
Catalina C Compiler Targets, Plugins and the Registry

A Tutorial on Targets, Plugins and the Registry
for Catalina 3.4

BASIC CONCEPTS ... 2

INSTALLING AND CONFIGURING THE SIMPLE TARGET .. 3

THE GENERIC PLUGIN ... 5

THE REGISTRY .. 6

THE TARGET .. 9

ADVANCED CONCEPTS .. 11

EMM & XMM TARGETS ... 11
SUPPORTING MULTIPLE PROPELLER PLATFORMS ... 11

Copyright 2009 Ross Higson Page 1 of 11

Catalina C Compiler Targets, Plugins and the Registry

Basic Concepts
One of the design goals of Catalina was to make the environment in which C
programs execute as platform-independent as possible. Catalina does this partly by
implementing an effective Hardware Abstraction Layer (HAL) so that most C
programs do not need to know the details of the drivers that perform various
platform-dependent I/O functions on their behalf.
On the Propeller, with its multi-core capabilities, drivers are usually implemented in a
separate cog to the main program. But as well as device drivers, the multi-core
capabilities of the Propeller encourage the use of cogs for performing other functions
as well – such as floating point functions, or various library functions that would be
inefficient to code in C.
Catalina uses the term Plugin to refer to such components – i.e. a program
designed to run on a separate cog. This term was chosen to highlight the fact that
plugins are usually developed independently of the programs that make use of them,
that they may be used by many programs, and also that they may be dynamically
loaded as needed and unloaded again when no longer required (although many
device driver plugins are loaded once at initialization time and never unloaded).
Catalina defines a common technique for keeping track of all the loaded plugins, and
also a common method for communicating with those plugins. This is done by using
the Registry – which is a just section of Hub RAM reserved for plugins. However,
the registry is not usually accessed directly by application programs – a set of low
level registry functions to do so are provided, but these are usually “wrapped” in a
set of user-friendly C functions that are plugin-specific. For example, to access a
Real-Time Clock plugin, a function such as get_time() would typically be provided,
which implements all the low-level work of interacting with the clock plugin via the
registry.
Finally, Catalina introduces the concept of a Target. A target defines the execution
environment for a Catalina C program – including the hardware configuration (pin
definitions, physical addresses, clock speeds) the software configuration (drivers and
plugins) and the kernel itself (LMM or XMM kernel1, or one of the special function
kernels such as the multi-threading kernel). Catalina groups all these components
together into a Target Directory (sometimes called a Target Package) for
convenience.
Each target directory usually supports one or more Propeller platforms. For example,
the standard target directory provided with Catalina supports the Hydra, Hybrid,
TriBladeProp, DracBlade, RamBlade, Demo board and Morpheus platforms. Each
target directory will also contain a specific set of plugins supported by those
platforms (e.g. the standard Target Directory includes various HMI, SD card, Real-
Time Clock, and Floating Point plugins).
Catalina allows multiple target directories, but only one can be specified when
compiling the final program executable. Having multiple target directories can come
in handy when developing new plugins, or when supporting many different propeller
platforms with significantly different capabilities. This will become more evident later

1 For detailed intormation on the various Catalina Kernels and memory models (e.g. LMM, EMM, XMM etc)
see the Catalina Reference Manual.

Copyright 2009 Ross Higson Page 2 of 11

Catalina C Compiler Targets, Plugins and the Registry

in this tutorial, since we will use a separate target directory to illustrate how to build a
plugin – without affecting the standard Catalina Target Directory.
Within each target directory, there may be support for different individual targets.
Each target specifies the kernel to be loaded, and each target knows how to load
and initialize all the plugins supported by that target. For example, in the standard
target directory there are LMM targets, EMM targets, XMM targets, and debug
targets.
This last point is quite important – this is because even though a plugin is essentially
a “stand-alone” program, they can be complex to load and initialize correctly. Often
plugins must share not only the registry, but sometimes other areas of Hub RAM, or
other Propeller resources such as I/O pins or locks. It is the individual targets that
know how to load and initialize the various plugins correctly - especially since the
load process can differ depending on the type of kernel used. For example, LMM
programs are loaded quite differently to EMM programs or XMM programs.
In summary, developing a plugin to be used in conjunction with a Catalina C program
consists of three parts:

1. The plugin itself. Plugins are usually implemented in PASM (although they
can also be written in Spin), and are often adapted from existing code.

