Solutions 3

SOLUTIONS CUBED

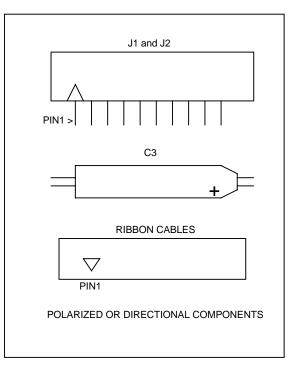
ICON Interface Module – BASIC Stamp Prototyping Kit (AN600 Kit) Revision 1 February 27th, 2002

Copyright © 2002 Solutions Cubed

AN600 Kit ICON Interface Module – BASIC Stamp Kit

FEATURES

- Control and Interface to 1 or 2 ICON Interface Modules with ICON H-Bridges
- ◆ BASIC Stamp 2, 2SX, 2P24, 2E compatible
- Large prototyping area
- BASIC Stamp powered by ICON Interface Module at J1


DESCRIPTION:

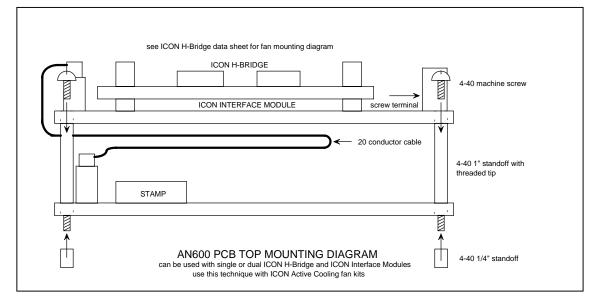
This kit and documentation package provide a road map for successfully interfacing one or two ICON Interface Modules and ICON H-Bridges to a BASIC Stamp 2. This hardware can be used for robotic drive systems utilizing skid steering of 2 DC motors up to 12A. This prototyping kit can also be used for single motor control applications by omitting the second ICON Interface Module and ICON H-Bridge normally connected to J2.

ASSEMBLY:

Assembly of the kit can be accomplished by placing the components on the silk-screen (white lettering and outlines) of the PCB, and soldering the components from the backside of the PCB. It is useful to solder on the parts with the smallest profile first. For instance, start by soldering the socket associated with U1, then add the discrete components R1, C1, C2, and C3, then J1 and J2, and finally add J3 the BASIC Stamp programming connector.

Some of the connectors are polarized or have pin locations designated as pin 1. These are detailed in figure 1.

Figure 1: Polarized or Directional Components


ASSEMBLY (continued):

Your kit should contain the following hardware.

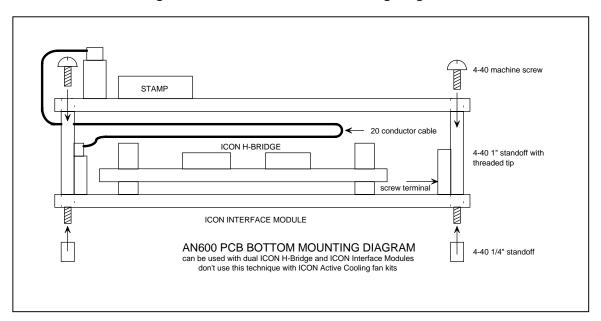
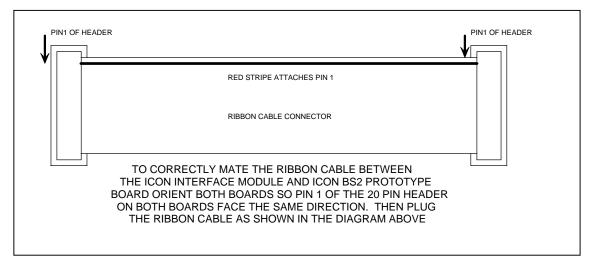
ltem Number	Qty.	Part Reference	Description	Manufacturer	Manufacturer Part Number
1	2	C1 C2	0.1uF 50V X7R CERAMIC CAP TH	Panasonic	A104K20X7RFVVWN
2	1	C3	10uF 10V AXIAL TANTALUM CAP TH	Kemet	T322B106K010AS
3	2	J1 J2	DUAL 0.1" ROW 20 POS SHROUDED	Tyco-AMP	103308-5
4	1	J3	D-SUB 0.318 DB9 FEMALE	Amp	747844-4
5	1	R1	2 OHM 1/4W 5% RESISTOR	Panasonic	2.0QBK-ND
6	1	U1	24 PIN 0.6" SOCKET	Mill-Max	110-99-624-41-001
7	2		6" SCKT-SCKT 20 CONDUCTOR CABLE	CW Industries	C3AAT-2006G-ND
8	8		4-40 x 1/4" PHILLIPS STAINLESS STEEL SCREW	IDXMART	6F1004-30827
9	8		4-40 x 1" MALE/FEMALE ALUM. THREADED STANDOFF	IDXMART	6F1396-67387
10	4		4-40 X 1/4" ALUM. STANDOFF	IDXMART	6F1388-68137
11	1		4x4 12 ROUTE POINT PCB	RSC	AN600_2

