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confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
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3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
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and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
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application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
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Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 
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information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or 
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considering the use of a product contained herein for any specific purposes, such as apparatus or 
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7. If these products or technologies are subject to the Japanese export control restrictions, they must 

be exported under a license from the Japanese government and cannot be imported into a country 

other than the approved destination. 
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1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and 

more reliable, but there is always the possibility that trouble may occur with them. Trouble with 

semiconductors may lead to personal injury, fire or property damage. 
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Power MOS FET 
Application Note 

1. Electrical Characteristics Definition and Usage Explanation 

1.1 Absolute Maximum Ratings and Electrical Characteristics 
1.1.1 Absolute Maximum Ratings 
Figure 1.1 shows the meaning of power MOSFET absolute maximum ratings. 

Gate to source voltage

Drain current

Drain peak current

Body-drain diode reverse

drain current

Channel dissipation

Channel temperature

Thermal resistance

Item

VGSS

ID

ID(pulse) *1

IDR

IAP *2

EAR *2

Pch *3

Tch

θch-c

Symbol

±20

85

340

85

60

308

110

150

1.14

Rating Unit

Drain to source voltage VDSS 60 V

V

A

A

A

A

mJ

W

°C

°C/W

Notes: 1. Allowable value at PW ≤ 10µs, duty ≤ 1%

2. Allowable value at Tch = 25°C, Rg ≥ 50Ω
3. Allowable value at Tc = 25°C

Example of 2SK3418 (Ta = 25°C)

VDSS has correlation to on-resistance

Theoretical equation for drain current ID:

Rated current of source to drain diode

(Determined by package and chip size)

Pch temperature derating:

ID(pulse) uses transient thermal resistance

Lower for low-voltage drive component

Tchmax – Tc

RDS(on)max × α × θch – c
ID =

α =
150°C RDS(on)

25°C RDS(on)

Pch(Tx) = Pch(25°C) ×
Tchmax – Tc

Tchmax – 25

θch-c =
Tchmax – Tc

Pch

EAR = L • IAP
21

2

V(BR)DSS

V(BR)DSS – VDSS
Avalanche energy

Avalanche current

 

Figure 1   Power MOS FET Absolute Maximum Ratings 



Power MOS FET 1. Electrical Characteristics Definition and Usage Explanation 

Rev.2.00   Aug.23.2004   Page 2 of 49 
REJ05G0001-0200 

1.1.2 Electrical Characteristics 
Table 1.1 shows the meaning of power MOSFET electrical characteristics. 

Table 1.1 Power MOS FET Electrical Characteristics 

(Ta = 25°C) 
Ratings   

 
Item 

 
 
Symbol 

 
Min 

 
Typ 

 
Max 

 
Test 
Conditions 

 
 
Unit 

Temperature 
Dependence 

 
 
Design Notes 

Drain to source 
breakdown voltage 

V(BR)DSS 60 — — ID = 10mA, 
VGS = 0 

V  Correlation to on-resistance 

Zero gate voltage 
drain current 

IDSS — — 10 VDS = 60V, 
VGS = 0 

µA  Thermal dependence is high, but 
low in terms of loss 

Gate to source 
leakage current 

IGSS — — ±0.1 VGS = ±20V, 
VDS = 0 

µA — For products with on-chip 
protective diode, several tens of 
nA to several µA, guaranteed 
value of ±10 µA 

Gate to source 
cutoff voltage 

VGS(off) 1.0 — 2.5 VDS = 10V, 
ID = 1mA 

V  Affects switching operation noise 
and switching time tr, tf 

Forward transfer 
admittance 

|Yfs| 55 90 — ID = 45A, 
VDS = 10V 

s   

Static drain to 
source on state 
resistance 1 

RDS(on)1 — 4.3 5.5 ID = 45A, 
VGS = 10V 

mΩ  

Static drain to 
source on state 
resistance 2 

RDS(on)2 — 6.0 9.0 ID = 45A, 
VGS = 4V 

mΩ  

Most important parameters in 
determining on-loss. 
Note that these rise together with 
temperature. 

Input capacitance Ciss — 9770 — pF — VDS dependent.  Drive loss 
indicator in analog operation 

Output capacitance Coss — 1340 — pF — VDS dependent.  Affects fall time tf 
under light load. 

Reverse transfer 
capacitance 

Crss — 470 — 

VDS = 10V, 
VGS = 0, 
f = 1MHz 

pF — VDS dependent.  Influences 
switching time tr, tf. 

Total gate charge Qg — 180 — nC — Characteristic that determines 
drive loss.  Greatly dependent on 
gate drive voltage. 

Gate to source 
charge 

Qgs — 32 — nC —  

Gate to drain charge Qgd — 36 — 

VDD = 50V, 
VGS = 10V, 
ID = 85A 

nC — Characteristic that determines 
switching time tr, tf.  Dependent on 
power supply voltage VDD 
(increases when VDD rises). 

Turn-on delay time td(on) — 53 — ns — 
Rise time tr — 320 — ns — 

Determined by Rg, Qgd, and gate 
drive voltage.  Influence diode on-
loss in inverter use. 

Turn-off delay time td(off) — 700 — ns — 
Fall time tf — 380 — 

VGS = 10V, 
ID = 45A, 
RL = 0.67Ω, 
Rg = 50Ω 

ns — 
Determined by Rg, Qgd, and Vth.  
Influence surge voltage (noise) 
when switching off. 

Body-drain diode 
forward voltage 

VDF — 1.0 — IF = 85A, 
VGS = 0 

V  Becomes same characteristic as 
on-resistance when positive bias is 
applied to VGS. 

Body-drain diode 
reverse recovery 
time 

trr — 70 — IF = 85A, 
VGS = 0, 
di/dt = 50µA/µs 

ns  Short-circuit current: lowers di/dt to 
suppress noise. 

Note: : Has positive temperature coefficient,  : Has negative temperature coefficient 
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1.2 Relationship between On-Resistance RDS(on) and Withstand Voltage VDSS 
Figure 1.2 shows the relationship between a withstand voltage VDSS = 20 to 100 V rated component and on-resistance 
RDS(on).  When selecting the withstand voltage of an component, a margin should be left in the settings with respect to 
circuit operation conditions power supply voltage VDD and surge voltage VDS(peak) generated when switching off.  As 
VDSS has a positive temperature characteristic with respect to temperature, the minimum temperature environment 
conditions for use of the component must be taken into consideration. 
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Figure 1.2   RDS(on) – VDSS Relationship 

Figure 1.3 shows the V(BR)DSS temperature characteristic (taking the example of the 2SK3418).  In this case, making the 
withstand voltage margin larger than necessary is inadvisable as it will result in higher on-resistance and greater steady-
state loss.  Recently, components have appeared that can handle guaranteed avalanche resistance in order to reduce this 
margin as much as possible and provide the benefit of lower loss. 
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Figure 1.3   V(BR)DSS – Tc Characteristics (2SK3418) 
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1.3 Saturation Voltage VDS(on)(= Id × RDS(on)) Gate Drive Voltage Dependence 
This characteristic is a characteristic curve for designing at what gate drive voltage the VDS(on) area (on-resistance area) 
is effected in the case of a predetermined operating current Id. 

In the case of power MOS FETs, 10 V drive components, 4 V drive components, 4 V drive (or lower) components are 
produced according to the gate drive operating current.  The means of achieving low-voltage drive is generally to use a 
thin gate oxide film (whereby the gate-source withstand voltage VGSS rating is reduced) to attain a lower VGS(off) value. 

VGS(off) has an approximately –5 mV/°C negative temperature coefficient (characteristic that falls approximately 0.5 V 
with a 100°C rise). 

When selecting the type of component in terms of drive voltage, it is necessary to consider the application (for example, 
selection of a 10 V drive component with a high VGS(off) value to cope with noise in switching power supply or motor 
drive applications) and the specifications of the gate drive IC or LSI to be used (such as a low-level voltage that keeps 
the MOS FET off). 

Recently, therefore, a distinction may be made between the use of 4 V drive components and 10 V drive components 
according to the conditions of use and application even in automotive electrical equipment. 
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Figure 1.4   VDS(on) – VGS Characteristics (2SK3418) 

1.3.1 On-Resistance RDS(on) Temperature Dependence 
Figure 1.5 shows temperature dependence of on-resistance RDS(on).  Power MOS FET on-resistance RDS(on) has a 
positive temperature characteristic. 

If the ratio between channel temperature rating Tch(max.) of 150°C and room temperature of 25°C 
(150°CRon/25°CRon) is designated α, the value is approximately 1.7 to 1.8 times for an component with a withstand 
voltage of 100 V or less, and approximately 2.4 to 2.5 times for an component with a withstand voltage of 500 V.  It 
should also be noted that, as shown in the figure, RDS(on) does not rise linearly with a rise in temperature, but increases 
in a curvilinear shape. 

What this means is that, when ambient temperature Ta = 100°C, for example, if the channel temperature calculation 
result is that Tch = 130°C, and Ta is made 120°C (a 20°C rise), Tch does not simply rise by 20°C to become 150°C, but 
rises above that temperature. 

Therefore, when an component is used in a high-temperature environment such as automotive electrical equipment, this 
temperature characteristic must be carefully considered in heat radiation design.  For details, refer to the power MOS 
FET heat radiation design example. 
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Figure 1.5   RDS(on) – Tc Characteristics (2SK3418) 

1.4 Gate Charge Amounts Qg, Qgs, Qgd 
In figure 1.6(a), the point up to prescribed drive voltage VGS (=XV) is total charge amount Qg.  This is the 
characteristic parameter that determines gate peak current ig(peak) for driving the gate and drive loss P(drive loss). 

