility.

Example

-D baudrate=9600

This will use 9600 as the baud rate overriding the value for baudrate in the
selected configuration file.

4.3 -e Write the program into EEPROM

Use this option to write the program being loaded to EEPROM. This option works
differently depending on the type of program being loaded.

If a COG or LMM program is being loaded, the entire program is written to the
EEPROM.

If an XMM program is being loaded, only a loader is written to EEPROM. The
program itself is written to external memory. This requires that the external
memory be non-volatile. In other words, it must be flash memory.

4.4 -f Write a file to the SD card

Use this option to write a file to an SD card inserted in the target board. If this option
is given then no program is loaded. The only action is to write a file to the SD card.

Example
-f myprog.pex

4.5 -l <path> Add a directory to the include path

Use this option to add a directory to the include path. This is the path that the loader
uses to locate board configuration files and drivers. The directories specified using
the -1 option will be searched before the standard directories.

Example

-I foo/bar

4.6 -l Write a program to the SD card and use the SD loader

Use this option to load code that can load the program autorun.pex from the root
directory on the SD card into external memory. If a filename is given in the
command, that file will be written to the SD card as autorun.pex. It should be an
XMM program.

Examples

-1

Load code to load the program autorun.pex which should already be on the
SD card

-1 myprog.elf

Write the program myprog.elf to the SD card as autorun.pex and load code to
load it from the SD card.

4.7 -P List available serial ports

Use this option to list all serial ports. Not all of the ports listed will necessarily be
connected to boards containing Propeller chips.

4.8 -p <port> Select serial port

Use this option to select the serial port that is connected to the Propeller board you
wish to load. If this option is not specified and the environment variable
PROPELLER LOAD_PORT is defined, it’s value is used. If it is not defined, the loader
will search for ports attached to a Propeller board. The first one found is used.

Examples

-p COM12
-p /dev/ttyUSB12
-p /dev/cu.usbserial-12

If <port> begins with a digit under Windows or something other than a ‘/’ under
Linux or Mac OS X, it is interpreted as a shorthand for the full port name. In that case,
the system-specific prefix is added to <port> to form the full name.

Port prefixes

* Windows: “COM”
* Linux: “/dev/ttyUSB”
* MacOS X: “/dev/cu.usbserial-“

Examples

-pl2
-p 12

Under Windows these would be interpreted as COM12.

Under Linux they would be interpreted as /dev/ttyUSB12.

Under Mac OS X they would be interpreted as /dev/cu.usbserial-12.

4.9 -q Quit on the exit sequence

Use this option to cause propeller-load to exit terminal mode when it receives the
byte sequence (0xff, 0x00, status) from the target board. This is primarily intended
for use in automated test scripts.

4.10 -r Run the program after loading

Use this option to start the program running after loading has completed.

4.11 -S or =S<n> Slow down the loader by adding a delay

Use this option to introduce a time delay during the initial phase of loading that uses
the Propeller boot protocol. If <n>is not given, a delay of 5 microseconds is used.
The <n> must be immediately adjacent to the -S with no intervening space.

Examples

-S

This will cause a delay of 5 microseconds to be used.

-S12

This will cause a delay of 12 microseconds to be used.

4.12 -s Write a spin .binary file for use with the Propeller Tool

Use this option to write a Spin .binary file for use with the Propeller Tool or any
other loader that can handle the Spin binary format.

Example
-s myprog.elf
This will write myprog.binary.

4.13 -t or —t<baud> Enter terminal mode after running the program

Use this option to cause the loader to enter a simple terminal emulator after loading
is complete. If <baud> is given the baud rate is changed to this value before entering

terminal mode. The <baud> must be immediately adjacent to the -t with no
intervening space.

4.14 -v Verbose output

Use this option to produce more verbose progress information.

4.15 -x Write a .pex binary file for use with the SD loader or SD cache

Use this option to write a Propeller executable file (.pex). This file can then be
transferred to an SD card to be run using either the -z or -1 option.

Example
-X myprog.elf
This will read the program myprog.elf and write myprog.pex.

4.16 -z Write a program to the sd card and use the SD cache

Use this option to load code that can run the program autorun.pex from the root
directory on the SD card. If a filename is given in the command, that file will be
written to the SD card as autorun.pex. It should be an XMM program.

Examples

-2

Load code to run the program autorun.pex which should already be on the SD
card

-z myprog.elf

Write the program myprog.elf to the SD card as autorun.pex and load code to
run it from the SD card.

4.17 -? Display a usage message and exit

Use this option or just invoke propeller-load with no parameters to display a short
usage message.

5 Configuration Files

The loader uses board configuration files for information specific to each type of
target board. The command line option “-b myboard” selects the board type
myboard which causes the loader to read configuration information from the file
“myboard.cfg”. The loader looks for this file in the include path which is described in
section 4.1.

