
The Toggle Tutorials 

“If you control the pins, you can control the world” – Napoleon Bonaparte 

Introduction 

This guide is intended to develop an understanding of Propeller GCC C programming on the Parallax 

Propeller micro-controller. It is not a C programming guide and is not a detailed introduction to micro-

controllers or the Propeller hardware architecture. It is a way for a programmer, hopefully with C 

experience and some Propeller experience to learn how to leverage the special features of the Propeller 

through C code.  

You can use C and the Propeller to run small C example programs as a general purpose computer. It 

allows you to do I/O to a terminal emulator and perform numeric and symbolic manipulation of data 

and perform most of the functions of a small personal computer. This is fine for learning C but misses 

out on the real reason for having a microcontroller as pointed out in Napoleon’s quote above (ok, 

maybe it wasn’t Napoleon).  

Physical computing is about connecting to the physical world and the Propeller does that through its 32 

I/O pins. If you can control those pins through a program, you truly can control the physical computing 

world.  

Through a series of progressively more sophisticated programs that basically toggle I/O pins, we will 

learn how to control the physical I/O on the Propeller and also how to leverage the multi-processing 

power of the Propeller through C in various ways. Along with that, we’ll learn how to take advantage of 

the various memory models that are made available through the Propeller GCC implementation. 

Each section starts with the program that will be used to develop the concepts of that section. I try to 

heavily comment the code so if you read through it and understand what is going on, please skip to the 

next section. You can always come back and I certainly don’t want anybody to get bored going over 

things they already know. 

By the end of the tutorial, you should be able to write simple LMM programs, LMM programs with COGs 

running C code, LMM programs with COGs running GAS or PASM assembler code, LMM programs with 

multiple threads and XMM programs using pseudo-threads (pthreads) and just about any other memory 

or COG configuration that’s supported. If some of the terms sound a little confusing or daunting, then 

you are in the right place. 

Most of all have fun. If programming at this level isn’t enjoyable, then I seriously suggest trying some 

other language on the Propeller. You can always come back at another time when you have the need or 

desire. 

 



Tutorial #0 – Assumptions and preparations 

#1) You have some programming experience – preferably with C. If you have SPIN and PASM experience, 

that’s even better! 

#2) You have experience with the Parallax Propeller and it’s hardware architecture. It’s not your typical 

micro-controller and has features that this tutorial will highlight and exploit through C. 

#3) You have enough computer experience to create and edit program source files, navigate directories, 

and work in the command prompt or terminal environment on your computer. 

#4) You are comfortable with decimal, hexadecimal and binary numbers and have some knowledge of 

logical and bitwise operators and bit manipulation. 

#5) You have installed the latest Propeller GCC (PROPGCC) release for your operating system on your 

computer. The programs for this tutorial are contained in the toggle subdirectory under the demos 

subdirectory – you should be able to find this after you install PROPGCC. 

#6) I’m using a 64KB QuickStart board for testing examples unless stated otherwise in a particular 

section. For most tutorials, any Propeller board should work as long as it has an LED to blink.  

#7) This document and all code examples are covered under the MIT license and follow the terms of use 

outlined in that license. 

+-------------------------------------------------------------------- 
Â¦  TERMS OF USE: MIT License 
+-------------------------------------------------------------------- 
Permission is hereby granted, free of charge, to any person obtaining 
a copy of this software and associated documentation files 
(the "Software"), to deal in the Software without restriction, 
including without limitation the rights to use, copy, modify, merge, 
publish, distribute, sublicense, and/or sell copies of the Software, 
and to permit persons to whom the Software is furnished to do so, 
subject to the following conditions: 
 
The above copyright notice and this permission notice shall be 
included in all copies or substantial portions of the Software. 
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY 
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
+-------------------------------------------------------------------- 
*/ 



