
AN604: A Radio Controlled Robot Drive System 1

Overview:
From students doing science projects to garage-based tech warriors, many people are becoming
involved in robotics. AN600 depicts a method of interfacing a BASIC Stamp 2(produced by
Parallax) to two ICON Interface Modules and two ICON H-Bridges to create a two-wheeled
robotic drive system. This application takes AN600 a step further by introducing radio control to
the drive system. The radio interface takes the form of the standard hobbyist radio control
transmitter and receiver used for R/C cars, boats, and airplanes. The radio receiver is connected
to an ICON-BS2 carrier board (PN: ICON_BS2). The BASIC Stamp 2 (BS2 – sold separately)
reads 2 channels from the receiver and converts them into serial data strings which are sent to
the 2 ICON Interface Modules. In this design channel one is used for steering while channel two
controls the speed of the drive motors. Mixing of the two channels occurs after the BS2 has
converted them to numeric values and is done with a simple algorithm.

Hardware:
The hardware required for this application note is listed below.

1 – 2 channel R/C receiver and transmitter
1 – Parallax BASIC Stamp 2
1 – ICON – BS2 Carrier Board
2 – ICON Interface Modules
2 – ICON H-Bridges
1 – 12V-36V battery(s)
2 – drive motors

The system is designed so that motor 1 (controlled by ICON Interface Module #1) mounts on the
right-hand side of the robot. Motor 2 has its motor setting reversed so that both motors turn in the
same direction when the robot is driven forward or reversed. Figure 1 shows the direction the two
motors would turn if they were both given speed values that equated to the motor turning forward.
Not shown in the diagram is a pivot wheel generally used in two-wheeled robots for balance.

Figure 1: Robot Chassis Motor Mounting
ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

The power supply jumper settings should n

MOTOR2 MOTOR1

DIRECTION MOTOR
TURNS WHEN RUNNING

DIRECTION MOTOR
TURNS WHEN RUNNINGROBOT CHASSIS

FRONT

FORWARD FORWARD

AN604: A Radio Controlled Robot Drive System 2

This system would work best with a battery based power supply in the 12V-36V range. The
ICON H-Bridge modules can handle roughly 7A without cooling in open air. With the ICON Active
Cooling solution (PN: ICON_AC) the continuous current rating is closer to 12A. You should first
decide on your motor voltage and battery voltage and then set the power supply selection
jumpers on both ICON Interface Modules as per figure 2. In most cases the jumper setting will be
at jumper 3-4 or jumper 5-6. It is possible to run motors that are powered by less than 10VDC.
To do this you would connect jumper 1-2 and provide 12VDC to the points labeled VEXT1 and
VEXT2 on the ICON-BS2 carrier board. This 12V supply powers all of the ICON products, while
your motor can be powered off of 1-10VDC.

Figure 2: ICON Interface Module Power Supply Jumper Settings
Figure 3: Bottom Mounting Diagram

����
����

����

����
����

6

6

6

J2

J2

J2

POWER SUPPLY JUMPER SETTINGS

JUMPER 1-2:

JUMPER 3-4:

JUMPER 5-6:

Used when motor voltage is
less than 10V and 12V is supplied
through pin 1 of J5

Used when motor voltage is
between 10V and 14V

Used when motor voltage is
between 14V and 40V

NOTE: typically only one jumper should be installed on J2
ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

STAMP

ICON H-BRIDGE

ICON INTERFACE MODULE

screw terminal

4-40 machine screw

4-40 1/4" standoff

4-40 1" standoff with
threaded tip

20 conductor cable

AN604 PCB BOTTOM MOUNTING DIAGRAM
can be used with dual ICON H-Bridge and ICON Interface Modules

don't use this technique with ICON Active Cooling fan kits

AN604: A Radio Controlled Robot Drive System 3

R/C Receiver Pulse Manipulation:
The BS2 performs three primary functions in this design. The first function performed by the BS2
is to read in the pulses generated by the R/C receiver. The second function is to modify the
numeric values associated with the pulse lengths so that steering and speed information can be
converted into serial data strings. Finally the BS2 communicates this information to the 2 ICON
Interface Modules which in turn control the ICON H-Bridges driving the motors.