2. A set of C “wrapper” functions that allows the services provided by the plugin
to be more easily invoked from C.

3. One or more targets that support the plugin (i.e. that know how to load it).
This document provides a brief overview all these aspects of developing Catalina
plugins. However, It is not a “step-by-step” or “hands-on” tutorial. Instead, it simply
discusses various aspects of the process - but a fully documented example of a
working “generic” plugin – plus some C wrapper functions that show how to invoke it,
plus a Catalina target that loads it, plus some demo programs that use it – are all
provided, and a referred to in various places in this document.
The remainder of this document also assumes you are at least slightly familiar with
the C language, SPIN, PASM and also with the Propeller architecture.

Installing and Configuring the simple target
In Catalina 3.0 or later, all the files you need will already be installed in two
subdirectories in the main Catalina directory - usually C:\Program Files\Catalina
(Windows) or /usr/local/lib/Catalina (Linux).
There are two important subdirectories:
simple This is a complete – but minimalist – Catalina Target Directory

(also called a Catalina Target Package). It contains a single
LMM target, and a single plugin that this target knows how to
load. The LMM target is called default, which means it does not
normally need to be specified on the Catalina command line.
The plugin is defined in the file Catalina_Plugin.spin, and is
enabled by defining the symbol PLUGIN on the Catalina
command line.

demos\simple This directory contains a set of example wrapper functions
(defined in generic_plugin.h and implemented in

Copyright 2009 Ross Higson Page 3 of 11

Catalina C Compiler Targets, Plugins and the Registry

generic_plugin.c) that allow easy access to the services
provided by the example plugin. It also contains a couple of
demonstration programs that use them.

In each of these directories (and their subdirectories) you will find README.txt files,
which contain detailed information in addition to what is contained in this tutorial.
Before you can compile the demonstration programs, you will first need to go to the
simple subdirectory and edit the Custom_DEF.inc file (make sure you edit the
version in the simple directory, and not the one in the normal Catalina target
directory) and specify your own platform details (and also comment out the ERROR
line).
Then go to the demos\simple subdirectory, and use the following command to build
all the example programs:

build_all
If you don’t do the configuration step first, you will see an error message during
compilation such as:

ERROR : PLATFORM HAS NOT BEEN CONFIGURED YET!
Editing the Custom_DEF.inc file to suit your propeller platform is quite trivial – the
contents of the file will appear similar to the following in any text editor:

'
' Comment out the following line when you have configured your platform:
'
 ERROR : PLATFORM HAS NOT BEEN CONFIGURED!
'
'===
'
' General definitions for your Propeller platform:
'
'===

KBD_PIN = -1 ' BASE PIN (Custom)
MOUSE_PIN = -1 ' BASE PIN (Custom)
TV_PIN = -1 ' BASE PIN (Custom)
VGA_PIN = -1 ' BASE PIN (Custom)
SD_DO_PIN = -1 ' Custom has no SD Card
SD_CLK_PIN = -1 ' Custom has no SD Card
SD_DI_PIN = -1 ' Custom has no SD Card
SD_CS_PIN = -1 ' Custom has no SD Card
I2C_PIN = 28 ' I2C Boot EEPROM SCL Pin
I2C_DEV = $A0 ' I2C Boot EEPROM Device Address
SI_PIN = 31 ' PIN (Custom)
SO_PIN = 30 ' PIN (Custom)
'
' Custom platform Clock definitions:
'
CLOCKMODE = xtal1 + pll16x ' (Custom)
XTALFREQ = 5_000_000 ' (Custom)
CLOCKFREQ = 80_000_000 ' (Custom) Nominal clock frequency
 ' (required by some drivers)

For the purposes of this tutorial, all you need to do is set the clock frequency
information correctly, and remove (or comment out) the ERROR line. You don’t need
to modify any pin definitions, because neither the demo programs nor the generic
plugin use them.

Copyright 2009 Ross Higson Page 4 of 11

Catalina C Compiler Targets, Plugins and the Registry

The Generic Plugin
Examine the file Catalina_Plugin.spin in the simple Directory. It embodies many of
the aspects common to all PASM plugins, and the rules that all plugins must follow:

• It contains a CON section. However, note that any constants defined here can
only be used within the plugin itself, or within the target that loads it. If any of
these constants are required in C, they will need to be redefined in a C header
file.

• It contains an OBJ section with includes Catalina_Common. This is where all
common platform dependent information (such as I/O pin definitions and clock
speeds) will be stored – such things should not be duplicated in the plugin
itself.