Tutorial #1 – lmm_toggle 

The Code: 

int main(int argc, char* argv[]) 
{ 
    int mask = 0x3fffffff;  // Create an integer variable mask and  
        // initialize it as a bit mask with 1's in  
        // each place except for bit 30 and 31 
            
    int freq = CLKFREQ>>1;       // Initialize the integer variable freq 
              // to the system clock freq divided by 2 
    DIRA = mask;                 // Set the Propeller direction register to  
        // the bitmask - in this example, all bits except  
        // 30 and 31 will be set as outputs. 
            
    for(;;) {   // This is an empty (infininte) for loop 
        OUTA ^= DIRA;  // Set the Propeller OUTA register to iteself 
            // XOR'd with the bit mask. 
            // XOR is a common way to toggle bits or 'flip' 
            // bit values. 
               
        waitcnt(freq+CNT);  // Cause the COG to wait (idle) until the system 
            // counter reaches a value of freq+CNT. 
            // CNT is the current value of the system counter. 
    }     
} 

Questions: 

So what is LMM and why is it important? 

What’s in propeller.h 

What does    int mask = 0x3fffffff do? 

What does int freq = CLKFREQ>>1 do? 

What do DIRA = mask and OUTA ^= mask do? 

What does waitcnt(freq+CNT) do? 

How do I compile a C program in LMM mode to run on the Propeller? 

If you feel comfortable with these questions, then feel free to skip to the next tutorial. If not, you may 

want to read a bit further in this tutorial. 

What is LMM? 

The Propeller port of GCC supports a number of memory models, or ways of storing the program in 

memory. Basically these models provide a trade off of speed for code space. By far the fastest model is 



the native “cog” model (-mcog) in which machine instructions are executed directly. However, in that 

model only the 2K of internal COG memory (actually slightly less) is available for code. In the other 

models (LMM, XMMC, and XMM) code is stored in RAM external to the cog and is loaded in by a small 

kernel. This makes more space available for the code (and, in the XMM case, the data) but at the cost of 

having kernel overhead on each instruction executed (See Appendix A for memory model details) 

The default memory model is LMM.  In this model, your program is loaded into HUB ram and an LMM 

interpreter is loaded into COG 0. The LMM interpreter fetches your program instructions from the HUB 

memory and executes them in COG memory. LMM programs are still bound by the 32K memory of the 

propeller. LMM suffers a speed penalty since the entire program is not In COG memory but it is 

significantly faster than interpreted SPIN code. LMM programs should run on any Propeller and any of 

the current production boards. 

What’s in propeller.h? 

Propeller.h is one of the GCC implementation specific header files supporting the propeller libraries. It 

contains hardware definitions and function prototypes for a portion of the Propeller specific C library. 

The C code implementing the functions in propeller.h can be found in propeller.c in the libpropeller 

directory. You need to include propeller.h in your program so you can reference the Propeller registers 

and other hardware structures. 

What does    int mask = 0x3fffffff do? 

In the Propeller GCC port, integers are stored as 32 bit values. This piece of code loads the variable mask 

with a very LARGE number but we aren’t going to be using it as a number, we are going to be using it as 

bits to load into Propeller registers.  If you look at this number as a string of bits in a 32 bit register, you 

see: 

Bit 31 Bit 30 Bit29 Bit 28 Bit 27 …  … Bit 3 Bit 2 Bit 1 Bit 0 

0 0 1 1 1 1 1 1 1 1 

 

If this doesn’t makes sense, please review binary and hexadecimal number systems and bit manipulation 

(online reference?)  

By using this value as the bit mask, you are saying you will be working with ALL pins except for 30 and 

31. Those we don’t touch since they are used for serial I/O with your computer in these examples.  If the 

board you are working with has problems with the other 30 pins toggling from HIGH to LOW, then the 

bit mask needs to be adjusted. If you have an LED on pin #0, then your bit mask would be 0x01, if you 

are using a QuickStart and just want the LED pins to be toggled, you could use 0x0ff0000, which just 

selects bits 16 to 23. 