The BS2 measures the pulse widths using the PULSIN function. For each channel of the receiver
a 16-bit value is returned. The BS2 measures the pulse width in increments of 2uS. Since a
standard servo signal ranges from 1ms to 2ms, the expected values returned by the BS2 range
from 500 to 1000. A value of 750 would be returned if the input pulse were 1.5ms in duration.
Figure 4 displays the electrical format normally taken by an R/C receiver pulse.

Figure 4: R/C Pulse Format

The BS2 is res
channel 1 and t
received (they a
channel 1 was a
was used as th
document when
the channel that

Initially both CH
code actually all
to the range me
This allows for a
shows specific v
ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

ponsible for capturing these pulses and does so by measuring the pulse at
hen channel 2 of the receiver. The pulses should be read in the order they are
re typically staggered with lower channels being received first). On our receiver
ssociated with a joystick on the transmitter that moved left and right. Therefore it
e “steering” channel. This could vary by manufacturer. For the rest of this
 we refer to CH1 we will be referring to the “steering” channel while CH2 refers to
 is related to motor speed and direction(forward or reverse).

1 and CH2 are limited to values between 500 and 1000 by the BS2. The BS2
ows for pulse signals from 0.5ms to 2.5ms to be used as valid signals, but limited
ntioned previously. Furthermore, values between 735 and 765 are forced to 750.
 dead-band around the value associated with 0 speed and 0 steering. Figure 5
alues and how they are associated with each motor. Note that these values are

1ms

1.5ms

2ms

5V

0V

minimum
pulse
width

medium
pulse
width

maximum
pulse
width

roughly 20ms

CH1

CH2

close up

AN604: A Radio Controlled Robot Drive System 4

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

not the values sent to the ICON Interface Modules, they are just the pulse width values and the
relationship they have with each motor. The values in the CH1 and CH2 columns are the raw
pulse widths received. The values in the Motor1 and Motor2 columns are the values after
“mixing” has occurred. Take note that if the steering pulse (CH1) is in its dead-band (750) then
there is no steering effect on the speed pulse (CH2). You can also see that if CH1 is less than
750 (transmitter joystick for CH1 pushed to the left) the speed for Motor2 is reduced. Alternately,
if CH1 is greater than 750 then the speed for Motor1 is reduced. In between the limits described
below the effect on the motors is proportional. Finally, keep in mind that these values are not yet
converted to the values needed by the ICON Interface Modules for speed control, and the motor
2 value is forced negative when the pulse width value is converted to a serial data value.

Figure 5: Pulse Widths and Their Functions

Description CH1 CH2 Motor1 Motor2
Stop Don’t Care 750 750 750

Full forward 750 1000 1000 1000
Full Reverse 750 500 500 500

Hard Left Full Forward 500 1000 1000 750
Hard Right Full Forward 1000 1000 750 1000
Hard Left Full Reverse 500 500 500 750

Hard Right Full Reverse 1000 500 750 500

It is easiest to describe the modifications that the BS2 makes to the pulse width values with logic
statements, as these correlate well with the software used to program the BS2. The first portion
of the code reads the pulse widths and then limits the pulse values to a range from 500-1000.
These limits are placed on CH1 and CH2 pulses and are done as follows.