Ig(peak) = Qg/t …………………………(1)

P(drive loss) = f ⋅ Qg ⋅ VGS ……………(2) 
Qgd corresponds to mirror capacitance Crss, and depends on power supply voltage VDS.  It is also a parameter that 
influences switching characteristics. 

logtf ≅
(Rs + rg) ⋅ Qgd

Vgs(on) – Vth

Vgs(on)

Vth
………(3)

 
Fall time tf that controls L load switching loss is expressed by equation (3).  Qg and Qgd are important items in 
designing high-frequency operation loss.  In high-frequency (f = 100 kHz or above) applications, it can be said that the 
smaller the Ron·Qg or Ron·Qgd product, the higher is the performance of the component. 
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Figure 1.6   Input Dynamic Characteristics (2SK3418) 
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1.4.1 Characteristics of Internal Diode between Source and Drain 
In a power MOSFET, a parasitic diode is provided between the source and drain.  Rated current IDR of this diode is the 
same value as forward drain current rating ID. 

The characteristics of this diode show the same forward voltage characteristics as an ordinary diode in the case of zero 
bias of the gate drive voltage (VGS = 0).  If the gate drive voltage is given positive bias (in the Nch case), as shown in 
Figure 1.7 there is a voltage drop determined by on-resistance RDS(on) (VSD = Id × RDS(on)) that is the same as in the 
forward direction, and a much lower forward voltage can be obtained even than with an SBD (Schottky barrier diode). 
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Figure 1.7   IDR – VSD Characteristics (2SK3418) 

The benefits of such reverse-direction characteristics are actively applied in the following kinds of uses. 

• Load switches for preventing battery reverse connection 
• Switching power supply (n+1) redundant-type hot swap circuits 
• Motor drive circuit external diode replacement 
• Switching power supply secondary-side drive rectification circuits, etc. 
 

1.5 Internal Diode Reverse Recovery Time trr Current IDR Characteristic 
In motor drive (power steering, starter generators, etc. in the case of electrical equipment) and switching power supply 
synchronous rectification applications that make positive use of a power MOSFET internal diode, there is a 
requirement for this reverse recovery time trr to be fast.  In these applications, operationally upper arm/lower arm 
shorting and excess turn-on loss occur in this trr period.  Generally, therefore, in the control circuitry, a dead time 
(longer than trr) is provided that turns off the gate signal at the time of upper/lower component switching. 
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Figure 1.8   Reverse Recovery Time trr Waveform 
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This reverse recovery time trr shows a tendency to increase as the temperature rises.  Also, the steeper di/dt at the time 
of recovery (area tb in figure 1.9), the more likely is the occurrence of noise, and therefore a soft recovery characteristic 
is desirable.  Reverse recovery time trr differs greatly according to the withstand voltage of the component.  In the case 
of a withstand voltage of 60 V or less, it is comparatively fast at a value of 40 to 60 ns.  It is around 100 ns in the 100 V 
class, and around 300 to 600 ns in the 250 to 500 V high-withstand-voltage class.  Therefore, in the high-withstand-
voltage class of 250 V and above, products have been developed that have been speeded up to around 100 ns by means 
of lifetime control technology. 
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Figure 1.9   trr – IDR Characteristics (2SK3418) 

1.6 Transient Thermal Resistance Characteristic θch-c(t) – Pulse Width PW 
Characteristic 

Figure 1.10 shows the θch-c(t)—pulse width PW characteristic.  This is a characteristic for calculating channel 
temperature Tch in the component operating state.  Pulse width PW on the horizontal axis is the operating time, and 1 
Shot Single Pulse repeat operation conditions are shown. 

For example, PW = 1 ms, D = 0.2 (duty cycle = 20%) means that the repetition frequency is 200 Hz (repetition cycle T 
= 5 ms). 

Generally, when channel temperature rise ∆Tch is calculated with duty cycle = 20% (D = 0,2), PW = 10 ms, and 
current dissipation Pd = 60 W, the following equation may be used, but since error arises as shown below, the transient 
thermal resistance characteristic should be used. 

Tch = (0.2 × Pd) × θch-c = (0.2 × 60) × 1.14 = 13.7°C 
When the transient thermal resistance characteristic is used, 16.5ºC error arises as shown below. 

Tch = Pd × θch-c(t) = 60 × 0.44 × 1.14 = 30.2°C 

3

1

0.3

0.1

0.03

0.01
10 µ 100 µ 1 m 10 m 100 m 1 10

PDM

PW

T

D =
PW

T

θch-c(t) = γs (t) • θch – c

θch-c = 1.14°C/W, Tc = 25°C

Tc = 25°C

D = 1

0.5

0.2

0.1

0.05

0.02

0.01

1shot p
ulse

Noamalized Transient Thermal Impedance vs. Pulse Width

Pulse Width   PW   (S)

N
o

a
m

a
liz

e
d

 T
ra

n
s
ie

n
t 

T
h

e
rm

a
l 
Im

p
e

d
a

n
c
e

  
 γ

s
  
 (

t)

t1

t3

t2(D=0.2)

 

Figure 1.10   θch-c(t) – Pulse Width PW Characteristics (2SK3418) 
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Examples of channel temperature Tch calculation (2SK3418) using transient thermal resistance are shown below. 

• Example 1 
To calculate channel temperature Tch under the following conditions: when case temperature Tc = 85°C, peak 
power Pd(peak)1 = 50 W, application time ts = 10 ms, 1 shot single pulse 

Tch1 = Tc + (Pd(peak)1) × θch-c(t1) = 85 + (50 × 0.3 × 1.14) = 102.1°C 
• Example 2 

To calculate channel temperature Tch under the following conditions: when case temperature Tc = 85°C, operating 
frequency f = 2 kHz, repeat operation with duty cycle = 20%, applied power Pd(peak)2 = 50 W 
From the above operation, application time t2 = 100 µs, repetition cycle T = 500 µs, and D = t2/T = 0.2.  Therefore: 

Tch2 = Tc + (Pd(peak)2) × θch-c(t2/T) = 85 + (50 × 0.22 × 1.14) = 97.54°C 
• Example 3 

To calculate peak channel temperature Tch(peak) when peak power Pd(peak)3 = 500 W is further applied for a 
period of t3 = 60 µs by another circuit control system during the operation in Example 2 

Tch2 = Tc + (Pd(peak)2) × θch-c(t2/T) + {(Pd(peak)3 – Pd(peak)2 × t2/T)} × θch-c(t3) 
         = 85 + (50 × 0.22 × 1.14) + (500 – 50 × 0.2) × 0.031 × 1.14) 
         = 85 + 12.54 + 17.32 
         = 114.86°C 

t3

t2

Pd(peak)2

T

Pd(peak)3
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1.7 Area of Safe Operation (ASO) 
1.7.1 Area of Safe Operation (ASO) Diagram 
Figure 1.11 shows an area of safe operation (ASO) diagram for the 2SK3418. 

The ASO limited area is divided into the following 5 areas. 

Area (1) is an area limited by maximum rated currents IDC, ID(pulse)max. 

Area (2) is an area limited by on-resistance RDS(on)max [ID = VDS/RDS(on)].  Generally, this area is divided separately 
from the ASO area. 

Area (3) is an area limited by channel loss. 

Area (4) is the same kind of secondary breakdown area as in a bipolar transistor that appears under conditions of 
continuous operation or opened with a comparatively long pulse width (several ms or more).  This is because, when the 
operating voltage increases in the same applied power line, the operating current naturally decreases, but in this small 
current area the output transfer characteristic (Vgs-Id characteristic) is a negative temperature characteristic.  When the 
area becomes a large current area that entails a change to a positive temperature characteristic, this phenomenon 
disappears.  The current value at which the temperature characteristic changes from negative to positive differs from 
product to product, and with products of several amperes or less this phenomenon is unlikely to occur, and this can be 
guaranteed with a so-called constant power line with no secondary breakdown. 

Area (5) is an area limited by withstand voltage VDSSmax. 
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Figure 1.11   ASO Diagram (2SK3418) 
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1.7.2 Notes on ASO in Circuit Control System 
As power MOS FETs are generally used in switching applications, in normal operation they are usually used in limited 
area (2).  A point requiring attention in circuit design is the control system sequence. 

Figure 1.12 shows an example of the power supply voltage and gate drive voltage sequence for a terminal electronic 
device when the system’s source power supply is cut.  As shown by the solid lines in the figure, if the fall time until 
power supply voltage VDD is turned off is longer than that for gate drive voltage VGS, VGS is in an underdrive state in 
period t1 in the figure, and enters ASO limited area (4) or (5), making it necessary to confirm whether it is in an area of 
safe operation.  An effective means of avoiding such an operation area is to perform sequence control so that the fall 
time of gate drive voltage VGS is delayed beyond supply voltage VDD as shown by the dotted lines. 
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Power MOS FET 
Application Note 

2. Power MOS FET Destruction Mechanisms and Countermeasures 
Introduction 
As power MOS FETs are often used in the final output circuitry of electronic device application circuits, and are used 
under a wide range of conditions, circuit designers frequently have to confront the problem of unexpected component 
destruction. 

The purpose of this section is to carry out electronic circuit design with a good understanding of the mechanisms 
behind such destruction, and produce as far as possible problems involving heat radiation, destruction, and so forth, in 
mass production and in the market after design is completed, in order to use power MOS FETs effectively. 

2.1 Relationship between Power MOS FET Application Areas and Destruction 
Modes 

2.1.1 Relationship between Main Power MOS FET Application Areas and Destruction 
Modes 

Table 2.1 shows the relationship between main power MOSFET application areas and destruction modes.  Power MOS 
FET destruction modes can be broadly be divided into the five modes shown below. 