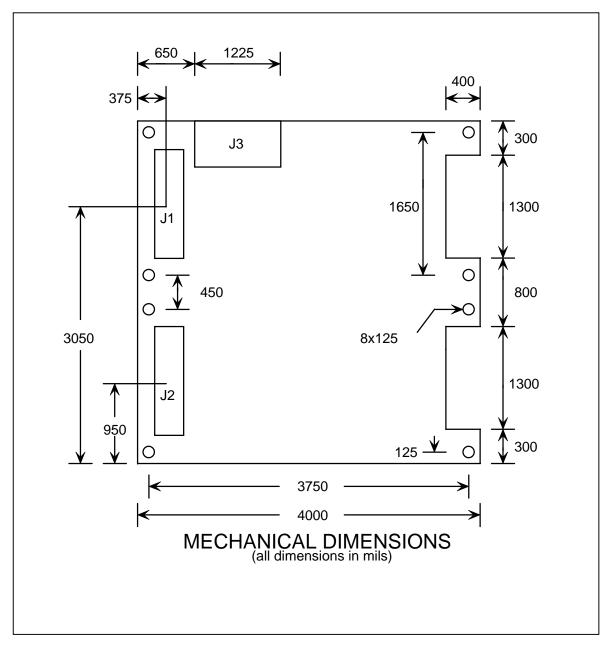
Figure 2: AN600 Kit Bill of Materials

The ICON Interface Modules and ICON H-Bridges may be mounted above or below the AN600 PCB. When using the ICON Active Cooling (fan) kits the ICON products should be mounted above the AN600 PCB. Additionally, if interfacing to only one ICON Interface Module, the module should be connected to J1 with the 6" ribbon cable and should be mounted above the AN600 PCB.

Figure 3: AN600 PCB Top Mounting Diagram

You may also mount the ICON products beneath the AN600 PCB. Cutouts have been routed on the AN600 PCB to allow access to the screw terminals of each ICON Interface Module.

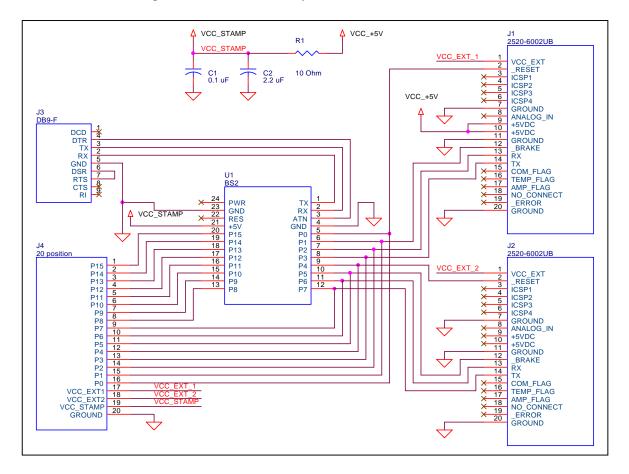




Figure 4: AN600 PCB Bottom Mounting Diagram

When connecting the ribbon cables between the ICON Interface Modules and the AN600 PCB verify that the devices are connected correctly. Pin 1 of each end of the ribbon cable should be connected to pin1 of the 20 pin headers. Both the header and the ribbon cable have pin 1 designated in the manner displayed in figure 1 of this data sheet. Figure 5 describes one method to ensure that connectivity is accomplished correctly.