If RC_PULSE > 1250 Then RC_PULSE is = 750
If RC_PULSE > 1000 and < 1251 Then RC_PULSE is = 1000
If RC_PULSE < 765 and > 735 Then RC_PULSE is = 750
If RC_PULSE < 500 and > 250 Then RC_PULSE is = 500
If RC_PULSE < 251 Then RC_PULSE is = 750

This logic is applied to both CH1 and CH2. Now to use CH1 to affect steering the pulse width
associated with CH1 is used to modify the CH2 pulse width. It is assumed that this logic takes
effect after the pulse width from CH2 has been moved into the variables PWM_REG1, and
PWM_REG2. Furthermore CH1 and CH2 are described by the RC_PULSE1 and RC_PULSE2
variables. I have called this process mixing, as it is similar to a mixing process used with R/C
aircraft to control flight surfaces. Note again that the modifications made to the PWM_REGx
values do not prepare them for direct transmission to the ICON Interface Modules.

PWM_REG1 = RC_PULSE2
PWM_REG2 = RC_PULSE2

If RC_PULSE1 > 750 and PWM_REG1 > 750 Then
PWM_REG1 = PWM_REG1 – (RC_PULSE1 – 750)

If RC_PULSE1 > 750 and PWM_REG1 < 750 Then
PWM_REG1 = PWM_REG1 – (750 – RC_PULSE1)

If RC_PULSE1 < 750 and PWM_REG2 > 750 Then
PWM_REG2 = PWM_REG2 – (750 – RC_PULSE1)

If RC_PULSE1 < 750 and PWM_REG2 < 750 Then
PWM_REG2 = PWM_REG2 – (RC_PULSE1 – 750)

AN604: A Radio Controlled Robot Drive System 5

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

Some additional limiting of the PWM_REGx variables is done to ensure that the values are
maintained on the correct side of 750. In other words, if the value in the PWM_REGx was greater
than 750 before the mixing occurs, then it is forced to a value no less than 750 after the mixing is
completed.

Finally the PWM_REG1 and PWM_REG2 values must be modified to a format that works with the
ICON Interface Module serial command structure. The values stored in the PWM_REGx
variables after mixing will range from 500-1000. The ICON Interface Modules use negative
values for reverse and positive values for forward. The values sent the ICON Interface Module
should be in the range of –1023 to 1023 (if the values exceed this range the ICON Interface
Modules will limit the value to -1023 or 1023). Since a pulse value of 750 is associated with the
stopped, or no speed, condition we would want a value of 750 to be converted to 0 before being
sent to the ICON Interface Module. Similarly a value of 500 (full reverse) should equal –1023,
and a value of 1000 (full forward) should equal 1023. We therefore first want to shift the pulse
width by 750.

PWM_REG1 = PWM_REG1 – 750

This gives us a new range of values from –250 to 250. To expand these values to a range from –
1023 to 1023 we can multiply the result. I used a multiplier of 5 because my receiver did not
actually provide 1-2ms signals. This ensured that the minimum and maximum pulse widths
generated by my receiver resulted in full reverse and full forward. The end result is that the
speed value for Motor1 is calculated from the equation…

PWM_REG1 = 5*(PWM_REG1 – 750)

And since the value for Motor2 should always be reversed from Motor1 the speed value for
Motor2 is calculated with the equation…

PWM_REG2 = -5*(PWM_REG2 – 750)

These values are now ready for transmission to the ICON Interface Modules.

System Configuration:
The hardware in this system is pretty straightforward to set up. Figure 2 displays the possible
jumper settings for the power supply on the ICON Interface Modules. Figure 3 depicts a possible
mounting method for connecting the ICON-BS2 carrier board to the ICON Interface Modules. If
the ICON Active Cooling Solution is used with the ICON Interface Module then the ICON
Interface Modules should be mounted on top of the ICON-BS2 carrier board. The ICON-BS2
datasheet has a mounting diagram for the top-mounting technique.

The receiver is powered from the BS2 5V supply (VCC on the PCB, VCC_STAMP on the
schematic), which is generated on the ICON Interface Module1 PCB. BS2 pins P8 and P9 are
used with the PULSIN command to read the R/C receiver’s pulse outputs. CH1 is connected to
P8 and CH2 is connected to P9. The R/C receiver is also powered off of the 5V supply.

The system connections are shown on figure 6. The 2 ICON H-Bridge modules connected to
each ICON Interface Module are not shown in the schematic.