• It contains no SPIN methods, other than a start method which will be invoked
by the target at load time (but note that if the plugin is to be re-loaded
dynamically, this method cannot be called, but its functionality will have to be
duplicated in C).

• It contains no VAR section. While it is possible to have a VAR block and use it
during initialization, after initialization any variables defined in the VAR block
would no longer exist in Hub RAM at run-time. Instead, a plugin that needs
Hub RAM should be told what Hub RAM to use dynamically - either during
startup (i.e. in the start method) or later by passing initialization parameters
via the registry. Doing this allocation statically at initialization time is ok for
plugins that are never intended to be unloaded or reloaded, but in this case
the registry technique is used since we want to be able to reload and restart
the plugin dynamically. However, this does not mean that we have to wait and
initialize the plugin from C - the start method of this plugin actually uses the
registry to initialize the plugin at load time.

• Now look at the DAT section. This contains the PASM that implements the
plugin. The first thing the plugin does (see the code at label entry) is register
itself. This is sometimes done in the start method, but for plugins that may be
loaded dynamically, it is better if they register themselves on startup. All
plugins are passed the address of the registry on startup – this will appear in
the par register. From this, they use their cog id to calculate their registry
block address that is used for all subsequent communications. See the next
section for more details on registration.

• This plugin accepts various service requests, so the next part of the code is
about waiting for a service request to appear in the registry (see the code at
label get_service). In this case, the plugin accepts four different service
requests. By convention, the service request code is put in the upper 8 bytes
of the registry request block (note that plugins do not need to accept any
service requests). See the next section for more details on using the registry.

• Not all plugins simply wait idly for service requests. Many spend most of their
time doing other things (in the example, see the stub code at label do_stuff).
However, all plugins that accept service requests should check periodically,
since the kernel will halt when a service request is made until the request it
acknowledged by the plugin.

Copyright 2009 Ross Higson Page 5 of 11

Catalina C Compiler Targets, Plugins and the Registry

• At the end of processing each service request, (or earlier, if the request is to
be processed asynchronously) the plugin should acknowledge receipt of the
request by writing zero to the same location (see the code at label
done_service). See the next section for more details on using the registry.

• A service request can be invoked using a short request or a long request.
However, this must be fixed at design time since the interpretation of the
registry is slightly different for each kind of request, and a service cannot
accept both. In this example, service 1 is a long request (it accepts a 32 bit
pointer), service 2 is a short request (it accepts 24 bits of pin data), service 3
is a long request (it accepts 32 bits of pin data) and service 4 is a long request
(it accepts a 32 bit pointer). Service 4 also illustrates how more than one 32
bit value must be passed – i.e. by passing an address of a temporary memory
block that contains the actual parameters. See the next section for more
details on the registry.

• A services that must return a result can also return them via the registry. See
the next section for more details on using the registry.

Note that the plugin is intended mainly as an example – but it does implement some
trivial functions – i.e. it toggles I/O pins. This means that it is possible to see the
plugin in action when using the demo programs provided – e.g. on the Hydra or
Hybrid, the operation of the plugin can be verified because it will toggle the Debug
LED on or off.

The Registry
At its simplest, the Catalina Registry is simply 8 consecutive longs – one per cog -
located somewhere in Hub RAM (usually in the upper area of Hub RAM). The
location is fixed only at compile time, and it is quite feasible for two different Catalina
programs to use two different locations for the Registry (provided they do not run at
the same time).
Each plugin is told the location of the registry on startup, and from that (and its own
cog id) deduces which of the 8 longs belongs to it specifically. This is referred to as
the plugins Registry Entry. The Registry Entry is used for two purposes:

1. The upper 8 bits of the Registry Entry are used to indicate the type of plugin
loaded into each cog. Zero indicates no plugin is loaded (although this is not a
guarantee that the cog is actually unused – it simply means no plugin is
registered in that cog). Setting this value is referred to as “registering” the
plugin.

2. The lower 24 bits of the Registry Entry point to another location in Hub RAM –
this is the plugin Request Block, and must consist of at least two consecutive
longs. In theory, the Request Block can be longer than two longs, can exist
anywhere in Hub RAM, and can be set up anytime up to the time the plugin is
loaded – but it cannot usually be changed after the plugin is loaded, since
most plugins read this location into a local cog register during initialization and
thereafter do not refer to the Registry Entry. However, it is so common for
plugins to use a simple Request Block consisting of two longs, that Catalina
initializes each Registry Entry to point to a Request Block of two longs that
also lives permanently in upper Hub RAM.