MECHANICAL DIMENSIONS:

AN600:


Application note 600 is included in its entirety on the following pages. The source code for the BASIC Stamp 2 that is displayed in this application note can be downloaded from <u>www.solutions-cubed.com</u>.

Technical support for this design can be reached at solcubed@solutions-cubed.com.

AN600 – INTERFACING THE ICON INTERFACE MODULE TO THE BASIC STAMP2

HARDWARE:

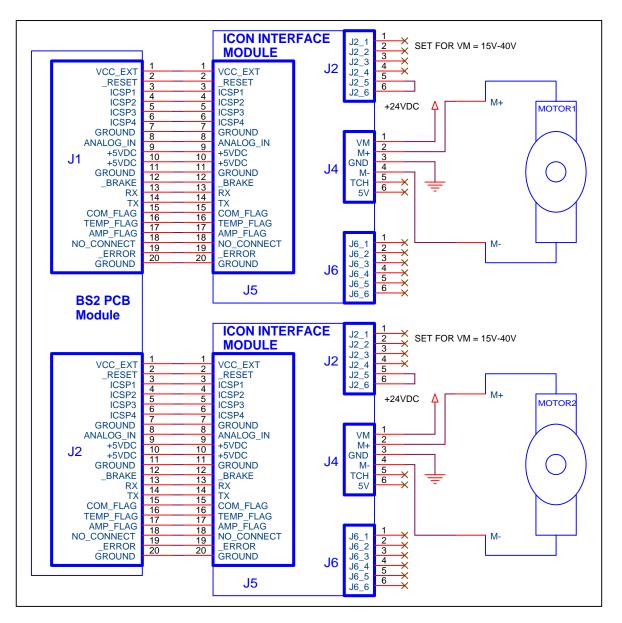
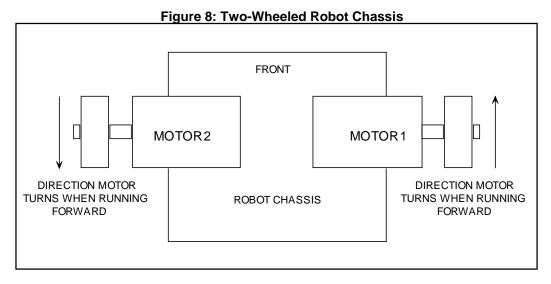

Connectivity and control of the ICON Interface Module and ICON H-Bridge can be simplified to a 38,400BPS N,8,1 serial interface. While the ICON Interface Module possesses five modes of operation, the BASIC Stamp in this application will use just the serial control mode. A DB9-female connector is used to program the BS2, while a 20-pin header provides access to each BS2 I/O pin, and various power connections. It is assumed that the BS2 is powered by the +5VDC output available on the 20-pin connector connected to ICON Interface Module #1 (connected to J1).

Figure 6: BS2 Connectivity to 2 ICON Interface Modules

Connectivity to each ICON Interface Module is accomplished with a ribbon cable (CW Industries PN: C3AAT-2006G) available through Digi-Key. The shrouded 20-pin headers on the BS2 module match those on the ICON Interface Modules (Tyco-Amp PN: 103308-5) which is also available from Digi-Key.

It is assumed that power is supplied to the BS2 module from the ICON Interface Module #1, that both ICON Interface Modules are being powered by a 24VDC supply, and that J2 on each ICON Interface Module has its jumper selected appropriately.



For motor voltages between 10VDC and 15VDC the voltage selection header (J2) on each ICON Interface Module should be jumped at J2_3 and J2_4. For motor voltages less than 10VDC the user will have to supply an external 12VDC signal at the BS2 module and place a jumper across J2 1 and J2 2 of J2 on each ICON Interface Module. The 12VDC signal would then be connected to the VCC EXT 1 and VCC EXT 2 connection on the BS2.