AN604: A Radio Controlled Robot Drive System 6

Figure 6: AN604 System Schematic

'A
'
'T
'2
'2
'a
'd
'to

'C

'P

'P

SET FOR VM = 15V-40VICON INTERFACE
MODULE

1
2J2_1

J2_2
ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

Figure 7: AN604.BS2 Software Listing

N604 An R/C Interface for Robot Control

his application note is based on the ICON - BS2 interface board,
 ICON Interface Modules, and 2 ICON H-Bridges. The BS2 reads
 channels from an R/C receiver and uses them to generate speed
nd steering settings. These settings are converted to serial
ata strings and sent to the two ICON Interface Modules used
 drive the ICON H-Bridges.

ommunication string variables
CMMD VAR BYTE 'Command byte storage
ADDR VAR BYTE 'Address byte storage
LENG VAR BYTE 'Length byte storage
CKSUM VAR BYTE 'Checksum byte storage
DAT1 VAR BYTE 'Data byte registers
DAT2 VAR BYTE
DAT3 VAR BYTE
DAT4 VAR BYTE
LOOP VAR WORD 'For next loop word
BADCOMM VAR BYTE 'Storage for bad communication counter
RC_PULSE1 VAR WORD 'Input pulse storage register channel 1
RC_PULSE2 VAR WORD 'Input pulse storage register channel 2

WM storage registers
PWM_REG1 VAR WORD 'PWM storage register for ICON Module 1

P1HI VAR PWM_REG1.HIGHBYTE
P1LO VAR PWM_REG1.LOWBYTE

PWM_REG2 VAR WORD 'PWM storage register for ICON Module 2
P2HI VAR PWM_REG2.HIGHBYTE
P2LO VAR PWM_REG2.LOWBYTE

rogram constants
BAUD CON 6 'Use BAUD = 6 for BS2

CH2

MOTOR2
M+

M-

BS2 PCB
Module

J1

J2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

VCC_EXT
_RESET

ICSP1
ICSP2
ICSP3
ICSP4

GROUND
ANALOG_IN

+5VDC
+5VDC

GROUND
_BRAKE

RX
TX

COM_FLAG
TEMP_FLAG
AMP_FLAG

NO_CONNECT
_ERROR

GROUND

VCC_EXT
_RESET

ICSP1
ICSP2
ICSP3
ICSP4

GROUND
ANALOG_IN

+5VDC
+5VDC

GROUND
_BRAKE

RX
TX

COM_FLAG
TEMP_FLAG
AMP_FLAG

NO_CONNECT
_ERROR

GROUND

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0
VCC_EXT1
VCC_EXT2
VCC_STAMP
GROUND

CH1

+24VDC

J5
J6

J4

J21
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6

3
4
5
6

1
2
3
4
5
6

VCC_EXT
_RESET
ICSP1
ICSP2
ICSP3
ICSP4
GROUND
ANALOG_IN
+5VDC
+5VDC
GROUND
_BRAKE
RX
TX
COM_FLAG
TEMP_FLAG
AMP_FLAG
NO_CONNECT
_ERROR
GROUND

VM
M+

GND
M-

TCH
5V

J2_3
J2_4
J2_5
J2_6

J6_1
J6_2
J6_3
J6_4
J6_5
J6_6

MOTOR1
M+

M-

P7 through P0 used
to control ICON
Interface Modules
(see ICON-BS2
datasheet)

+24VDC

SET FOR VM = 15V-40V

R/C receiver connections BS2 pins available
at test points on
ICON-BS2 board

ICON INTERFACE
MODULE

J5
J6

J4

J21
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

VCC_EXT
_RESET
ICSP1
ICSP2
ICSP3
ICSP4
GROUND
ANALOG_IN
+5VDC
+5VDC
GROUND
_BRAKE
RX
TX
COM_FLAG
TEMP_FLAG
AMP_FLAG
NO_CONNECT
_ERROR
GROUND