Table 2.1 Relationship between Power MOSFET Application Areas and Destruction Modes 
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(1) Avalanche destruction mode 
A phenomenon whereby destruction occurs if a surge voltage exceeding the rated VDSS of the component is applied 
between the drain and source, destruction voltage V(BR)DSS (whose value differs according to the destruction current) 
is reached, and a certain energy level or higher is attained.  This destruction energy differs according to the 
individual product and operating conditions. 

(2) ASO (Area of Safe Operation) destruction 
Mostly caused by heat caused by exceeding the so-called Area of Safe Operation, in which component maximum 
rating drain current Id, drain-source voltage VDSS, or allowable channel dissipation Pth(W) is exceeded.  Main 
causes of heat radiation are classified as a continuous or transient factors. 
1. Continuous factors : Heat radiation due to DCASO (loss caused by DC power application) 

 : On-resistance RDS(on) loss (RDS(on) increases at high temperatures) 
 : Loss due to leakage current IDSS (extremely small compared with other loss) 

2. Transient factors : Pulse ASO (1 shot pulse application) 
 : Load shorting ASO 
 : Switching loss (turn-on, turn-off)* 
 : Internal diode trr loss (Upper/lower arm shorting loss)* 
All are temperature-dependent.  Asterisked items also depend on operating frequency f. 

(3) Internal diode destruction 
This is a mode in which, when a parasitic diode configured between the source and drain operates, a power 
MOSFET parasitic bipolar transistor operates and breaks down in reverse recovery of that diode.  (For details, see 
section 2.4, Internal Diode Destruction.) 

(4) Destruction due to parasitic oscillation 
This destruction mode is prone to occur in the case of parallel connection.  (For details, see section 2.5, Destruction 
Due to Parasitic Oscillation, and section 2.6, Notes on Parallel Connection.) 

(5) Gate surge, electrostatic destruction 
Main types are gate overvoltage destruction caused by surge application between the gate and source from external 
circuitry, and gate destruction ESD (electrostatic discharge) caused by static electricity due to handling (including a 
charge from mounting or measuring equipment). 

 
Table 2.1 shows the importance of the above five modes in various devices and applications, and taking these points 
into account when designing circuits and selecting components is an effective means of preventing various problems. 

From this standpoint, the following considerations are important. 
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2.1.2 Power MOS FET Applications and Operating Range 
Figure 2.1 shows the kind of operating conditions in which power MOS FET applications are used, with load 
inductance and operating frequency as parameters. 
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Figure 2.1   Power MOS FET Applications 

Market requirements are (1) improved energy saving, (2) lower noise (environmental considerations), (3) smaller, 
thinner design. 

With regard to the characteristics demanded of power MOS FETs, the most important characteristics and specifications 
naturally differ according to the field and application concerned. 

Consequently, a demand has recently arisen for products specific to particular applications. 
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2.1.3 Power MOS FET Structure 
Figure 2.2 shows an N-channel power MOS FET chip and its internal structure. 

As shown in the figure, the internal structure of an N-channel power MOS FET chip comprises a large number of cells 
connected in parallel.  As shown in the enlarged cell diagram, current flows in the source → drain direction (the reverse 
is true in a P-channel type). 
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Figure 2.2   N-Channel Power MOS FET Chip and Internal Structure 

Figure 2.3 shows the cross-sectional structure of an N-channel power MOS FET (with gate protection diodes). 
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Figure 2.3   Cross-Sectional Structure of N-Channel Power MOS FET (with Gate Protection Diodes) 

Figure 2.4 shows the output static characteristics and diode characteristics of a high-withstand-voltage power MOS 
FET (2SK1522).  When a power MOS FET is used in a monitor drive, UPS (uninterruptible power supply), or similar 
application, the internal diode characteristics can be used effectively.  The cell cross-sectional structure of a general 
power MOS FET plate structure is shown, together with an equivalent circuit diagram.  A power MOS FET has a 
structure in which bipolar transistors are connected in parallel between drain and source.  These transistors operate at 
the time of transitions, and are designed so that Rb is made small, for example, so as not to affect the MOS FET 
destruction tolerance. 
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Figure 2.4   Output Static Characteristics and Diode Characteristics (High Withstand Voltage) 

Figure 2.5 shows the output static characteristics and diode characteristics of a low-withstand-voltage power MOS FET 
(HAT2064R) in the same way as in the previous section.  Low-withstand-voltage power MOS FETs attain an ultra-low 
on-resistance characteristic on the order of several mΩ or less, and are therefore much smaller than a rectification 
Schottky barrier diode (SBD) low-VF component (VF = 0.4 to 0.5 V), and are widely used as MOS synchronous 
rectification components for the purpose of achieving higher efficiency of low-voltage power supplies (Vout = 3.3 V or 
less). 
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Figure 2.5   Output Static Characteristics and Diode Characteristics (Low Withstand Voltage) 
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2.2 Avalanche Destruction 
2.2.1 Explanation of Avalanche Destruction 
Avalanche destruction is a mode in which a flyback voltage generated when dielectric load switching operation is 
turned off, or a spike voltage due to leakage inductance, exceeds the power MOS FET drain rated withstand voltage, 
entered in a destruction area, and destruction occurs. 

2.2.2 Avalanche Destruction Resistance Test Circuit and Waveform 
Figure 2.6 shows an avalanche destruction resistance standard test circuit (a) and its operational waveform (b). 
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Figure 2.6   Avalanche Destruction Resistance Test Circuit and Waveform 

Period ta in the waveform in (b) is defined as the avalanche time.  The range in which drain-source peak voltage Vds(p) 
satisfies the condition Vdss ≤ Vds(p) < V(BR)DSS is an area in which the so-called rated voltage is exceeded but 
avalanche destruction has not been reached.  In this kind of operation area, the avalanche area may or may not actually 
be entered depending on actual withstand voltage V(BR)DSS of the component, but it is advisable to select a product with 
guaranteed avalanche resistance.  Avalanche resistance guaranteed products are all subjected to final screening by the 
standard circuit shown in (a).  For avalanche resistance guaranteed products, avalanche current rated value IAP(A) and 
avalanche energy value EAR(J) are stipulated.  EAR is expressed by equation (1). 

V(BR)DSS ⋅ IAP ⋅ ta =EAR = Pd ⋅ t =
1

2

1

2
⋅ L ⋅ IAP

2 ⋅ (J) ………(1)
V(BR)DSS

V(BR)DSS – VDD  
Also, with regard to peak channel temperature Tch(peak) in the avalanche operation state, use within rating channel 
temperature Tch ≤ 150°C is necessary.  An example of calculation of this channel temperature is given in another 
section. 
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2.2.3 Avalanche Energy Calculation Method 
Figure 2.7 shows an avalanche test equivalent circuit. 
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Figure 2.7   Avalanche Test Equivalent Circuit 

Avalanche energy value EAR in the equivalent circuit is expressed by equation (1). 

EAR = ∫ 
ta

 Vds(t) ⋅ Id(t) dt
0

……………………(1) 
Vds(t) and Id(t) are as follows: 

Vds(t) = V(BR)DSS ……………………………(2)

……………………………(3)tId(t) = IAP –
IAP

ta

………………………(4)ta =
L ⋅ IAP

V(BR)DSS – VDD  
Substituting (2) and (3) in equation (1): 

EAR = ∫ 
ta

 V(BR)DSS  IAP –( (0 0

0

ta

t  dt = ∫ 
ta

  V(BR)DSS ⋅ IAP – dt
IAP

ta

V(BR)DSS ⋅ IAP ⋅ t
ta

V(BR)DSS ⋅ IAP ⋅ t2

2ta

) )
=  V(BR)DSS ⋅ IAP ⋅ t –[ ] ⋅ V(BR)DSS ⋅ IAP ⋅ ta=

1

2  
Substituting ta of equation (4) in the above equation: 

∴ EAR =
V(BR)DSS

V(BR)DSS – VDD
⋅ L ⋅ IAP

2 ⋅
1

2  
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2.2.4 Classification of Avalanche Destruction Factors 
The following three factors, illustrated in figure 2.8, affect the avalanche destruction resistance value. 

(1) Limitation due to drain current Id rating 
(2) Limitation due to excessive channel temperature in avalanche 
(3) Decline of destruction resistance due to dV/dt (figure 2.6(b)) 
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Figure 2.8   Classification of Avalanche Destruction Factors 
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2.2.5 Avalanche Destruction Current and Energy Value 
Figures 2.9 and 2.10 show actual data show how avalanche destruction current IAP and avalanche destruction energy 
EAR vary with the inductance L value for a high-withstand-voltage 500 V class component and low-withstand-voltage 
60 V class component, respectively.  The graphs show that as the inductance L value increases, destruction current IAP 
tends to fall, but the destruction energy EAR value tends to increase.  Therefore, to see the variations in avalanche 
resistance, it is necessary to consider both destruction current IAP and energy value EAR.  In general, it can probably be 
stated that an component with a small inductance value L and large destruction energy value EAR has good avalanche 
resistance. 
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Figure 2.9   Avalanche Destruction Current and Energy Value (High Withstand Voltage) 
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Figure 2.10   Avalanche Destruction Current and Energy Value (Low Withstand Voltage) 
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2.2.6 Avalanche Destruction Current and dV/dt Resistance 
The third factor, the relationship between avalanche destruction resistance and dV/dt, will now be considered.  Figure 
2.11 shows measured values for avalanche destruction current IAP dependence on dV/dt resistance.  In a power MOS 
FET, as explained before, a parasitic bipolar transistor is formed between the drain and source in the structure shown in 
figure 2.4.  As dV/dt is made steeper, a transient current flows through capacitance Cds, and this transistor is turned on, 
leading to a drop in destruction resistance.  In the example in figure 2.11, the area in which dV/dt ≤ 10 V/µs can be 
called a safe area.  This value differs according to the particular component. 
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Figure 2.11   Avalanche Destruction Current and dV/dt Resistance 

2.2.7 Simple Determination Method for Avalanche Resistance Guaranteed Products 
A simple determination method for avalanche resistance guaranteed products is described here.  The description is 
based on the avalanche operation waveform (1 shot period) in figure 2.12, taking the example of a 2SK2869 (60 V/20 
A, 45 mΩ↓ , DPAK package) avalanche guaranteed product as the tested device. 