What does int freq = CLKFREQ>>1 do? 

This line makes the contents of freq equal to the Propeller clock frequency (80,000,000 in this example) 

shifted to the right by 1 bit. ‘>>’ is the C bitwise operator for Shift Right. By shifting a number to the right 

by one bit you actually divide it by 2 (2 bits = /4, 3 bits = /8, etc.).  CLKFREQ contains the number of clock 



ticks per second which in this examples defaults to 80,000,000 for an 80MHz clock. By dividing it by two, 

you get the clock ticks in ½ second. This will be the duty cycle for the flashing LEDs. 

What do DIRA = mask and OUTA ^= mask do? 

DIRA and OUTA are more of the Propeller registers that are defined in the propeller.h header file.   

The first piece of code loads the contents of mask into DIRA, the direction register.  Setting the bits in 

that register to 1 make them outputs, 0’s are inputs. 

The second piece of code sets the Propeller OUTA register equal to exclusive OR result of the OUTA 

register and the variable mask. 

 Say what?? 

 ‘^=’ is the C compound operator for a bitwise exclusive or.  We are doing an exclusive OR of OUTA and 

mask. 

Say what?? 

A compound operator in C takes the left side operator, performs the indicated operation on it and the 

right side operator and then places the result back into the left side operator. It’s a shorthand way of 

writing OUTA = OUTA ^ mask.  

The exclusive OR (XOR) is a logical operator that compares the bits in each variable. If both bits are 0 or 

both bits are 1, the result is 0, if EITHER bit is 1 then the result is 1. This has the effect of toggling the bits 

in OUTA 0 to 1 or 1 to 0 each time through the loop. If you are uncomfortable with logical operators and 

bitwise operators, please review them. Bit manipulation is used extensively in programming micro-

controllers. (online reference) 

What does waitcnt(freq+CNT) do? 

Waitcnt is a direct translation of the SPIN waitcnt instruction. You are telling the COG to wait until CNT 

(the system counter) to reach the value freq+CNT. CNT is the system counter made available through its 

definition in propeller.h and freq is the time we want to wait that was calculated earlier. In this case, the 

COG will wait idle for 0.5 seconds and then resume instruction execution where it paused. 

How do I compile a C program in LMM mode to run on the Propeller? 

Assuming you have a Propeller board connected to your computer and you know what port # it is on, 

this is pretty easy for the examples. 

The good news is that each example has a make file in its directory. Make files are beyond the scope of 

this tutorial. For now, for any of the tutorial examples, if you are in the directory for that example, you 

can type the following at the operating system prompt to rebuild an executable Propeller GCC binary: 

>make clean 
>make 

 



To load the executable into the Propeller, type: 

>propeller-load –r –pn toggle.elf 

Where n is the port number the Propeller is connected to. 

If you’ve done everything right, you should see some blinking LEDs. 

If I’ve done everything right, you should have some idea WHY they are blinking. 

 

On to Tutorial #2!! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A. – Memory Models 

The Propeller port of GCC supports a number of memory models, or ways of storing the 

program in memory. Basically these models provide a trade off of speed for code space. By far 

the fastest model is the native “cog” model (-mcog) in which machine instructions are executed 

directly. However, in that model only the 2K of internal memory (actually slightly less) is 

available for code. In the other models (LMM, XMMC, and XMM) code is stored in RAM 

external to the cog and is loaded in by a small kernel. This makes more space available for the 

code (and, in the XMM case, the data) but at the cost of having kernel overhead on each 

instruction executed. 

COG 

As previously mentioned, in the COG memory model code is stored directly in the internal 

memory of the Propeller's cogs. This memory is 512 words, or 2048 bytes, long, but 16 words 

are reserved for hardware registers. The GNU C compiler reserves an additional 17 words for 

compiler registers. These registers, named r0-r14, lr, and sp, are used by the compiler for 

various purposes. r0-r7 are temporary registers within a function (not preserved across function 

calls). r8-r14 are working registers within a function and are preserved across function calls. lr 

is the “link register” which holds the return address for functions (except for functions declared 

with the “native” attribute, for which the return address is stored directly in the ret instruction). 

sp is the stack pointer. 