VM
M+

GND
M-

TCH
5V

J2_1
J2_2
J2_3
J2_4
J2_5
J2_6

J6_1
J6_2
J6_3
J6_4
J6_5
J6_6

AN604: A Radio Controlled Robot Drive System 7

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

'ICON Interface Module #1 control lines
RESET1 CON 0 'Causes hardware reset when pulled low
BRAKE1 CON 1 'Implements braking function when pulled low
DOUT1 CON 2 'TTL serial data to ICON Interface Module
DIN1 CON 3 'TTL serial data from ICON Interface Module

'ICON Interface Module #2 control lines
RESET2 CON 4 'Causes hardware reset when pulled low
BRAKE2 CON 5 'Implements braking function when pulled low
DOUT2 CON 6 'TTL serial data to ICON Interface Module
DIN2 CON 7 'TTL serial data from ICON Interface Module

'Set BS2SX i/o direction and level
DIRS =%0000000001110111 'Set P0,P1,P2,P4,P5,P6 as outputs all others inputs
OUTS =%1111111111111111 'Set all outputs high

LOW RESET1 'Start program by resetting ICON Interface Modules
LOW RESET2
PAUSE 5
HIGH RESET1
HIGH RESET2
PAUSE 750 'Wait 750ms for ICON Interface Modules to power up
DEBUG CLS 'Clear debug screen

GOSUB INIT_IM 'Initialize the ICON Interface Modules

START:

GOSUB GET_PULSES
 GOSUB MIX_PULSES

GOSUB CONVERT_TO_SERIAL
GOSUB SETDC_IM1
GOSUB SETDC_IM2

GOTO START 'Return to start of program

'*********************************** Subroutines **************************************

'**
'INIT_IM: This subroutine initializes the ICON Interface Modules by ensuring that the
' ADDRESS registers are programmed to "1" and programming the IM_FUNCTION
' registers to binary %1010000. The IM_FUNCTION value enables dynamic
' braking and amps retry settings (see the communication protocol for
' more information on these functions). The ADDRESS and IM_FUNCTION register
' are written to using the universal address of "0", therefore no ACK will be
' be received from the ICON Interface Modules. The BS2 then sends the STORE
' command to each ICON Interface Module and waits for the ACK. This process
' occurs every time the circuit is powered up, but in reality it only needs to
' occur once since the settings are stored in EEPROM with the STORE command.
'**
INIT_IM:

CMMD = $D2 'WRITE command
ADDR = $00 'Universal address
LENG = $04 'Message length
DAT1 = $0E 'ADDRESS register index value
DAT2 = $01 'Write "1" to ADDRESS register
DAT3 = $0F 'IM_FUNCTION register index value
DAT4 = $A0 'Write %1010000 to IM_FUNCTION register
CKSUM = CMMD+ADDR+LENG+DAT1+DAT2+DAT3+DAT4
SEROUT DOUT1,BAUD,[CMMD,ADDR,LENG,DAT1,DAT2,DAT3,DAT4,CKSUM]
SEROUT DOUT2,BAUD,[CMMD,ADDR,LENG,DAT1,DAT2,DAT3,DAT4,CKSUM]

PAUSE 20

AN604: A Radio Controlled Robot Drive System 8

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

CMMD = $D3 'STORE command
ADDR = $01 'ICON Interface Module address of "1"
LENG = $00 'Length of 0, no data in command
CKSUM = CMMD+ADDR+LENG
SEROUT DOUT1,BAUD,[CMMD,ADDR,LENG,CKSUM]
SERIN DIN1,BAUD,150,NA_INIT1,[DAT1]
IF DAT1 = $6 THEN A_INIT1 'Wait 150ms for an ACK from module 1

NA_INIT1:
DEBUG "NO ACK INIT1",CR

A_INIT1:
SEROUT DOUT2,BAUD,[CMMD,ADDR,LENG,CKSUM]
SERIN DIN2,BAUD,150,NA_INIT2,[DAT1]
IF DAT1 = $6 THEN A_INIT2 'Wait 150ms for an ACK from module 2