SOFTWARE:

AN600 was designed to display a simple method for controlling a two-wheeled robot. It is assumed that the software would have to be modified to account for the particular idiosyncrasies of any mechanical systems. The software describes a method that may be used to ramp motor speed up or down to prevent over current conditions that can occur by rapidly changing speeds in large motors. It also describes methods for implementing slow and fast turns, and reversing a two-wheeled robot. The software is relatively simple and well commented. But for clarification a diagram of the envisioned mechanical system is included here.

Some aspects of the software require explanation. When implementing a command and waiting for a response from the ICON Interface Module the SERIN command is loaded with a 150ms timeout. In most cases the ICON Interface Module will respond within 5-10ms to a command. But the ICON Interface Module is regularly polling the ICON H-Bridge (about 5 times per second) to check the ICON H-Bridge's status. The communication between the ICON H-Bridge and the ICON Interface Module occurs at 2400BPS. If the ICON Interface Module is in the process of communicating with the ICON H-Bridge it may not be able to reply to a command for up to 150ms. You may reduce this timing or eliminate waiting for an ACK to speed up your program flow. If this is the route you take you should periodically check the status of each ICON Interface Module to verify that it is operating. This can be done with the READ_STATUS subroutine that is included in the software listing but is not called during program run time as AN600 is currently written.

If modifying AN600 for use with a BS2SX you should modify the BAUD constant to decimal 45, and change the timeout used with the SERIN commands to 500 (from 150). The software used for this application note (AN600.BS2) may be downloaded at <u>www.solutions-cubed.com</u>.

Finally, when interfacing to a large motor the resulting voltage and current spikes can destroy electronic circuits or reset processors. It is usually a good idea to avoid dramatic changes in motor speed or direction. If you find you have spurious failures check your power supply for glitches and try ramping motor speeds up and down to avoid dramatic speed changes.

	AN600.BS2 Software Listing						
'AN600 li	AN600 Interfacing a BASIC Stamp 2 to 2 ICON Interface Modules						
'Commur	Communication string variables						
00	CMMD	VAR	BYTE	'Command byte storage			
	ADDR	VAR	BYTE	'Address byte storage			
	LENG	VAR	BYTE	'Length byte storage			
	CKSUM	VAR	BYTE	'Checksum byte storage			
	DAT1	VAR	BYTE	'Data byte registers			
	DAT2	VAR	BYTE				
	DAT3	VAR	BYTE				
	DAT4	VAR	BYTE				
	DAT5	VAR	BYTE				
	DAT6	VAR	BYTE				
	DAT7	VAR	BYTE				
	DAT8	VAR	BYTE				
	ERROR1	VAR	BYTE	'Communication error counters			
	ERROR2	VAR	BYTE	Communication circle counters			
	LOOP	VAR	WORD	'For next loop word			
	SPEED	VAR	WORD	'Speed value storage			
	STRT SPD	VAR	WORD	Speed value storage			
	END SPD	VAR	WORD	'End speed used in ramp up and ramp down			
'PWM sto	prage registers	v/ (i C	World	End opeed doed in ramp up and ramp down			
1 111130	PWM_REG1	VAR	WORD	'PWM storage register for ICON Module 1			
	P1HI	VAR	PWM_REG1.HIGHBYTE				
	P1LO	VAR	PWM_REG1.LOWBYTE				
	PWM REG2	VAR	WORD	PWM storage register for ICON Module 2			
	P2HI	VAR	PWM REG2.HIGHBYTE	1 WW Storage register for room module 2			
	P2LO	VAR	PWM_REG2.LOWBYTE				
	1 220						
'Program	constants						
'	BAUD	CON	45	'Use BAUD = 45 for BS2SX			
	BAUD	CON	6	'Use BAUD = 6 for BS2			
	terface Module #1 co	ontrol linoa					
	RESET1	CON	0	Causas bardwara reast when pulled low			
	BRAKE1			'Causes hardware reset when pulled low			
		CON	1	Implements braking function when pulled low			
	DOUT1	CON	2 3	'TTL serial data to ICON Interface Module 'TTL serial data from ICON Interface Module			
	DIN1	CON	3	TTL Serial data from ICON Interface Module			
'ICON Int	terface Module #2 co	ontrol lines					
	RESET2	CON	4	'Causes hardware reset when pulled low			
	BRAKE2	CON	5	Implements braking function when pulled low			
	DOUT2	CON	6	TTL serial data to ICON Interface Module			
	DIN2	CON	7	'TTL serial data from ICON Interface Module			
'Set BS2	SX i/o direction and						
	DIRS		000001110111	'Set P0,P1,P2,P4,P5,P6 as outputs			
	OUTS	=%1111	11111111111	'Set all outputs high			
	LOW	RESET1		'Reset ICON Interface Modules			
	LOW	RESET2					
	PAUSE 5						
	HIGH	RESET1					
	HIGH	RESET2					
	PAUSE	750		Wait 750ms for Interface Modules to power up			
	DEBUG	CLS		Clear debug screen			
	DEBUG	013		Cieal debuy scieeli			
	GOSUB	INIT_IM		Initialize the ICON Interface Modules			