Assembly programming in COG mode 

Inline assembly (or writing external C callable functions in assembly) in COG mode is very 

straightforward – the Propeller instruction set is directly usable. The GNU assembler gas accepts 

input that is very similar to PASM. The major differences are: (1) gas does not understand local 

labels (labels that start with :), and (2) by default addresses are considered to be byte addresses 

rather than word addresses; you can tell gas to treat them as words by using the .cog_ram 

directive. The instruction set is the same, although for convenience gas offers a mova (“move 

address”) instruction that works just like mov but which divides any immediate source value by 4, 

thus converting it from a byte address to a word address. mova is not needed in .cog_ram mode, 

but is convenient in the default mode. 

LMM 

In the Large Memory Model (LMM mode), the program code is stored in hub memory, which is 

32K in size. The program's data and stack are also stored there. A small kernel program (the 

“LMM Kernel”) runs in COG memory and loads and executes program instructions from hub 

memory. In this mode the same 17 compiler registers are available as in hub mode (r0-r14, lr, 

and sp), but there is an additional register pc which is a pointer to the next instruction to be 

fetched. 



Assembly programming in LMM mode 

In LMM mode most PASM instructions can be used, except for any jump or call instructions 

(including djnz, tjnz, and jmpret). Instead of doing direct jumps, we have to modify the value 

of the pc register used by the LMM interpreter instead. This may be done either by directly 

adding an offset to pc, or by loading a new value into it. gas provides a pseudo-instruction brs 

(“branch short”) which translates into an immediate add or sub of the pc; this may be used to 

branch to a destination within 508 bytes (plus or minus) of the instruction following the brs. For 

longer branches we can use the __LMM_JMP routine built into the kernel, or else move a different 

register into pc (for an indirect jump). After the jmp #__LMM_JMP instruction comes a 4 byte 

address indicating the new value for the pc. 

Calls are handled by the __LMM_CALL and __LMM_CALL_INDIRECT kernel functions. __LMM_CALL 

is like __LMM_JMP except that before it loads the new pc it saves the old value into the lr 

register. The called function can thus return with a simple mov pc,lr instruction. 

__LMM_CALL_INDIRECT uses a special register, __TMP0, as the address to call; thus, an indirect 

call via compiler register r6 would be coded as: 

mov __TMP0, r6 
jmp #__LMM_CALL_INDIRECT 

__LMM_CALL_INDIRECT also saves the return address in lr. 

XMMC 

In the eXtended Memory Model – Code (XMMC mode) the program code is stored in external 

memory, either flash or ram. The exact size of this memory depends on the board used, but it is 

generally quite a bit larger than hub memory. The program's data and stack reside in hub 

memory as in LMM mode. 

Assembly programming in XMMC mode is exactly the same as in LMM mode. 

XMM 

In the eXtended Memory Model both the code and data are placed in external memory (in the 

case of data it must be an external RAM). This allows for the largest possible programs, but at a 

considerable cost in execution time, since all data accesses must go through functions in the 

XMM kernel. As in all other modes, the stack remains in hub memory (and hence is limited to 

32K bytes less the cache size used by the XMM kernel, which is typically 8K bytes). 

Assembly programming in XMM mode is very similar to LMM mode, except that data accesses 

which may point into external memory must be done via the appropriate kernel functions instead 

of directly with rdlong and wrlong instructions. 

Kernel APIs 



The LMM, XMM, and XMMC kernels all provide some common functions which may be used 

by programs (and which the compiler takes advantage of). 