Copyright 2009 Ross Higson Page 6 of 11

Catalina C Compiler Targets, Plugins and the Registry

The basic Registry structure is defined in Catalina_Common.spin. If you look in this
file, you will see definitions for two important locations – REGISTRY and
REQUESTS, and a method called InitializeRegistry. After the registry has been
initialized, its structure will be as shown in the diagram below.

T ype of
P lugin 0

T ype of
P lugin 1

T ype of
P lugin 2

T ype of
P lugin 3

T ype of
P lugin 4

T ype of
P lugin 5

T ype of
P lugin 6

T ype of
P lugin 7

Plugin 7 Result

REGISTRY

Plugin 7 request

Plugin 6 Result

Plugin 6 Request

Plugin 5 Result

Plugin 5 Request

Plugin 4 Result

Plugin 4 Request

Plugin 3 Result

Plugin 3 Request

Plugin 2 Result

Plugin 2 Request

Plugin 1 Result

Plugin 1 Request

Plugin 0 Result

Plugin 0 RequestREQUESTS

Request
Block 7

Request
Block 1

.

.

.

However, there is nothing to stop a target (or a C program) creating a new request
block if it decides it needs one larger than 2 longs – all it has to do is update the
Registry Entry prior to loading the plugin.
When using the registry to communicate with a plugin, a program writes a request to
the first long in the plugin request block. A plugin that is offering interactive services
must monitor this long, and process the service request whenever it sees a non-zero
value in this long. To indicate the request is complete (or simply to acknowledge
receipt of the request), the plugin should write zero to the same long (i.e. the first
long of the request block). Before doing so, if it wishes to return a result (or a status),
the plugin should write a “result” value to the second long of the request block.

Copyright 2009 Ross Higson Page 7 of 11

Catalina C Compiler Targets, Plugins and the Registry

As has been mentioned, there are several types of service request, dictated by the
convention (and it is only a convention – plugins are free to use other methods) that
plugins that offer multiple services all use the upper 8 bits of the request long as a
service code, and the lower 24 bits of the request long in one of two ways:

• To hold up to 24 bits of data. This is known as a short request

• To hold the pointer to another data block somewhere in Hub RAM that
contains the actual data. This is known as a long request. It is the
responsibility of the caller to allocate the necessary space for this additional
data block, and to guarantee that it remains valid for the lifetime of each
service request.

As can be seen from examining the code, short requests are simpler and more
efficient, and are generally preferred where possible.
Catalina provides C functions for locating the registry, registering and unregistering
plugins, and for sending short or long service requests to a plugin. They are defined
in the file catalina_plugin.h in the Catalina\include directory. The implementation of
these functions can be found in the library source code in
Catalina\source\lib\catalina.
Here is a summary of the registry-related functions and macros defined in
catalina_plugin.h:

unsigned _registry();
This function returns the address of the registry. This is required to be
passed to a cog when starting a dynamic kernel to execute C code on
that cog.

void _register_plugin(int cog_id, int plugin_type);
This function can be used to register that a plugin of a specified type is
running on a particular cog. Plugins must be registered before requests
can be sent to them.

void _unregister_plugin(int cog_id);
This function can be used to unregister a plugin.

int _locate_plugin(int plugin_type);
This function can be used to find a cog on which a plugin type is
executing. Note that if there is more than one plugin of a specified type
executing, only the first will be found.

REGISTRY_ENTRY(i)
This macro returns the registry entry for cog i. The parameter “I” should
be from 0 and 7 – any other value will return an undefined result. The
result is an unsigned value.

REGISTERED_TYPE(i)
This macro returns the registered type for cog i. The parameter “I”
should be from 0 and 7 – any other value will return an undefined
result. The result is an unsigned value.

Copyright 2009 Ross Higson Page 8 of 11

Catalina C Compiler Targets, Plugins and the Registry

REQUEST_BLOCK(i)
This macro returns a pointer to the request block reserved for cog i.
The parameter “I” should be from 0 and 7 – any other value will return
an undefined result. The request block structure pointed to is defined
as:
typedef struct {
 unsigned int request;
 unsigned int response;
} request_t;

For an example of a program that uses these functions, see the program
test_plugin_names.c in the main Catalina\demos folder (but note that this program
cannot be compiled and run using the simple target, as this target has no
input/output plugins!).
Loading a plugin dynamically is usually as simple as using the _coginit() function and
then registering the plugin (if it does not do so itself), and stopping it is usually simply
a matter of calling _cogstop() on the cog in which it is running, and then
unregistering it.
For the “generic” plugin provided (which accepts fours different service requests) a
set of “wrapper” functions are defined in the demos/simple directory in the file
generic_plugin.h (along with other plugin-specific constants that may be required),
and implemented in the file generic_plugin.c.
It is recommended that these “wrapper” functions be compared with the
implementation of each of the services in the file Catalina_Plugin.spin. In particular,
note that the type of service (i.e. short or long) must match between the wrapper
function and the service implementation.