Target device: 2SK2869

   (60V / 20A / 45mΩ↓ / DPAK)

Test conditions

   VGS = 15V, VDD = 25V, L = 5mH, Tc = 25°C, 1 shot

•Channel temperature during avalanche: Tch

   Tch = T(S)ch + Pch × θch-c(t)

= 60 + 160 × 0.3336

= 113.4°C
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Figure 2.12   Avalanche Time and Drain-Source Voltage (Drain Current) 
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Figure 2.13   2SK2869 Transient Thermal Resistance Characteristics (Data Sheet) 

Trial calculations have been carried out assuming that start channel temperature T(s)ch = 60°C before avalanche 
operation (due to the channel temperature rise caused by on-resistance RDS(on) and switching loss).  For dV/dt, a range 
of safe operation was assumed.  Therefore, the following two checkpoints should be confirmed. 

(1) Whether avalanche current IAP is within avalanche guarantee value current rating IAPmax 
(For 2SK2869 avalanche guaranteed current IAP, when L = 5 mH, IAPmax = 6.2 A (figure 2.10)) 

(2) Whether channel temperature Tch in avalanche operation is within the range Tchmax ≤ 150°C 
First, as avalanche current IAP in (1) is 4 A from the waveform, it can be confirmed that it is within avalanche rated 
current + IAPmax ≤ 6.2 A. 
Next, channel temperature Tch in avalanche operation in (2) is expressed by equation (1). 

Tch = T(s)ch + Pch × θch – c(t)

= T(s)ch +       × IAP × V(BR)DSS  × θch – c(t)( )1

2
…………(1)

 
Here, θch-c(t) is transient thermal resistance, and is calculated from the 2SK2869 data sheet transient thermal resistance 
characteristics in figure 2.13.  θch-c(t = 400 µs) when avalanche opened time ta = 400 µs can be calculated from the 
graph as shown below. 

θch – c(t = 400µs) = γ(t) × θch – c

 = 0.08 × 4.17

 = 0.3336°C/W  
Therefore, substituting numeric values in equation (1) gives: 

Tch = T(s)ch +       × IAP × V(BR)DSS  × θch – c(t)

= 60 +       × 4 × 80  × 0.3336

= 113.4°C

( )1

2

( )1

2

 
and it can be confirmed that Tch is within the Tchmax ≤ 150°C rating. 
Thus, it is determined that the value is within the avalanche guarantee range. 
When more complex conditions or components are involved, individual measures should be taken. 
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2.2.8 Avalanche Destruction Countermeasures 
Figure 2.14 shows avalanche destruction countermeasures (methods of suppressing surge voltages). 
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Figure 2.14   Avalanche Destruction Countermeasures 

In avalanche destruction, destruction is caused by a counter voltage due to floating inductance (inductance load).  As a 
characteristic after destruction, electrodes are shorted. 
There are three countermeasures for avalanche destruction, as follows. 

(1) Make large-current path wiring as short and thick as possible to reduce floating inductance. 
(2) Insert a gate series resistance Rg, and suppress dV/dt.  As a surge voltage occurs when switching off, surge voltages 

are suppressed by making the value of turn-off constant Rg large, but if the value is made too large, switching loss 
will increase.  This should be considered when deciding on the circuit constant. 

(3) Insertion of CR snubber and Zener diode 
When a surge absorption snubber, etc., is inserted, the wiring should be made short and thick, and connection 
should be made directly to the power MOS FET drain and source terminals. 

 

2.3 ASO Destruction (Heat Radiation Design) 
2.3.1 Explanation of ASO Destruction 
ASO destruction refers to a mode in which heat radiation is caused instantaneously and locally, and destruction occurs, 
when an overcurrent and the used voltage are applied simultaneously due to load shorting, etc., that does not occur in 
normal operation.  It also refers to a mode in which the channel temperature rises excessively due to continuous heat 
radiation, thermal runaway occurs, and destruction results, when chip heat radiation is not performed properly due to 
thermal mismatching or a high repetition frequency. 

2.3.2 ASO Destruction Countermeasures 
Figure 2.15 illustrates ASO destruction and countermeasures. 
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Figure 2.15   ASO Destruction (Heat Radiation Design) and Countermeasures 
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There are three countermeasures, as follows. 

(1) Check inclusion within the forward bias ASO (Area of Safe Operation) guarantee, and that the temperature derating 
is adequate. 

(2) If load shorting is predicted, insert an overcurrent protection circuit. 
If the designed drain load current is exceeded, the voltage arose on Rs is detected, MOS FET Q1 is turned on, 
shorting occurs between G-S of the main power MOS FET via R3, and it is turned off.  In this case the value of R3 
is made larger than R1 determined as a normal switching off time constant, and is made a constant that prevents the 
occurrence of surge at the time of overcurrent (cutoff) protection.  Alternatively, it is possible to perform cutoff 
control of speed at the time of cutoff in a list by means of Q1 gate resistance Rg.  MOS FET gate-source drive 
voltage VGS in normal operation is expressed by equation (1). 

……………………(1)VGS = Vin ×
R3 + 10kΩ

(R3 + 10kΩ) + (R1 + R2)  
VGS is set to a value (VGS = approx. 10 V) at which a power MOS FET operates fully in the on-resistance region.  Gate 
retention voltage VGS(cut) at the time of overcurrent cutoff is expressed by equation (2). 

……………………………(2)VGS(cut) = Vin ×
R3

R1 + R2 + R3  
VGS(cut) must be set to a value smaller than power MOS FET gate-source cutoff voltage VGS(off).  The VGS(off) 
temperature characteristic (α = –5 mV to –7 mV/°C) is also taken into consideration. 

(3) Carry out radiation design allowing a sufficient margin. 
This is covered in the practical example of radiation design. 

 
2.3.3 Forward Bias ASO (Area of Safe Operation) 
Figure 2.16 shows a forward bias ASO graph (2SK3082) and the corresponding temperature derating method.  (For 
information on an Area of Safe Operation (ASO), refer to the description of the use of power MOS FET characteristics 
described earlier.) 
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Figure 2.16   Forward Bias ASO Diagram (Area of Safe Operation) 

With regard to the ASO temperature derating method, PW = 10 µs, Tc = 75°C derating will be described as an example. 

First, regarding PW = 10 µs and Tc = 25°C guarantee values, this ASO diagram gives a Pd(25) = 1500 W (= Vds × ID = 
50 V × 30 A) power line.  Then, as Tc = 75°C derating ratio D = 60%, 

Pd(75) = Pd(25) × 0.6

 = 1500 × 0.6

 = 900W  
In the ASO diagram, this is the area indicated by the PW = 10 µs, Tc = 75°C line in figure 2.16. 
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2.3.4 Load Shorting Resistance and Countermeasures 
Figure 2.17 shows power MOS FET load shorting resistance (examples of the 2SK1518 and 2SK1522). 
When a power MOS FET is used in a motor drive application, if the load should short, it is necessary to be able to 
withstand the conditions without breaking down until the overcurrent protection circuit operates. 

1. As shown in figure 2.17, this load shorting resistance is dependent on the power supply voltage VDD (≈ VDS) 
used, with destruction occurring in a shorter time the greater the value of VDS (as the power applied due to load 
shorting increases).  This destruction time differs from product to product, but the overcurrent protection 
detection time in the event of load shorting should be set to between 1/2 and 1/3 or less of the destruction time. 
In the case of a power MOS FET, a setting of between 10 µs and 15 µs or less can be said to be safe. 

2. Next, when load shorting occurs, as the short-circuit current an overcurrent of around 5 to 10 times the normal 
operation current flows, and this is cut off. 
A point to be noted here is the surge voltage that is generated when this overcurrent is cut off.  This is showed as 
the waveform in figure 2.17.  As a current considerably larger than the steady state current flows, it is necessary 
to set a cutoff turn-on time slower than the steady state on/off speed, and suppress the cutoff surge voltage to the 
component’s rated voltage VDSS or less. 
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Figure 2.17   Power MOS FET Load Shorting Resistance and Countermeasures 

2.3.5 Heat Radiation Design 
When carrying out mounting design for power devices, it goes without saying that cooling technology — that is, how 
heat is to be radiated efficiently under various environmental conditions — is an important consideration, but how to 
perform theoretical heat calculations efficiently is also important.  Examples are given here of practical heat radiation 
design in which the operating channel temperature of a power MOS FET can be calculated theoretically. 