NA_INIT2:
DEBUG "NO ACK INIT2",CR

A_INIT2:
RETURN

'**
'SETDC_IM1: This routine sends speed and direction data to the ICON Interface Module
' number one located on the right hand side of the robot. The speed and
' direction data are stored in the PWM_REG1 register. If an ACK is not
' received within 150ms then the BS2 will attempt to send the command again.
' This retry will be attempted up to 5 times.
'**

SETDC_IM1:
' DEBUG "PWM1 = ",ISHEX4 PWM_REG1,TAB

CMMD = $D0 'SETDC command
ADDR = $01 'ICON Interface Module address of "1"
LENG = $02 'Length of SETDC is 2
CKSUM = CMMD+ADDR+LENG+P1LO+P1HI
SEROUT DOUT1,BAUD,[CMMD,ADDR,LENG,P1HI,P1LO,CKSUM]
SERIN DIN1,BAUD,150,NA_SDC1,[DAT1]
IF DAT1 <> $6 THEN NA_SDC1
BADCOMM = 0
RETURN

NA_SDC1:
BADCOMM = BADCOMM+1
IF BADCOMM < 5 THEN SETDC_IM1
BADCOMM = 0
RETURN

'**
'SETDC_IM2: This routine sends speed and direction data to the ICON Interface Module
' number two located on the left hand side of the robot. The speed and
' direction data are stored in the PWM_REG2 register. If an ACK is not
' received within 150ms then the BS2 will attempt to send the command again.
' This retry will be attempted up to 5 times.
'**

SETDC_IM2:
' DEBUG "PWM2 = ",ISHEX4 PWM_REG2,CR

CMMD = $D0 'SETDC command
ADDR = $01 'ICON Interface Module address of "1"
LENG = $02 'Length of SETDC is 2
CKSUM = CMMD+ADDR+LENG+P2LO+P2HI
SEROUT DOUT2,BAUD,[CMMD,ADDR,LENG,P2HI,P2LO,CKSUM]
SERIN DIN2,BAUD,150,NA_SDC2,[DAT1]
IF DAT1 <> $6 THEN NA_SDC2
BADCOMM = 0
RETURN

NA_SDC2:
BADCOMM = BADCOMM+1
IF BADCOMM < 5 THEN SETDC_IM2
BADCOMM = 0
RETURN

AN604: A Radio Controlled Robot Drive System 9

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

'**
'GET_PULSES: This subroutine reads the two R/C pulse inputs the data is then stored
' in the RC_PULSE1 and RC_PULSE2 registers. The pulse values are limited
' to a range of 500 to 1000. 750 is a stop condition, 500 is full reverse
' for channel 2 and hard-left for channel 1. Likewise, 1000 is full forward
' for channel 2 and hard-right for channel 1. A dead band is included
' between 740-760 (1.47-1.53ms). The values below (particularly the dead
' band area) may need to be adjusted based on the output of your R/C
' transmitter and receiver.
'**

GET_PULSES:
PULSIN 8,1,RC_PULSE1
PULSIN 9,1,RC_PULSE2

IF RC_PULSE1 > 1250 THEN RC1_750
IF RC_PULSE1 > 1000 THEN RC1_1000
IF RC_PULSE1 > 760 THEN RC1_PROP
IF RC_PULSE1 > 740 THEN RC1_750
IF RC_PULSE1 > 500 THEN RC1_PROP
IF RC_PULSE1 > 250 THEN RC1_500

RC1_750:
RC_PULSE1 = 750
GOTO RC1_PROP

RC1_1000:
RC_PULSE1 = 1000
GOTO RC1_PROP

RC1_500:
RC_PULSE1 = 500
GOTO RC1_PROP

RC1_PROP:

