
Page 1 of 50

Outline  
PASM for beginners  Propeller 102

Preface
Table of contents

Part one What we have to work with
Book resources
Obex shared resources
Forum
Propeller Chip
This book
Program listings on the Net
Propeller manual and how to use it and what it does not tell
Binary math beginnings
Simple register manipulations

Part two Simple Output
7404 buffers
The PST
Development board
Duplex Full Serial dfs interfacing to PST
LEDs
2 lines by 16 char display
Extended to 4 lines by 20 chars
Speaker
Servo motor
Frequency
PWM generation

Part three Simple Input
read one push button
read Switches
Read Keyboard
read Potentiometer
read Voltage
Count pulses.
read frequency
1302 interface
single wire clock/other interface.
LM34 interface

Page 1



Page 2 of 50

Part Four  The projects
Solenoids and relays
Self leveling Table
440 cps tone
Metronome
Tachometer
Servo motor R/C
Temperature reading devices
Clock chip interfacing
DC motor
DC Motor with encoder
Stepper motors
Data collection from a solar collector.

Part five Appendices
Equipment needs
PASM words used in text with short meanings.
Epilogue

Index

Page 2



Page 3 of 50

Page 3



Page 4 of 50

An introduction to Propeller 
Assembly language

By Harprit Singh Sandhu.

Page 4



Page 5 of 50

Preface

Since it did not look like any one on the Propeller discussion group was going to write an 
introduction to the Propeller Assembly language and I needed to learn the language I decided 
to put down my notes in the Monograph and make it available to the Propeller community.

My sources include the Propeller manual, the internet and a few books on digital/binary 
mathematics.

Basically I am going to follow the format that I followed in my book on the introduction to the 
spin language.  First we will cover what we have to work with than we will cover basic 
operations, and then we will cover a project or two to use the information that we have 
become familiar with.

I am going to be using the professional development Board as my basic hardware 
configuration.  I will try to minimize the use of its ancillary devices so that the cost of learning 
the language will be kept to a minimum.

As in any assembly language, PASM, the Propeller Assembly Language, has to do with 
More than anything else you need to be completely familiar with what is in the propeller 
manual.  It will make your life easier, if it is straightforward for you to find the instruction that 
you want to use. That and learning how to use the data sheets, and you are on your way.

Any assembly language is all about manipulating registers, moving bits back and forth, and 
the setting the I/O pins.  The system does everything in very small steps.  You have to define 
everything you want the processor to do.  There are a number of commands in PASM, that 
can be accessed directly slmost like SPIN commands and these copmmands will perform 
certain simple, often used functions for you.  These are listed in the description of the 
language in the second half off the propeller manual.

After you have executed the first few experiments, you will start to get a feel for a hollow 
these manipulations are undertaken and further experiments are designed mostly to increase 
your familiarity with the language and how it is used to build up simple control applications.

As time goes on, you will develop little subroutines that you can plant in your programs. 
When you need them or you can use as templates for other subroutines that you want to 
create and you will find that the work starts to go rather quickly, and the results are very fast. 
You will be glad that you learned how to use assembly language.  It's.

PASM has a very rich vocabulary and allows you to make the decisions that go into creating a 
computer program with ease.  However, this large vocabulary means that you do have to 
have access to the manual at all times.  The cause, I doubt that any of us can memorize a 
large instruction set, unless that's all we do everyday in and out.

Page 5



Page 6 of 50

There is no accumulated or as such, or a Master register on which all calculations are 
performed in PA SM.  This any register can be accessed and manipulated as you see fit.  The 
fact that all but cogs are identical makes life as easy as one might expect.

In general, you will want to do those things that are done over and over in your program in 
PAS M and the major portion of the logic and output to other devices in the spin.  That along 
with the ever increasing software, available in the object exchange, maintained by parallax 
makes it relatively painless to program the propeller chip.  It's

Page 6



Page 7 of 50

Chapter 1.
What the manual does not tell us.

I found that the thing that made it hardest for me to get going on the project was that the 
manual did not tell me enough about what the microprocessor had in the way it's of internal 
registers.  Having this information is absolutely fundamental to understanding what is going 
on in the language.  It's this being the case, the first thing we will do is describe what we have 
to work with and what the various registers do.

In most microprocessors.  The system consists of an array of various types over registers or 
memory locations if you like that form the core of the machine.  Some of these registers 
occupy information that cannot be changed and some of them are memory locations that form 
the core memory off the device. 