1. Preconditions when using a 2SK1170 (500 V/20 A, 0.27 Ω, TO-3P) are shown below. 
(1) Operating conditions 

 Ambient temperature Ta = 50°C 
 Operating current Id = 8A, 10A (2 conditions) 
 PW = 10 µs, duty = 50% max (f = 50 kHz operation) 
 Switching loss P(tf) = 500 W, tf period = 0.2 µs (ton loss is omitted here) 
Design target: Tch ≤ 120°C 
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(2) Heat sink thermal resistance θf-a: 3 kinds: (I). 0.5°C/W, (II). 1.0°C/W, (III). 1.5°C/W 
(3) Mounting method: Insulating mica used, silicon grease used 

(θ(i) + θ(c)) = 0.8°C/W 
where θ(i): Insulating mica thermal resistance 
 θ(c): Contact thermal resistance 

Table 2.2 Thermal Resistance of Various Transistor Packages 

Package

Note: 1. Reference value

Thermal Resistance DPAK TO-220AB LDPAK TO-220FM TO-3P TO-3PFM TO-3PL

178 80 83.3 62.5 55 42 45

Rth(ch-c)

Rth(c-a) *1

(°C/W)

(°C/W)

2.0 to 2.5 1.5 to 2.0 1.5 to 2.0 1.5 to 2.0 0.5 to 0.9 1.0 to 1.5 0.4 to 0.5

— 2.0 to 2.5 — — 0.5 to 0.8 — 0.5 to 0.7

— 4.0 to 6.0 — — 2.0 to 3.0 — 1.2 to 1.5

0.3 to 0.6 0.3 to 0.5 0.3 to 0.5 0.4 to 0.6 0.1 to 0.2 0.3 to 0.5 0.1 to 0.2(Rth(i) +

 Rth(c))

(°C/W)

No

insulation

plate

Mica

insertion

(t = 50 to

100µm)

With

silicon grease

No

silicon grease

With

silicon grease

No

silicon grease

Rth(ch-c) = (See individual catalog for Pch(W))
Tj max – Tc

Pch

 
Based on these preconditions, a design target channel temperature of Tch ≤ 120°C is set. 

 
2. In this method, allowable power dissipation characteristics under various heat radiation conditions (1) and the 

power dissipation PD characteristic according to a rise in the power MOS FET channel temperature (2) are 
calculated, and the point of intersection at which functions (1) and (2) overlap is taken as the channel temperature in 
the saturation state to be found.  Results calculated on the basis of the above operating and environmental usage 
conditions are shown in figure 2.18. 

C
D

B

10 10050 150(120)

Channel Temperature   Tch   (°C)

50

0

20

10

40

30

P
o

w
e

r 
D

is
s
ip

a
ti
o

n
  
 P

D
  
 (

W
)

A

2

1

(I). θ(f) = 0.5°C/W

ID = 10A

ID = 8A

(II). θ(f) = 1°C/W

(III). θ(f) = 1.5°C/W

Power dissipation PD(M) characteristic

of power MOS FET

PD(M) = on-resistance loss +

switching loss

Allowable dissipation
characteristic PD(f)
for three types of heat
sink θ(f) at Ta = 50°C

(I)

(II)

(III)

The target is a
design for
Tch ≤ 120°C

21.4

42.7

PD(f) =
Tch – Ta

θ(ch-a)

θ(ch-a) = θ(ch-c) + θ(i) + θ(c) + θ(f)
            = 1.04 + 0.8 + 0.5
            = 2.34°C/W

E

 

Figure 2.18   Channel Temperature Tch and Power Dissipation PD 
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The procedure to reach figure 2.18 is described below. 
3. With reference to the contents of the box below, allowable power dissipation characteristics under the 

aforementioned various heat radiation conditions (1) and the power MOS FET power dissipation characteristic (2) 
are calculated.  In the calculation of power MOS FET power dissipation PD, power MOS FET on-resistance 
temperature coefficient α (coefficient when Tch = 25°C is taken as 1.0) can be read beforehand from the Ron-Tc 
characteristic of the individual data sheet, and that value entered on the horizontal axis as in table 2.3.  Table 2.3 
shows the calculation results. 

• Calculate and plot allowable power dissipation straight line PD(f) under each heat radiation condition ((1) in figure) 
First, find total thermal resistance θ(ch-a) under each heat radiation condition. 

………………(1)θ(ch-a) = θ(ch-c) + (θ(i) + θ(c)) + θ(f)  
From equation (1), θ(ch-a) when using (I) heat sink is as follows: 
θ(ch-a) = 1.04 + 0.8 + 0.5 = 2.34°C/W (Similarly for (II) = 2.84°C/W, (III) = 3.34°C/W) 
Allowable power dissipation PD(f) is expressed by equation (2).  Three points can be used for the allowable loss 
curve. 

………………………………………(2)PD(f) =
Tch – Ta

θ(ch-a)  
Under condition (I), assuming Tch = 50, 100, 150°C gives 0W, 21.4 W, 42.7 W respectively (≈ (150 – 50)/2.34) 
Calculation can be performed for the 2 conditions (II) and (III) in the same way, and 3 straight lines plotted. 

• Calculate and plot power MOS FET power dissipation curve PD(M) ((2) in figure) 
Power MOS FET on-resistance RDS(on) has a positive temperature characteristic. 
That is to say, there is a curvilinear rise (as shown in individual catalogs) as Tch rises. 
When power MOS FET total power dissipation PD(M) accompanying the temperature rise when ID = 8A, 10A is 
found, taking this point into consideration, 2 curves can be drawn. 

 
Table 2.3 Calculation of Power MOS FET Power Dissipation PD(M) (Example of 2SK1170) 

Tch(°C)Item

ID = 10A

ID = 8A

See Ron-Tc characteristic in
individual data sheet

Notes

Note RDS(on) temperature
dependence

See separate section for
detailed calculation of R, L
load Ron loss, SW loss

Note operating frequency
dependence

RDS(on) temperature coefficient α
for Tch = 25°C

On-resistance loss

PON = ID2 · RDS(on)max

× α ·

ID = 10A

ID = 8A

13.5

8.64

1.0

25

18.5

13.6

5

14.7

9.4

1.09

40

19.7

14.4

5

17.1

11.0

1.27

60

22.1

16.0

5

20.3

13.0

1.5

80

25.5

18.0

5

23.4

14.9

1.73

100

28.4

19.9

5

27

17.3

2.0

120

32.0

22.3

5

30.6

19.6

2.27

140

35.6

24.6

5

32.5

20.8

2.41

150

37.5

25.8

5

Total power dissipation PD(M)

PD(M) = PON + PS

Note: 1. For the sake of simplicity, the same PS value is used for both ID = 8 A and 10 A.

Switching loss *1

PS =      · P(tf)

MOS
power
dissipation tON

T

tf
T

 
4. In this way, the graph of channel temperature Tch vs power dissipation PD in figure 2.18 is created. 

First, plot allowable loss characteristic (1) under each heat radiation condition. 
As ambient temperature Ta = 50°C has been assumed, taking Tch = 50°C as the zero point (as Tch = 50°C is 0 W), 
and individual allowable loss characteristics can be drawn for the use of 3 kinds of heat sinks.  Next, power MOS 
FET power dissipation (at Id = 8 A, 10 A) calculated in table 4 is drawn, completing the process. 
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5. The way of interpreting figure 2.18 (considering the calculation results) and appropriate measures are described 
below. 

• Considering Tch-PD graph results 
(a) Points of intersection (B), (C), (D), and (E) represent channel temperature Tch in a state of thermal equilibrium 

under the respective conditions. 
That is to say, the only conditions that satisfy target design Tch ≤ 120°C are ID = 8 A heat radiation conditions 
(I) and (II).  (Points (C) and (D)) 

(b) When point-of-intersection channel temperature Tch is 150°C or above, the maximum rating is exceeded. 
(c) Also, when both loss characteristic points of intersection are absent, as with the heat sink (III) condition, this 

means that thermal runaway*1 occurs and destruction results. 
 
Note: 1. 

Tch rise
Ron
increase

Loss
increase

Tch rise
and thermal
destruction

 

 
• Provision for design value Tch ≤ 120°C 

(a) Operating current ID is made 8 A max and heat radiation condition (I) or (II) is applied.  (Design target Tch is 
satisfied by (C) and (D).) 

(b) In case of use up to operating current ID = 10 A max, the following points (combinations), etc., should be 
considered and a review conducted. 
1) Use a heat sink with smaller thermal resistance than (I).  (Improve heat radiation conditions and lower θ(ch-

a).) 
2) Lower θ(ch-c) by changing the component package.  Example: TO-3P/2SK1170 → TO-3PL/2SK1629 
3) Change MOS FET to a one class higher low-on-resistance component.  However, with high-speed operation 

(f = 100 kHz or higher), switching loss P(tf) must also be considered (as there is generally a trade-off 
between on-resistance Ron and switching time tf). 

6. Figure 2.19 gives further information on the method of use and points for attention concerning figure 2.18. 
Tables 2.4 and 2.5 show power MOS FET loss calculation equations and calculation methods. 
Figure 2.20 show the calculation method for peak channel temperature Tch(peak) and thermal resistance θch-
c(PW/T) in repeat operation. 
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ID = 10A

ID = 8A

Total power
dissipation PD(M)
 of power MOS FET

(I)

(III)

PD(f) =
Tch – Ta

θch-c

PD(f) =
Tch – Ta

θ(ch-a)

The target is
design for
Tch≤120°C

1

2
3

C

Thermal equilibrium(with heat sink)

Transient
thermal status

PW = 10ms

PW = 1ms

Thermal equilibrium
(infinity heat sink)

PD(f)(t) =
Tch – Ta

θch-c(t)

(II)

When calculating channel temperature Tch from
a directly measured temperature Tc of the casing
of the MOS FET, use the following equation:
  Tch = Tc + θch-c · PD(M)
Measure the temperature at thermal equilibrium.
In the diagram, move dissipation line (2)
horizontally so that point (A) is at Tc and Tch(x)
of (F) and (G) at Tc(x) can then be obtained.

•Check that the surface of the casing of the device is in
  contact completely with the surface of the heat sink
  (minimize contact thermal resistance).
•Check that there are no heat sources around the device
  (prevent a rise in Ta).
•Check that there are no metallic particles between the
  insulating plate and the heat sink (prevent short-circuits
  between the device and heat sink fins after heating).

When the applied voltage is transient, use the
transient thermal resistance θch-(t) to calculate
the line indicating allowable power dissipation
PD(f)(t)
Under transient conditions,
crossing-points (H),(J),(K),and (L) are all
under 60°C while PW≤10ms even at ID = 10A.
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Figure 2.19   Relationship between Channel Temperature Tch and Power Dissipation PD 
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(4) Power MOS FET loss calculation 
Table 2.4 Power MOS FET Loss Calculation 

  
Category 

 
Operating Waveform No. 