5.1 Board Types and Subtypes

In it’s simplest form, a board configuration file is just a list of variable names and
values separated by colons. For example, here is a board configuration file for the
Parallax C3 board.

clkfreq: 80000000

clkmode: XTAL1+PLL16X
baudrate: 115200

rxpin: 31

txpin: 30

tvpin: 12 # only used if TV _DEBUG is defined
cache-driver: c3_cache.dat
cache-size: 8K
cache-paraml: 0
cache-param2: 0

sd-driver: sd_driver.dat
sdspi-do: 10

sdspi-clk: 11

sdspi-di: 9

sdspi-clr: 25

sdspi-inc: 8

sdspi-addr: 5

This would be contained in a file called “c3.cfg” and could be used by providing the
loader command line option “-b c3”.

Sometimes a board will support multiple memory models. One way to handle that is
to have a separate configuration file for each memory model but that results in a lot
of duplicated information that is common among all of the memory models. A better
approach is to use board subtypes. The -b option can accept both a board type and
subtype using the syntax “-b type:subtype”.

For example, we could have a subtype for the C3 board called “xmmc” that uses a
different cache driver. The board configuration file would look like this:

clkfreq: 80000000
clkmode: XTAL1+PLL16X
baudrate: 115200
rxpin: 31

txpin: 30

10

tvpin: 12 # only used if TV _DEBUG is defined
sd-driver: sd_driver.dat

sdspi-do: 10

sdspi-clk: 11

sdspi-di: 9

sdspi-clr: 25

sdspi-inc: 8

sdspi-addr: 5

[default]

cache-driver: c3_cache.dat
cache-size: 8K
cache-paraml: 0
cache-param2: 0

[Xmmc]

cache-driver: c3f cache.dat
cache-size: 8K
cache-paraml: 0
cache-param2: 0

Then, if the loader is passed the “-b c3” option, it will use the variables defined in the
common section of the configuration file before any of the bracketed tags as well as
the variables defined in the section that begins with “[default]”.

However, if the loader is passed the “-b c3:xmmc” option, it will use the variables
defined in the common section as well as the variables defined in the “[xmmc]”
section.

This subtype feature allows the variables that are common to all memory models to
be shared.

5.2 Configuration Variables
Variables that can be set with -D are:

e clkfreq
e clkmode
e baudrate

* reset
* rxpin
* txpin
* tvpin

* cache-driver

* cache-size

* cache-param1l
* cache-param?2

11

e sd-driver

* sdspi-do
* sdspi-clk
* sdspi-di
* sdspi-cs

* sdspi-clr

* sdspi-inc

* sdspi-start

* sdspi-width

* spdspi-addr
* sdspi-configl
* sdspi-config2
* eeprom-first

5.3 Expressions

Value expressions for -D can include:

* rcfast
* rcslow
* Xxinput
e xtall

e xtal2

e xtal3

e pllix

e pll2x

e pll4x

e pli8x

e plll6x
e k

°* m

* mhz

* true

* false

an integer or two operands with a binary operator +-* / % & | or unary + or -

all operators have the same precedence

12

6 Standard Driver Configuration
6.1 SPISD Card Driver

6.2 Cache Drivers

6.2.1 SPI Flash Cache Driver
6.2.2 SQl Flash Cache Driver
6.2.3 EEPROM Cache Driver

6.2.4 (C3 Cache Driver

7 Variable Patching

The loader provides a way to automatically configure a program for a specific target
board. Often the same program will run on multiple boards by simply changing the
pin numbers used to interface with off-chip hardware like TV, VGA, keyboard, etc.
One approach to handling this is to use #defines to configure the program for a
particular board but this approach requires that the program be recompiled for
each board.

The loader provides a way to do this without recompiling the program. During the
load process, the loader looks at the symbol table contained in the program file (.elf
file produced by the linker) for symbols whose names begin with “_cfg_”. When it
finds one of these symbols, it looks for a variable in the selected board configuration
file with a matching name and stores the value from the configuration file into the
variable before starting the program.

The loader finds matching configuration variable names by first removing the “_cfg ”
prefix and then replacing any embedded underscore characters with hyphens. For
example, the user variable “_cfg_sdspi_cs” would match the configuration variable
“sdspi-cs”.

Example

int cfg baudrate = -1;

If the program being loaded contains this variable definition, the loader will
replace the value -1 with the value of the “baudrate” variable from the
selected board configuration file.

Note that the variable declaration must specify a non-zero initial value for the
variable. This is because the linker will place any variable that is not initialized or
one that is initialized to zero into a special program area that is zeroed at startup.

13

There are two exceptions to the rule of finding matching configuration variables.
These are the variables “_cfg_sdspi_configl” and “_cfg_sdspi_config2”. These
variables can either be patched from the corresponding configuration file variables
“sdspi-configl” and “sdspi-config2” or the loader will construct their values using
the individual configuration file variables for describing the SD card interface:

»n o« »n o« »n o« ”n o«

“sdspi-do”, “sdspi-di”, “sdspi-clk”, “sdspi-cs”, “sdspi-clr”, “sdspi-set”, “sdspi-addr”, etc.

14