When you start the micro processor or when you press the reset button is the logic engine is 
designed to jump to a certain memory location. this memory location is specified in one or 
more registers at one end, all the memory address of the device.

In our particular case, we will be working with eight cogs and we know that each of these cog 
is similar to every other cog. The assembly language programs that rewrite goes into one of 
the calls and for all purposes as the beginners we will assume that the called contains only 
this assembly language programs and contains it in its entirety.  So theoretically we could run 
seventh assembly language programs, the 8th cog being used as the controlling cog

The program itself is specified as a number of data points.  The program reads in these data 
points, and when the program is executed these data points represent the program.  As a part 
of this reading process, the microprocessor, completely fills the memory of the cog that we 
have started for this program.  This is described in a little more detail in the propeller manual. 
See page 

Figure 1 illustrates what one cog looks like two an assembly language program.

Figure 1
---------------------------------

Page 7



Page 8 of 50

As we go through this book, we will assume that we have a serious interest in learning PASM. 
This means that you will undertake all the experiments in the book and that it will not be able 
to jump around in the book and expect to understand what is going on.

The book will (in general) follow the format, and the programs that were delivered in my book 
for beginners on learning SPIN.  There are a number of advantages in doing it in this way, 
among them the ability to compare the speed of doing what we do in the two languages.  

We will assume that you have the following resources available to you as learning tools.

1. My book on spin, which you will need as a general reference.
2. The propeller manual version 1.0 and the published errata for it. 

Referred to as PM in this text).  See Propeller Tool help tab.  It would 
be best if you also had a hard copy of this resource in your hands.

3. The data sheet for the propeller chip.  This too can be downloaded 
from the help menu tab in the propeller tool.  Print it out also.

4. The hardware needed to run all the experiments.
5. A professional development board for the propeller. (referred to as PDB 

in this text)
6. A printout of the circuitry of the PDB.  We will need to refer to this from 

time to time as we lay out our circuits.  

Both printed and digital/electronic copies are useful in that the printed copy is easier to read 
and the digital/electronic copies are easier and much more convenient to search.

The first program that is is always considered in any tutorial on any language is the blinking of 
an LED.  (“Hello World” is more commonly used with larger logic engines but using the LED is 
easier with micro controllers like the propeller.)  The propeller manual provides an example of 
this on page 340. Here is a listing of that program as provided by Parallax:

{{AssemblyToggle.spin}}
con
  _clkmode = xtal1 + pll16x
  _xinfreq = 5_000_000

pub main
  cognew(@toggle, 0)

dat
           org         0
toggle     mov         dira,   pin
           mov         time,   cnt
           add         time,   #9
:loop      waitcnt     time,   delay
           xor         outa,   pin

Page 8



Page 9 of 50

           jmp         #:loop

pin        long       |<1
delay      long       6_000_000
time       res        1 

The explanations provided in the manual are not as detailed as they need to be for  beginning 
students of the language.  To remedy this, I will provide a line by line description, or if you will, 
documentation, for this program as the first example of proceeding with our learning process.

I will be setting up all the experiments in this book on the propeller professional 
development board.  If you have the education Kit provided by parallax it will provide most of 
the electronic components that you need for this book.  The other components that you will 
need, have been list in the appendix so that you can have them all one hand as you start your 
experimentation.  It is of course not strictly necessary to use the professional development 
board but the board does make life a lot easier in that it has an awful lot of the devices that 
we will be experimenting with built right onto the board, and they are well organized and easy 
to use.  You will find lots of used for this board as you go along.  When it is on sale it is an 
unbeatable value.

Let's go over the first program in the propeller manual a line at the time so that we can 
understand exactly what the programmer had in mind as he or she wrote the program.

{{AssemblyToggle.spin}}
the first line is a comment, and as such will not executed as a part of the program.  This line 
tell us the name of the program and the fact that it is in PASM.  Both SPIN and PASM 
programs use the .spin identification.

CON
the second line identifies the following two lines as constants.  These constants are the same 
as we see in SPIN, and they define the speed of the processor as 5 X 16 megahertz.  We 
could have defined this as any other speed as long as we used valid values.  The PM lists all 
the valid propeller speeds.  Keep in mind that the slower we run the processor, the less 
energy it uses.