 
Operation Period 

 
Average Loss Calculation 

1 tr period Ptr 
Ptr =      (Vds ⋅ Id + 2Id2 ⋅ Ron ⋅ α)

1

6

tr

T

Smaller than term 1 and

can be ignored.  
2 ton period Pton 

Pton = Id2 ⋅ Ron ⋅ α ⋅
ton

T  

Resistance 
R load 

T

tontr tf

Id

Vds

0

t  
3 tf period Ptf 

Ptf =      (Vds ⋅ Id + 2Id2 ⋅ Ron ⋅ α)
1

6

tf

T

Smaller than term 1 and

can be ignored.  
1 tr period Ptr [Much smaller than item 2 or 3 and 

can be ignored. 
Solid 
line 

Pton =      (Ia2 + Ia ⋅ Ib + Ib2) Ron ⋅ α
1

3

ton

T  
2 ton period Pton 

Dashed 
line 

Pton =      Ib2 ⋅ Ron ⋅ α ⋅
1

3

ton

T  

Inductance 
L load 

T

Vds(p)

tontr tf

Id

Vds

0

t

Ib

Ia

 
3 tf period Ptf 

Ptf =      Vds(p) ⋅ Ib ⋅
1

2

tf

T  
Note: 1. α: Ron thermal coefficient (= T(×°C)/T (25°C)) 
 
(5) Examples of power MOS FET loss calculation (for reference) 
Table 2.5 Examples of Power MOS FET Loss Calculation (for Reference) 

Category Operating Waveform Loss Calculation (Ron thermal coefficient α omitted) 
Resistance 
R load 
Ptf 
loss 
during 
tf period 

T

tontr tf

Id

Vds

0

t  

Ptf =     ∫ 
tf
 Vds(t) ⋅ Id(t) dt

0

0

1

T

1

T

Vds – Id ⋅ Ron

tf
=     ∫ 

tf
t + Id ⋅ Ron    –      t + Id  dt{( }() )Id

tf

0

1

T

Id2 ⋅ Ron – Id ⋅ Vds

tf2
=     ∫ 

tf
t + Id2 ⋅ Ron  dtt2 +{( Id ⋅ Vds – 2Id2 ⋅ Ron

tf }() )
1

T

Id2 ⋅ Ron – Id ⋅ Vds

3tf2
=

1

6T

1

6

tf

T
∴ Ptf =       tf(Vds ⋅ Id + 2Id2 ⋅ Ron) ≈      Vds ⋅ Id

t2 + Id2 ⋅ Ron ⋅ tt3 +
Id ⋅ Vds – 2Id2 ⋅ Ron

2tf() )[(
0

tf

]

 
Inductance 
L load 
Pton 
loss 
during 
ton period 
(Current is 
indicated 
by solid 
line) 

T

Vds(p)

tontr tf

Id

Vds

0

t

Ib

Ia

 

Pton =     ∫ 
ton

 Id2(t) ⋅ Ron dt
0

0

1

T

1

T

Ib – Ia

ton

Ib – Ia

ton

=     ∫ 
ton

t + Ia  
2

 ⋅ Ron dt

t ⋅ Ia  + Ia2   Ron dt

( )
)0

1

T

Ia2 – 2Ia ⋅ Ib + Ib2

ton2=     ∫ 
ton

t2 + 2{( }
}

()
1

T

Id2 ⋅ Ron – Id ⋅ Vds

3tf2
=

1

3

ton

T
∴ Pton =     (Ia2 + Ia ⋅ Ib + Ib2) Ron

t2 + Ia2 ⋅ t  Ron t3 +
Ia ⋅ Ib – Ia2

ton() )[{(
0

ton

]
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(6) Repetition frequency Tch(peak), thermal resistance θch-c(PW/T) 
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Figure 2.20   Repetition Frequency Tch(peak), Thermal Resistance θch-c(PW/T) 

Tch(peak) = Tc + ∆Tch = Tc + Pd          θch-c +  1 –          θch-c(PW)PW

T

PW

T

∆Tch

Pd

……………(1){ }( )

θch-c        =                           = …………………………………………………(2)

From equations (1) and (2):

From equations (4) and (5), thermal resistance θch-c(PW/T) for a pulse of width t = PW and

perioed of one repetition T is given by equation (6):

Here, θch-c is a dc thermal resistance.

Tch(peak) – Tc

Pd

PW

T

θch-c(PW)

θch-c }( )

PW

T( )

θch-c        = θch-c          +  1 – ……………………………………(3)
PW

T

PW

T

{
PW

T( )

n

100 }( )θch-c        = θch-c          +  1 –          γs(PW) …………………………………………(6)
n

100{
PW

T( )

θch-c(PW)

θch-c
Normalized transient
thermal resistance

γs(PW) = ………………………………………………(4)

Repetition ducy cycle n(%) =         × 100 ……………………………(5)

 
 

2.4 Internal Diode Destruction 
2.4.1 Explanation of Internal Diode Destruction 
Internal diode destruction is a destruction mode that occurs when the parasitic diode between the drain and source of a 
power MOS FET is used actively.  It is limited to use in DC/AC inverters utilized in motor control, uninterruptible 
power supply (UPS), and similar H bridge circuits. 

Internal diode destruction occurs only in the above uses, and applies especially to components with a withstand voltage 
of 250 V or above used at high voltages, but in recent years the destruction mechanism has been clarified, and 
component diode destruction resistance has been improved.  With most 250 to 600 V high-withstand-voltage AP3-H, 
AP3-HF (internal high-speed diode), and AP4-H series products, destruction countermeasures are incorporated into the 
component design.  From an application standpoint, the AP3-H and AP5-HF series are recommended for these uses.  
With components with a low withstand voltage of 100 V or below, this destruction problem almost never occurs as the 
voltage used is also low. 
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Figure 2.21 shows an inverter circuit using general power MOS FETs and the power MOS FET operation waveform in 
a full bridge circuit.  In this circuit, Q1 and Q4 operate and PWM control is performed by the Q1 component.  Q4 is 
always on during the Q1 PWM control period. 
When Q1 current ID1 flows and is then turned off, motor inductance L regenerative current IF flows through the Q2 
internal diode.  When Q1 is turned on again in this state, due to the influence of Q2 internal diode reverse recovery time 
trr, in this period Q1 and Q2 enter the conduction state, short-circuit current irr flows and recovers, and at the same time 
the internal diode voltage (VDS) also recovers. 

Current flowing through Q2 diode
(current during recirculation)

Q1 waveform

(1) Current during
      forward rotation

Input signal(voltage)

Input signal(voltage)

PWM control

(2) Current during
      recovery

(3) Current during period trr

Irr

Irr

Q1

VDS2

VDS1

ID1

IF

0

0

0

0

Q2

Q3

Q4

ID1

VDD

IF

M

 

Figure 2.21   Power MOS FET Operation in Full Bridge 

Figure 2.22 shows the structure and equivalent circuit of a power MOS FET.  As shown in this figure, an internal diode 
is formed between the source and drain structurally, and is also called a parasitic diode. 

Source

Drain

Gate

N+

N–

N++

P

Device Structure (N-Channel Example) Power MOS FET Equivalent Circuit

Body Diode

Parasitic Bipolar
Transistor

D

G

Cgd
rg

Cgs

S

Cds

Rb

RDS(on)

 

Figure 2.22   Power MOS FET Component Structure and Equivalent Circuit 
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Figure 2.23 shows the internal diode destruction mechanism. 
As stated earlier, internal diode destruction resistance has improved considerably, and structural measures have been 
taken to inhibit parasitic bipolar transistor operation, so that the problem of destruction almost never occurs during 
normal use. 

Destruction occurs while the

diode voltage is recovering.

If di/dt changes sharply during the reverse 

recovery of diode, an excess recovery 

current flows and dV/dt rises sharply during 

the reverse recovery period (period B), and 

this makes the parasitic bipolar transistor 

between the drain and the source turn on in 

part of the cells around the gate or source 

electrode and may lead to destruction of the 

diode.

When the damaged product is disassembled 

and examined, traces of the destruction are 

visible around the gate or source electrode.

In P-channel products, parasitic PNP 

transistors have lower carrier mobility and a 

lower hfe than NPN transistors.  Therefore, 

the PNP transistors do not turn on as easily 

and destruction more seldom occurs.

rg

Cgd

S

D
Built-in
diode

G
iMOS iBip

irr
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Cgs

RDS(on)
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iF

di/dt

dV/dt
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Figure 2.23   Internal Diode Destruction Mechanism 

2.4.2 Example of Internal Diode Destruction Circuit Countermeasures 
Figure 2.24 shows examples of internal diode destruction circuit countermeasures (usage precautions). 

VDD

Rg

Action 1

CR snubber

(Between D-S)

Action 3

Thicken wiring

Action 2

M

VDS

IF

NG: Before
preventive
action

OK: After
preventive
action

1. Increase gate resistance Rg of the

 MOS on the PWM control side to

 reduce di/dt when the diode is

 short-circuited, and to reduce irr

 (thus reducing dV/dt)

2. Reduce the wiring inductance of

 the circuit to reduce dV/dt and the

 voltage spike during diode

 recovery.

3. Insert a snubber circuit to reduce

 dV/dt and the voltage spike during

 diode recovery.