START:

'The "ramp-up forward" portion of this code ramps up the speed of both motors. This technique may be used to increase motor speed in large motors without abruptly changing motor speed 'and therefore tripping the over current fuse in either of the attached ICON H-Bridges. RAMP_UP_FORWARD: DEBUG CR,"FORWARD RAMP UP",CR STRT_SPD =\$0 END_SPD = \$3E8 SPEED = STRT_SPD TO END_SPD STEP ((END_SPD - STRT_SPD)/10) FOR GOSUB FORWARD PAUSE 20 NEXT PAUSE 2500 'The "ramp-down forward" portion of this code ramps down the speed of both motors. This technique 'may be used to decrease motor speed in large motors without abruptly changing motor speed and therefore tripping the over current fuse in either of the attached ICON H-Bridges. RAMP_DN_FORWARD: DEBUG CR,"FORWARD RAMP DOWN",CR STRT_SPD =\$3E8 END_SPD = \$0 SPEED = STRT_SPD TO END_SPD STEP ((STRT_SPD - END_SPD)/10) FOR GOSUB FORWARD PAUSE 20 NEXT PAUSE 500 SPEED = \$200 'Set motor speed to 50% DEBUG CR,"BACKWARD",CR GOSUB BRAKE 'Brake motors before changing direction GOSUB BACKWARD 'Run robot in reverse PAUSE 2000 DEBUG CR,"SLOW LEFT",CR 'Make a slow left turn GOSUB BRAKE 'Brake motors before changing direction GOSUB SLOW_LEFT 'Perform a slow left turn PAUSE 2000 DEBUG CR,"SLOW RIGHT",CR 'Make a slow right turn GOSUB SLOW_RIGHT 'Perform a slow right turn PAUSE 2000 DEBUG CR,"FAST LEFT",CR 'Make a fast left turn GOSUB FAST_LEFT 'Stop left motor (2) and run right motor (1) PAUSE 2000 DEBUG CR,"FAST RIGHT",CR 'Make a fast right turn GOSUB FAST_RIGHT 'Stop right motor (1) and run left motor (2) PAUSE 2000 LOW BRAKE1 LOW BRAKE2 PAUSE 2000 'Assert brake pins to stop the motors from turning HIGH BRAKE1 HIGH BRAKE2 GOTO START 'Return to start of program