The Target
The targets in the standard Catalina Target Directory (the subdirectory called target)
are very complex – but this is largely because they each support so many different
plugins, kernel types and platforms.
In order to show that the basics of a fully functional target is actually quite easy, the
simple Target Directory provided with this tutorial is (as the name suggests) very
simple! – it supports only one target (a default LMM target) and that target only
supports one plugin (our “Generic” plugin).
The required SPIN target program to do this (all targets are simply SPIN programs)
is only a few lines long.
This target program file is in the simple subdirectory, and is called lmm_default.spin.
Examine the target program file, and note the following, which are common features
of all target files:

• It defines the clock frequency and stack size, but gets the values from
Catalina_Common.spin, which in turn gets them from Custom_DEF.inc. Note
that the stack size here refers only to the stack used during the initialization
phase (not the C program stack which is not constructed till much later).

• It includes Catalina_Common.spin, which contains all the other platform-
dependent features, such as I/O pin definitions etc.

Copyright 2009 Ross Higson Page 9 of 11

Catalina C Compiler Targets, Plugins and the Registry

• It includes Catalina.spin. This is the actual C code output by the Catalina
compiler, wrapped up in a SPIN object. This file is generated on each
compile, and (usually) deleted at the end of the compile (if you want to see its
contents, include the –u flag when invoking the Catalina compiler).

• It includes Catalina_LMM.spin, which is the LMM Kernel.

• It includes all the plugins it might have to load (in this case, there is only the
one – the generic plugin defined in Catalina_Plugin.spin, which is loaded if the
PLUGIN symbol has been defined).

• It contains one method (Start) which initializes the registry, allocates any Hub
RAM required, loads and starts all the plugins, and then invokes the LMM
kernel.

• Each plugin has an associated symbol (in this case PLUGIN) which controls
whether or not the plugin is loaded (using #ifdef PLUGIN … #endif
constructs).

• If a plugin requires any Hub RAM allocated to it, this is allocated downwards
from the Registry REQUESTS block. The C program stack will be constructed
starting just below any Hub RAM allocated to the plugins (or for the registry).
This is different to when a plugin is started dynamically by a C program,
where any Hub RAM required will have to be allocated in global RAM, or
perhaps on the C stack. Plugins should not assume any particular Hub RAM
locations (apart from a very few special cases where data blocks are
permanently allocated for specific plugins in the upper Hub RAM area).

Copyright 2009 Ross Higson Page 10 of 11

Catalina C Compiler Targets, Plugins and the Registry

Advanced Concepts

EMM & XMM Targets
The simple directory provided as an example Target Directory only provides a single
LMM target. While the plugin code itself is often identical for EMM, XMM and LMM
targets, the kernel loaded, and the means of loading and initializing the program and
plugins, may differ.
Refer to the standard Catalina target directory (target) or the basic Catalina target
directory (basic) for examples of other targets, and how to load plugins for other
targets.

Supporting multiple Propeller platforms
The Catalina_Common.spin file provided in the simple subdirectory only supports a
single platform. To support different platforms, a unique symbol is first selected that
can be defined on the command line, and the code for that platform is wrapped in
conditional compilation constructs – i.e. by using constructs like:

#ifdef CUSTOM_1
 ...
#elseifdef CUSTOM_2
 ...
#endif.

The first step in supporting a new platform is to determine a suitable symbol for it (in
this case CUSTOM_1 or CUSTOM_2) and then use it consistently in all target files
and plugins.
For an example of this, see the version of Catalina_Common.spin in the default
target (in the directory Catalina\target). This version of the file includes DEF.inc,
which contains a construct like the one shown above which specifies all supported
platforms.

Copyright 2009 Ross Higson Page 11 of 11

	Basic Concepts
	Installing and Configuring the simple target

	The Generic Plugin
	The Registry
	The Target
	Advanced Concepts
	EMM & XMM Targets
	Supporting multiple Propeller platforms