 IF RC_PULSE2 > 1250 THEN RC2_750
 IF RC_PULSE2 > 1000 THEN RC2_1000

IF RC_PULSE2 > 765 THEN RC2_PROP
IF RC_PULSE2 > 735 THEN RC2_750
IF RC_PULSE2 > 500 THEN RC2_PROP
IF RC_PULSE2 > 250 THEN RC2_500

RC2_750:
RC_PULSE2 = 750
GOTO RC2_PROP

RC2_1000:
RC_PULSE2 = 1000
GOTO RC2_PROP

RC2_500:
RC_PULSE2 = 500
GOTO RC2_PROP

RC2_PROP:

PWM_REG1 = RC_PULSE2
PWM_REG2 = RC_PULSE2

RETURN

'**
'MIX_PULSES: This subroutine takes the values in the RC_PULSEx registers and modifies
' them so that R/C pulse 1 (stored in RC_PULSE1 register) can be used as a
' steering signal.
'**

MIX_PULSES:
IF RC_PULSE1 > 750 THEN ADJUST_PWM1
IF RC_PULSE1 < 750 THEN ADJUST_PWM2
GOTO MIX_END

ADJUST_PWM2:
IF PWM_REG1 > 750 THEN SUB_PWM2
IF PWM_REG1 < 750 THEN ADD_PWM2
GOTO MIX_END

AN604: A Radio Controlled Robot Drive System 10

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

SUB_PWM2:
PWM_REG2 = PWM_REG2 - (750 - RC_PULSE1)
IF PWM_REG2 > 750 THEN EX_SUB2
PWM_REG2 = 750

EX_SUB2:
GOTO MIX_END

ADD_PWM2:
PWM_REG2 = PWM_REG2 - (RC_PULSE1 - 750)
IF PWM_REG2 < 750 THEN EX_ADD2
PWM_REG2 = 750

EX_ADD2:
GOTO MIX_END

ADJUST_PWM1:
IF PWM_REG1 > 750 THEN SUB_PWM1
IF PWM_REG1 < 750 THEN ADD_PWM1
GOTO MIX_END

SUB_PWM1:
PWM_REG1 = PWM_REG1 - (RC_PULSE1 - 750)
IF PWM_REG1 > 750 THEN EX_SUB1
PWM_REG1 = 750

EX_SUB1:
GOTO MIX_END

ADD_PWM1:
PWM_REG1 = PWM_REG1 - (750 - RC_PULSE1)
IF PWM_REG1 < 750 THEN EX_ADD1
PWM_REG1 = 750

EX_ADD1:
GOTO MIX_END

MIX_END:
RETURN

'**
'CONVERT_TO_SERIAL: This subroutine takes the PWM values generated from the R/C input
' pulses and translates them into a format that is compatible the ICON
' Interface Module communication protocol. The left hand motor controlled
' by ICON Interface Module#2 has the PWM_REG2 inverted so that it will run in
' the opposite direction of the left hand motor. The multiplier "5" may be
' reduced or increased based on the actual output pulses from your receiver.
' The R/C receiver used in our testing had pulse outputs from 1.2-1.8ms. A
' smaller range would require a larger multiplier, while a larger range would
' require a smaller multiplier.
'**

CONVERT_TO_SERIAL:
PWM_REG1 = 5*(PWM_REG1 - 750)
PWM_REG2 = -5*(PWM_REG2 - 750)
RETURN

END:

Summary:
This application note provides and easy to follow method for converting R/C pulse signals from a
standard R/C receiver to speed and steering controls for a two-wheeled robot. The R/C pulses
are read, mixed, and converted to serial data strings for use with two ICON Interface Modules
carrying two ICON H-Bridge modules. This method is straightforward and requires limited
soldering and no external circuitry. The end result is a dependable robotic drive system with
medium current handling capability.

Some users may need to modify the application note to meet the particular nature of their R/C
receiver. But the software methodology is described in enough detail that this should be a simple
matter for individuals who understand the processes described herein.