 

Figure 2.24   Examples of Internal Diode Destruction Circuit Countermeasures 
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Figure 2.25 shows actual data before and after countermeasures for internal diode destruction resistance of 500 V high-
withstand-voltage components (now discontinued). 
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Figure 2.25   Internal Diode Destruction Resistance (500 V/10 A Class Examples) 

2.5 Destruction Due to Parasitic Oscillation 
2.5.1 Explanation of Destruction Due to Parasitic Oscillation 
Gate parasitic oscillation mainly occurs when power MOS FETs are connected in parallel and are directly connected 
without inserting a gate resistance.  This parasitic oscillation occurs in a resonant circuit formed by gate-drain 
capacitance Cgd(Crss) and gate lead inductance Lg when the drain-source voltage is turned on and off at high speed.  
When the resonance condition (ωL = 1/ωC) occurs, an oscillation voltage much larger than drive voltage Vgs(in) is 
generated in Vgs between the gate and source, as a result of which gate destruction occurs due to a voltage exceeding 
the gate-source rated voltage, or the oscillation voltage when the drain-source voltage is turned on and off is 
superimposed on the Vgs waveform via gate-drain capacitance Cgd and positive feedback occurs, leading to oscillation 
destruction due to mal operation. 
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2.5.2 Power MOS FET Parasitic Oscillation Mechanism 
Figure 2.26 shows a parallel equivalent circuit. 

Power MOSFET Equivalent Circuit

Lg: Gate lead inductance (including wiring on the board)
Ls: Source lead inductance (including wiring on the board)
Ld: Drain lead inductance (including wiring on the board)
rg: MOS gate resistance
Rg: External gate resistance
Cgs: Gate-source capacitance
Cgd: Gate-drain capacitance
Cds: Drain-source capacitance

The voltage oscillation due to resonance
changes in proportion to the selectivity
Q(=ωL/R=1/ωCR) of the resonant
circuit: voltage Vc generated at
capacitance C is given by equation (1)
and voltage VL generated at inductance
L is given by equation (2).

Vc = (1/2πfC)I = (1/ωCR)V = QV  ⋅⋅⋅⋅⋅⋅⋅⋅⋅(1)

VL = (2πfL)I = (ωL/R)V = QV  ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅(2)

Here, Q = ωL/R = 1/ωCR =

Resonance frequency fr =

Cds Cgd

Cgs
Rb

Ls

RDS(on)

Ld

CdsCgd

Cgs

QVgs(p)

Vgs
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G S
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Resonant Circuit of R, L, and C

Vin

Vin

f = 1/T
Vin: Supplied

voltage
Vc = Q · Vin

T
0
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R

R

L

C

1

2π   LC  

Figure 2.25   Power MOS FET Parasitic Oscillation Mechanism 

When power MOS FET parallel connection is performed by means of direct connection without using a gate series 
resistance, a parasitic oscillation waveform appears in the gate.  With this parasitic oscillation, oscillation voltage 
Vds(p) passes through gate-drain capacitance Cgd(Crss) due to load wiring inductance Ld when the drain-source 
voltage is turned on and off at high speed, and particularly when it is turned off, and a resonant circuit with gate lead 
inductance Lg is formed.  As gate internal resistance rg of a large-current, high-speed power MOS FET is extremely 
small, at 1 to 2 Ω, when there is no gate external resistance Rg, oscillation circuit Q — that is √L/C/R — becomes large, 
and when the resonance condition occurs, a large oscillation voltage is generated between that point and Cgd(Crss) or 
Lg (that is to say, between the MOS gate and source), and parasitic oscillation is caused. 

In particular, as large-current operation is performed in the case of parallel connection, if transient current balance 
becomes poor when switching off, all the currents flow in one MOS FET in a period with deviation of this timing.  
Generally, this period is an extremely short time of several ns to several tens of ns, and therefore power MOS FET 
thermal stress is not a problem, but drain-source oscillation voltage Vds(p) may be logically n times greater than this or 
more (as Ld also appears to be larger due to the skin effect* since a high-frequency large current actually flows in a 
transition). 

Skin effect: Phenomenon whereby a high-frequency current flows only through the surface of a conductor, 
and not through the inner part.  When current flows in a conductor, a magnetic flux is generated 
around the current, and as this crossing with the current, an inductance effect is produced.  
When a current is passed through a thick conductor that handles large currents, a magnetic flux 
is also generated in the conductor, and therefore the inductance effect is more intense toward 
the center of the conductor.  Consequently, when a high-frequency current flows in a thick 
conductor, there is a strong inductance effect in the central part, making it difficult for current to 
pass through, and current deviates toward the surface of the conductor.  In this case, the cross-
sectional area through which the current flows is reduced, and thus viewed from outside, 
electrical resistance — that is, inductance — appears to be large. 
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Figure 2.27 shows parasitic oscillation and destruction countermeasures in the case of parallel connection. 

Insert series resistance R1 near
each gate terminal.
If the gate wiring becomes long
and is connected in parallel,
insert an additional resistor R2.
Reference value:
R1 = 10Ω to 100Ω
R2 = 2.2Ω to 4.7Ω

Gate and source drive circuit
wiring taken from vicinity of
source terminal.  In case of
high-frequency operation, in
particular, use of mounting
with drive wiring inductance
made small.

Insert a ferrite bead
in series with each
gate.

Thicken the wiring along large
current paths to reduce the
wiring inductance.
Use twisted-pair wires for
power-supply lines between
the drain and the source.

R1

Vout

R1

R1

R1

R1

Vin

R1R2

R1

R1

R2

Drive
circuit A

Drive
circuit B

L

 

Figure 2.27   Parasitic Oscillation Reduction and Destruction Countermeasures 

2.6 Notes on Parallel Connection 
Notes on mounting covering precautions concerning parallel connection, and advice on the selection and use of power 
MOS FET components, are given below. 

2.6.1 Notes on Mounting 
• Low-inductance wiring 
• Make drain and source wiring lengths equal, and use twisted-pair wiring, etc. 
• Pay attention to parasitic oscillation (see attachment on parasitic oscillation countermeasures) 
 
2.6.2 Advice on Selection and Use of Power MOS FETs 

Discussion and agreement with the semiconductor manufacturer are necessary. 
Align Vth(VGS(off)) value (higher value preferable) ⇒ Off-time transient current balance reduction 
Align on-resistance RDS(on) ⇒ 
Apply adequate gate drive voltage 
(4 V drive product: VGS = 5 to 10 V, 
10 V drive product: VGS = 10 to 12 V) 

⇒ 
On current balance reduction 
Heat radiation balance reduction 

Avoid avalanche operation as far as possible ⇒ Current concentration in low-withstand-voltage 
components 
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2.7 Electrostatic Destruction 
2.7.1 Explanation of Electrostatic Destruction 
Electrostatic destruction refers to destruction due to static electricity or a surge voltage from a human body or 
equipment when a product is handled or is being mounted. 

2.7.2 Electrostatic Destruction Countermeasures 
Figure 2.28 shows countermeasures against electrostatic destruction. 

Ground
the body

1MΩ

Action 2

Gate resistance Gate resistance

Zener
diode

Zener
diode

Action 3

Better result

Action 1

 

Figure 2.28   Electrostatic Destruction Countermeasures 

In electrostatic destruction, the gate oxide film is destroyed when static electricity or a surge voltage generated by a 
human body, mounting equipment, etc., is applied to a gate.  Characteristics seen after destruction are a voltage drop or 
shorting between the gate and source, shorting between the drain and source, or increased leakage current. (See figure 
2.29.) 

The following three methods are used as countermeasures to electrostatic destruction. 

(1) Earth human bodies via a 1 MΩ resistance before handling devices. 
(2) Ensure that equipment is properly earthed. 
(3) To prevent the application of gate surge voltages that may occur after board mounting, insert a gate resistance and 

Zener diode. 
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2.7.3 Destruction Progression Modes after Electrostatic Destruction 
In figure 2.29, post-gate-destruction characteristic modes are broadly classified into two kinds, and their respective 
natures are illustrated if the respective destruction products maybe adopted to a set circuit. 

Between gate and source: decrease in impedance
   (several hundred Ω to several kΩ)
Between drain and source: increase in current leakage

Damaged product BDamaged product A

Between gate and source: short-circuit
Between drain and source: short-circuit

The product will not operate
as MOS FET.
The system will not operate.

Electrostatic
destruction

The product operates as MOS FET.
The system operates.

Operation continues with a
reduced gate impedance.

RDS(on) rises.
More heat is generated in MOS FET.

ASO destruction of the product
 

Figure 2.29   Destruction Progression Modes after Electrostatic Destruction 

Figure 2.30 illustrates the characteristic modes of destruction products A and B.  In the destruction product A mode, 
there is almost complete shorting between the gate and source and between the drain and source.  In the destruction 
product B mode, although a certain level of resistance (several tens of Ω or more) is maintained between the gate and 
source, and a curve shape of standing to reverse voltage is keeping although leakage current IDSS between the drain and 
source is large at several hundred mA to several tens of mA. 
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Figure 2.30   Sample Electrostatic Destruction Product VGSS and VDSS Waveforms 
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2.7.4 Mechanism whereby Gate Destruction Product B Come to ASO Destruction 
When the destruction product A mode is temporarily incorporated in a set circuit, the circuit naturally does not operate, 
a short-circuit current flows between the MOS FET gate and source when power is turned on, and destruction traces 
increase. 

When a mode such as the destruction product B mode is temporarily adopted to a set circuit, since drain-source 
withstand voltage is maintained (although when leakage current IDSS is large, power consumption increases in the off 
state and causes a rise in component temperature), according to the circuit gate signal source resistance RS constant and 
gate-source resistance RGS immediately after destruction, a voltage with drive capability is applied between the gate and 
source, so that although drive voltage VGS appears to fall, switching operation is performed.  This state is illustrated in 
figure 2.31. 
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Figure 2.31   Mechanism whereby Gate Destruction Product B Reaches ASO Destruction 

When, for example, a destroyed product B mode gate destruction sample with gate-source resistance value RGS = 100 Ω 
immediately after gate destruction and drain-source leakage current IDSS = 1 mA is temporarily incorporated in an 
operating circuit with power supply voltage VDD = 24 V, gate input voltage Vin = 10 V, gate signal source resistance RS 
= 22 Ω, and on-duty D = 0.3, when the actual gate drive voltage VGS and off-time power consumption Poff of this 
component are calculated, VGS = 8.2 V and Poff = 16.8 mW as shown below, and generally, in the case of a logic-level 
drive component, the component operates adequately. 