Data movement 

jmp #__LMM_MVI_rn 
long val 

This is a “move immediate” instruction to move the value “val” into compiler register rn (or the 

link register lr). After the instruction is complete the LMM interpreter resumes automatically. 

mov __TMP0, #(count<<4)|regnum 
call #__LMM_PUSHM 

Push multiple compiler registers onto the stack. “count” is the number of registers to push, and 

“regnum” is the number of the first register to push (0 for r0, 1 for r1, and so on; register 

number 15 is lr). Note that “count+regnum” should be less than or equal to 16. The registers 

count up, so if regnum is 12 and count is 3 then r12, r13, and r14 will be pushed (in that order). 

mov __TMP0, #(count<<4)|regnum 
call #__LMM_POPM 

Pop multiple compiler registers from the stack. “count” is the number of registers to pop, and 

“regnum” is the number of the first register to pop, which should be the last register pushed (0 

for r0, 1 for r1, and so on). Note that “count+regnum” should be less than or equal to 16. The 

registers count down, so if regnum is 14 and count is 3 then r14, r13, and r12 will be popped (in 

that order). 

Branches and calls 

jmp #__LMM_JMP 
long addr 

Moves the immediate value addr into the pc register (so the LMM interpreter will begin to 

execute at address addr, thus performing an unconditional jump). 

jmp #__LMM_CALL 
long addr 

Moves the address of the next instruction into the lr register, and moves addr into the pc 

register (so the LMM interpreter will begin execution at address addr, which is typically a 

subroutine). 

mov __TMP0,rn 
jmp #__LMM_CALL_INDIRECT 



Moves the address of the next instruction into the lr register, and moves __TMP0 into the pc 

register (so the LMM interpreter will begin execution at address, it contained, which is typically 

a subroutine). 

Math functions 

call #__UDIVSI  

Performs 32 bit unsigned division of the value in compiler register r0 by the one in r1. Returns 

the quotient in r0, and the remainder in r1. 

call #__DIVSI 

Performs a 32 bit signed division of r0 by r1. Returns the quotient in r0, and the remainder in 

r1. The sign of the remainder is chosen so as to be consistent with the C standard.  

call #__MULSI 

Multiplies the two 32 bit numbers in r0 and r1, and returns the (low order) 32 bits of the result 

in r0. 

call #__CLZSI 

Counts the number of leading 0 bits in register r0, and returns the result in r0. For example, if r0 

= 0x00008100, then the result will be 16. This is useful for normalizing fixed and floating point 

numbers. 

call #__CTZSI 

Counts the number of trailing 0 bits in register r0, and returns the result in r0. For example, if r0 

= 0x00008100, then the result will be 8. 

Miscellaneous functions 

jmp #__LMM_FCACHE_LOAD 

long nbytes  

Loads some code into the fast cache and executes it. The code to be loaded and executed 

immediately follows the load sequence, and is nbytes bytes long (which must be a multiple of 

4). Code executing in the fast cache must use only COG instructions, and must not refer to the 

program counter pc (jmp instructions must be used instead, with labels referring to the COG 

memory region starting at __LMM_FCACHE_START, which is where it will be executed from. At the 

end of the fastcached block should come a jmp __LMM_RET instruction (note that this is an 

indirect jump).  

For example, the C strcpy function:  



char *strcpy(char *dst_orig, const char *src) { 

    char *dst = dst_orig; 

    while ((*dst++ = *src++) != 0) 

        ; 

    return dst_orig; 

} 

is translated by the compiler into code using the fast cache like:  

 .global _strcpy 

_strcpy 

 mov r7, r0 

 jmp #__LMM_FCACHE_LOAD 

 long .L6-.L5 

.L5 

.L2 

 rdbyte r6, r1 

 cmp r6, #0 wz 

 add r1, #1 

 wrbyte r6, r7 

 add r7, #1 

 IF_NE jmp #__LMM_FCACHE_START+(.L2-.L5) 

 jmp __LMM_RET 

.L6 

 mov pc,lr 

 