!******	*****	*** Subroutines ************************************	*****			
!*******	*****	****	****			
'INIT_IM:	This subroutir	ne initializes the ICON Interface Modules	by ensuring that the			
	ADDRESS re	gisters are programmed to "1" and progra	amming the IM_FUNCTION			
	registers to binary %10100000. The IM_FUNCTION value enables dynamic braking and amps retry settings (see the communication protocol for					
		tion on these functions). The ADDRESS				
		using the universal address of "0", therefore				
		om the ICON Interface Modules. The BS				
		each ICON Interface Module and waits fo time the circuit is powered up, but in reali				
	occur once si	nce the settings are stored in EEPROM w	ith the STORE command.			
!********	******	*******	*****			
INIT_IM:	CMMD	- * D2	W/PITE command			
	CMMD ADDR	= \$D2 = \$00	'WRITE command 'Universal address			
	LENG	= \$04	'Message length			
	DAT1	= \$0E	ADDRESS register index value			
	DAT2	= \$01	Write "1" to ADDRESS register			
	DAT3	= \$0F	'IM_FUNCTION register index value			
	DAT4 CKSUM	= \$A0 = CMMD+ADDR+LENG+DAT1+DAT2+	Write %1010000 to IM_FUNCTION register			
I	SEROUT	DOUT1,BAUD,[CMMD,ADDR,LENG,D				
	SEROUT	DOUT2, BAUD, [CMMD, ADDR, LENG, D/				
	5 4 L 4 5 5					
	PAUSE	20 (*D2)	ISTORE command			
	CMMD ADDR	= \$D3 = \$01	STORE command ICON Interface Module address of "1"			
	LENG	= \$00	'Length of 0, no data in command			
	CKSUM	= CMMD+ADDR+LENG	3 . 1 . 1 , 1 . 1 . 1 . 1 .			
	SEROUT	DOUT1,BAUD,[CMMD,ADDR,LENG,CI	KSUM]			
	SERIN IF	DIN1,BAUD,150,NA_INIT1,[DAT1]	Wait 150ms for an ACK from module 1			
NA_INIT1		DAT1 = \$6 THEN A_INIT1	Wait 150ms for an ACK from module 1			
	DEBUG	"NO ACK INIT1",CR				
A_INIT1:						
	SEROUT	DOUT2, BAUD, [CMMD, ADDR, LENG, CI	KSUM]			
	SERIN IF	DIN2,BAUD,150,NA_INIT2,[DAT1] DAT1 = \$6 THEN A_INIT2	Wait 150ms for an ACK from module 2			
NA_INIT2						
_	DEBUG	"NO ACK INIT2",CR				
A_INIT2:						
	RETURN					
!*******	*****	*****	*****			
'SETDC_	IM1: This routine s	ends speed and direction data to the ICO	N Interface Module			
		ocated on the right hand side of the robot				
		are stored in the PWM_REG1 register. I				
		n 150ms then the BS2 will attempt to sen be attempted up to 5 times.	d the command again.			
!*******	***************************************		*****			
SETDC_I						
	DEBUG	"PWM1 = ",ISHEX4 PWM_REG1,TAB	ISETDC command			
	CMMD ADDR	= \$D0 = \$01	'SETDC command 'ICON Interface Module address of "1"			
	LENG	= \$02	Length of SETDC is 2			
	CKSUM	= CMMD+ADDR+LENG+P1LO+P1HI				
	SEROUT	DOUT1,BAUD,[CMMD,ADDR,LENG,P	1HI,P1LO,CKSUM]			
	SERIN	DIN1,BAUD,150,NA_SDC1,[DAT1]				
	IF ERROR1	DAT1 <> \$6 THEN NA_SDC1 = 0				
	RETURN	-0				
NA_SDC						
	ERROR1	= ERROR1+1				
	IF	ERROR1 < 5 THEN SETDC_IM1				
	ERROR1 RETURN	= 0				

AN600 Prototyping Kit

	sends speed and direction data	
	located on the left hand side of ta are stored in the PWM_REG2	
		mpt to send the command again.
	ill be attempted up to 5 times.	mpr to send the command again.
!*************************************	*****	******
SETDC_IM2:		
DEBUG	"PWM2 = ",ISHEX4 PWM_R	EG2 CR
CMMD	= \$D0	'SETDC command
ADDR	= \$01	ICON Interface Module address of "1"
LENG	= \$02	'Length of SETDC is 2
CKSUM	= CMMD+ADDR+LENG+P2	
SEROUT	DOUT2, BAUD, [CMMD, ADD]	R,LENG,P2HI,P2LO,CKSUM]
SERIN	DIN2,BAUD,150,NA_SDC2,[
IF	DAT1 <> \$6 THEN NA_SDC	
ERROR2	= 0	
RETURN		
NA_SDC2:		
ERROR2	= ERROR2+1	
IF	ERROR2 < 5 THEN SETDC	_IM2
ERROR2	= 0	
RETURN		
!******	*****	******
'FORWARD: This subrou	tine runs motor one in the forwar	d direction and motor two at
the same sp	beed but in the reversed direction	 This should move the robot
forward.		
!***********************	***************************************	******
FORWARD:		
PWM_REG1	= SPEED = -SPEED	
PWM_REG2 GOSUB		
GOSUB	SETDC_IM1 SETDC_IM2	
RETURN		