VGS =                   × Vin =                 × 10 ≈ 8.2V

Poff = VDD × IDSS × (1 – D) = 24 × 1 × 10–3 × 0.7 = 16.8mW

RGS

RS + RGS

100

22 + 100

 
However, as gate-source resistance value RGS of this destroyed product may well decrease further, in that process gate 
drive voltage VGS becomes insufficient.  As a result, on-resistance increases (a complete on-resistance operation on-
state is not established, and operation is performed in a state in which VDS(on) has increased as shown in figure 2.31), 
and power consumption increases, and eventually component ASO destruction occurs. 

In a case such as this, subsequent analysis of the destroyed product shows a close resemblance to thermal destruction 
due to exceeding of the component ASO, but it is possible that the destruction mode constituting the initial trigger was 
a gate destruction mode.  However, it is extremely difficult to determine whether it is the latter case or not by destroyed 
product because destruction traces have increased. 
Therefore, at the very least, care must be taken in handling (including component measurement) up to embedding in a 
circuit. 
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2.8 Usage Notes 
2.8.1 Power MOS FET Main Loss Frequency Dependence and Relationship to Main 

Characteristics 
Figure 3.32 shows “power MOS FET main loss frequency dependence and relationship to main characteristics” in the 
case of use in a DC-DC converter. 

Switching loss and drive loss increase at higher frequencies. 

In order to make full use of component performance and reduce total loss, it is necessary to achieve a balance with on-
resistance loss by appropriately setting and controlling the gate drive voltage in the high-frequency region. 

In general, when a logic-level drive component is operated at operating frequency f = 200 to 300 kHz or below, in order 
to minimize on-resistance, applying a gate drive voltage VGS of around 10 V is effective from a total loss standpoint.  
Applying a higher voltage (for example, VGS = 15 to 17 V) is not really recommendable as drive loss only increases. 

At high-frequency operation of f = 500 kHz or more, reducing total loss by optimization in a gate drive voltage VGS 
range of 5 to 8 V is effective in achieving higher efficiency. 
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Figure 2.32   Power MOS FET Main Loss Frequency Dependence and Relationship to Main 
Characteristics 

2.8.2 Malfunction (Arm Shorting) Countermeasures in Motor Application 
Figure 2.33 illustrates arm shorting in a small motor drive application, and applicable countermeasures, when P-channel 
and N-channel MOS FETs are used in combination. 

This figure shows the upper P-channel MOS FET in the off state and the lower N-channel MOS FET in a chopping 
operating state. 

In figure 2.33, the voltage waveform at point A is as shown in the figure, but as the lower N-channel MOS FET is now 
turned on and VDD changes to 0 V, a charge current flows transiently via Crss and Ciss of the upper P-channel MOS 
FET, and a ∆VGS(t) = {Crss/(Ciss+Crss)}∆VDS(t) peak voltage is generated between the gate and source.  When this 
∆VGS(t) peak voltage exceeds Vth of the P-channel MOS FET, the upper and lower components go to the on state 
simultaneously, an arm short-circuit current flows, and excessively large loss is caused. 
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In the case of use in an H bridge circuit, the other arm is also similarly susceptible to the occurrence of this 
phenomenon with an N-channel component. 

The upper/lower component shorting phenomenon at the time of this transition is liable to occur under the following 
conditions. 

1. More likely to occur the faster the switching operation (especially turn-on time) and the steeper dV/dt 
2. More likely to occur the larger signal source resistance RG (gate off-time constant) 
3. More likely to occur the larger the Crss/Ciss values of the components used (KS = {Crss/(Ciss+Crss)} · VDD is a 

larger value than Vth of the component) 
4. More likely to occur the higher power supply voltage VDD 
 
Of items 1 to 4, item 4, power supply voltage VDD is determined by the application and cannot be changed, so 
countermeasures are shown for remaining items 1 to 3. 

1. Slow the turn-on time to suppress dV/dt (make gate resistance R1 in the figure larger). 
2. Make gate off-time  signal source resistance RG (MOS FET driver signal source resistance RS and off-time external 

resistance constant Rg) smaller, and set low impedance between the gate and source. 
3. Insert capacitance C1 between the gate and source, make (KS = {Crss/(Ciss+C1+Crss)}VDD smaller, and provide a 

margin. 
Also, select an component with a small KS and high Vth. 
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Figure 2.33   Malfunction (Arm Shorting) Countermeasures In Motor Application 
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2.8.3 Non-Isolated Synchronous Rectification Converter Low-Side Self-Turn-On 
Phenomenon 

In appearance, this is similar to the above-described arm shorting phenomenon. 

Figure 3.34 illustrates the low-side self-turn-on phenomenon in a non-isolated synchronous rectification circuit. 

This phenomenon occurs at the switching timing at which high-side component Q1 is turned on while low-side 
component Q2 is off, and when the Q2 drain-source voltage changes abruptly from VDS ≈ 0 to VDS = Vin, Ciss is 
charged via Crss of Q2, and Q2, which should really be off, is turned on. 

That is to say, when VGS(Q2) = (Crss/Ciss + Crss) × dV(t) (equation (1)) exceeds Vth of Q2, self-turn-on occurs.  As a 
result, Q1 and Q2 become on simultaneously, and excessive loss is generated, component heat radiation and a 
temperature rise are caused, leading to degradation of efficiency. 

Regarding the low-side component characteristics, due to large-current operation, low RDS(on) design is necessary, and 
therefore there is a tendency for the capacitance relationship (Ciss, Crss) to be large.  Regarding the high-side 
component characteristics, due to the design emphasizing high speed, high-speed switching characteristics are 
implemented, and dV/dt becomes steeper.  This suggests a tendency of susceptibility to the self-turn-on phenomenon. 

Generally, the following two circuit countermeasures can be used. 

1. Make only the high-side component turn-on time slower (suppress dV/dt). 
2. Insert a capacitance C externally between the gate and source of the low-side component and (by making (KS = 

(Crss/Ciss + Crss) smaller) improve the self-turn-on margin. 
 
As a future trend, it is necessary to make both Ciss and Crss smaller in component design for high-frequency operation 
(1 MHz or above) and also make improvements that take account of the ratio of Ciss and Crss (Crss<<Ciss).  Also, it is 
necessary not only to implement component improvements, but also to make the impedance between the gate and 
source when Q2 is off (RS + jωLS) as small as possible from the circuit design and mounting standpoints (since the 
above VGS(Q2) expression essentially holds true when (RS + jωLS) >> 1/jωCiss), and component performance can be 
fully exploited by means of these techniques. 
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Figure 2.34   Problems in Synchronous Rectification Circuit 
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Power MOS FET 
Application Note 

3. Power MOS FET Applications 

3.1 Application Map 
Figure 3.1 shows a power MOS FET and IGBT application map. 
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Figure 3.1   Power MOS FET and IGBT Applications 
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3.2 Automotive Applications 
3.2.1 Technological Trends in Automotive Electrical Equipment 
Figure 3.2 illustrates technological trends in automotive electrical equipment. 
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Figure 3.2   Technological Trends in Automotive Electrical Equipment 

3.2.2 Sample Automobile ABS Application 
Figure 3.3 shows a sample automobile ABS application. 
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Figure 3.3   Sample Automobile ABS Application 
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3.2.3 Sample Automobile Power Steering Application 
Figure 3.4 shows a sample automobile power steering application. 
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Figure 3.4   Sample Automobile Power Steering Application 

3.2.4 Sample Automobile HID Headlamp Control Application 
Figure 3.5 shows a sample automobile HID headlamp control application. 
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Figure 3.5   Sample Automobile HID Headlamp Control Application 
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3.3 Power Supply Applications 
3.3.1 Switching Power Supplies 
• Application equipment 

Network servers, WS (workstations), RAID 
Figure 3.6 shows a sample switching power supply application. 
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Figure 3.6   Sample Switching Power Supply Application 
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3.3.2 DC/DC Converters 
• Application equipment 

Notebook PCs, VCR cameras, on-board power supply secondary side, lithium-ion battery pack overcharging 
protection 

Figure 3.7 shows a sample DC-DC converter application. 
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Figure 3.7   Sample DC/DC Converter Application 
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3.3.3 VRM (Voltage Regulator Module) 
• Application equipment 

Desktop PCs, notebook PCs, network servers, WS (workstations) 
Figure 3.8 shows a sample VRM application. 
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Figure 3.8   Sample VRM Application 
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3.3.4 Base Station SMPS (Switch-Mode Power Supply) 
Figure 3.9 shows a sample base station SMPS application. 
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Figure 3.9   Sample Base Station SMPS Application 
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3.3.5 Communication Equipment DC/DC Converter 
Figure 3.10 shows a sample communication equipment DC/DC converter application. 
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Figure 3.10   Sample Communication Equipment DC/DC Converter Application 
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3.4 Motor Drive Applications 
3.4.1 Small Motor Drive 
• Application equipment 
Application Function 

HDD (voice coil motor) H bridge 
Camera motor, electronic throttle 
HDD (spindle motor) 3-phase 
PPC, printer (paper feed motor, polygon mirror) 

 
Figure 3.11 shows sample small motor drive applications. 
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Figure 3.11   Sample Small Motor Drive Applications 
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