	tine runs motor two in the forwar	
	beed but in the reversed direction	
backward.		
!*************************************	***************************************	******
BACKWARD:		
PWM_REG1	= -SPEED	
PWM REG2	= SPEED	
GOSUB	SETDC_IM1	
GOSUB	SETDC_IM1 SETDC_IM2	
RETURN		

	tine runs motor one forward and	
motor one II	n reverse. This will cause the ro	
SLOW_LEFT:		
PWM_REG1	= SPEED	
PWM_REG2	= -(SPEED/2)	
GOSUB	SETDC_IM1	
GOSUB	SETDC_IM2	
RETURN		

' mo	is subroutine runs motor two reversed and motor one at half the speed of otor two in the forward direction. This will cause the robot to veer to e right.
SLOW_RIGHT: PWM_RE PWM_RE GOSUB GOSUB RETURN	
	subroutine runs motor one in the forward direction and stops motor two nding it a speed of \$0000. This causes the robot to pivot to the left.
FAST_LEFT: PWM_RE PWM_RE GOSUB GOSUB RETURN	
	subroutine runs motor two in the reversed direction and stops motor by sending it a speed of \$0000. This causes the robot to pivot to the
FAST_RIGHT: PWM_RE PWM_RE GOSUB GOSUB RETURN	G1 = \$0 G2 = -SPEED SETDC_IM1 SETDC_IM2
	This subroutine reads the IM_STATUS, and IH_STATUS registers from both ICON Interface Modules and displays the information in a binary format.
READ_STATUS: CMMD ADDR LENG DAT1 DAT2 CKSUM SEROUT SERIN DEBUG GOTO NA_RDST1: DEBUG	= \$D1 = \$01 = \$02 = \$00 = \$01 = CMMD+ADDR+LENG+DAT1+DAT2 DOUT1,BAUD,[CMMD,ADDR,LENG,DAT1,DAT2,CKSUM] DIN1,BAUD,[CMMD,ADDR,LENG,DAT1,DAT2,CKSUM] DIN1,BAUD,150,NA_RDST1,[DAT1,DAT2,DAT3,DAT4] "IM1 STATUS =",BIN8 DAT3," IH1 STATUS =",BIN8 DAT4,CR RDST2 "NO ACK READ STATUS 1",CR
DEBUG RDST2: DAT1 DAT2 CKSUM SEROUT SERIN DEBUG GOTO NA_RDST2: DEBUG DONE_RDST2 RETURN	"NO ACK READ STATUS 1",CR = \$00 = \$01 = CMMD+ADDR+LENG+DAT1+DAT2 DOUT2,BAUD,[CMMD,ADDR,LENG,DAT1,DAT2,CKSUM] DIN2,BAUD,150,NA_RDST2,[DAT1,DAT2,DAT3,DAT4] "IM2 STATUS =",BIN8 DAT3," IH2 STATUS =",BIN8 DAT4,CR DONE_RDST2 "NO ACK READ STATUS 2",CR

!*******	*****	**********			
'BRAKE: '	This subroutine asserts the /BRAKE pins for both ICON Interface Modules waits 250ms and then releases the /BRAKE pins.				
BRAKE:	LOW LOW PAUSE HIGH HIGH RETURN	BRAKE1 BRAKE2 250 BRAKE1 BRAKE2			
END:					

SUMMARY:

As can be seen from AN600 the ICON Interface Module and ICON H-Bridge can simplify connectivity and control of brushed DC motors with the BASIC Stamp. This application note used only the simplest of the ICON Interface Module's capabilities. Additionally, with the 12A continuous current handling capability of the ICON DC Motor Control system larger robotic systems can be envisioned. Furthermore, these systems may be implemented with minimal development time and at a reduced development cost.