PUB Main
The next line defines the method as a public method and provides the main handle for the 
program.  Each program has to have at least one method within it.

cognew(@toggle, 0)
Note: Cognew is a SPIN command and it does not have a PASM equivalent.  All Objects run 
in the SPIN environment and this is the only way to start a new cog.  @toggle tells the system 
where to locate the program in the cog memory

The line launches a new cog that will hold the program, that we are addressing, for blinking 

Page 9

mailto:A%3D@toggle


Page 10 of 50

the LED.  It tells the propeller that the new program is to be installed starting at location 
identified by”toggle” in the memory of this cog.  @toggle is short hand for the memory location 
in this Cog.  It happens to be at location 0 in the RAM but the 0 in this line does not refer to 
that.  That is defined later in the ORG directive.

Next we need to define what the total toggle program consists of.  It is defined in the DAT data 
provided for this program.

The next line.

DAT.
Tells us that the following lines contain the data that will be interpreted as the program by 
cognew the new cog that we started earlier under MAIN.

{toggle P16}
This line is not a data statement.  It is a comment to remind us that we will be toggle line 16 
on the propeller with the following data defined program instructions.  As our toggling target, 
we have a choice of any line from one to 31, but we may want to avoid the last four lines in 
that they have other uses that we may not want to interfere with at this time.  We are using 
line 16.

ORG    0
This line tells us that we are going to start storing our data points into the memory of this cog 
starting with the first RAM location in the cog.  We have the option of starting at any memory 
location within the cog but at this point, there is really no good reason not to start at location 
zero.  As a general rule almost all PASM programs will start at location 0.

Toggle    Mov   Dira,  Pin
In this line, Toggle is a marker.  It marks the beginning of a object.  The command MOV tells 
the processor to move the value of PIN into the DIRA register. On start up and reset a 
propeller chip has all its pins in the input mode.  In this mode, they are high impedance pins 
that will accept data both from TTL level signals as well as from CMOS level signals. 
Remember that the propeller is a CMOS device running at 3.3 Volts. The switching point 
between high-level and low-level signals in a 3.3 volt device is 1.65 volts or half of 3.3 volts. 
Further down in the program our constant will be defined as a long or 32 bit value.  In this 32 
bit register bit 16 is made a one and then the 32-bit number is moved into the register DIRA. 
DIRA defines the direction of the I/O bits as either inputs or outputs.  If the corresponding bit 
is 0 the line will be used as an input and if it is 1 it will act as and be treated as an output.

There are 16 registers that are pre-defined in PASM.  A list of these 16 registers is in the data 
sheet on page 34.  Some of these registers can be written to, and some cannot.  We will not 
go into which is which at this time, but you need to be aware that these registers exist and 
one of them (DIRA) represent the direction that the pins will be programmed to in our 
programs.

Page 10



Page 11 of 50

Before we started, (i.e. on start up and reset) DIRA was

00000000_00000000_0000000_0000000

After this above line is executed.  The register DIRA will contain

00000000_00000001_0000000_0000000

This tells us that all the pins on our propeller are now inputs except line 16, which is the 17th 
pin because as a convention we always start counting at zero.

In this discussion, and in all subsequent discussions, we will use binary format as used above 
(or as convenient) so that it is easy to see which pin is set to what without having to do any 
mental manipulations. It is also possible to use other number bases but we will stick to binary 
and decimal values almost exclusively in the text.

mov    time    cnt
This instruction moves the current content of the ()running) system clock or counter into the 
Time register.  CNT is also one of the 16 registers that was referred to earlier as being 
predefined in each cog ram.  This register contains the current count in the system clock and 
is it a read only register.  You cannot set the system clock, you can only read it.  All cogs read 
the same system clock.

add    time,   #9
This instruction adds, the number nine to the time variable and stores the result back into the 
time variable.  This is necessary, because there is a short delay between putting the counter 
into the time variable and starting the looping process.  Adding the nine compensates for the 
delay between the two instructions.  In this particular case this number can be 9 or higher. 
Making it higher, would detract from the accuracy of the first delay and making it lower, would 
make it necessary for the counter to go all the way around the 32-bit count the before it would 
respond in the way that we intend it to respond.  (This number has to be increased if the delay 
between setting the wait time and the start of the loop increases.  

:loop    waitcnt  time,  delay
This is the wait instruction that determines the delays between turning pin 16 on and off in the 
program.  This delay is based on the clock frequency that we specified under CON.  The 
delay is 6/80 seconds as specified. The LED stays on for 6/80 seconds and then stays off for 
6/80 seconds for a full cycle of 3/80 seconds. The way this works in PASM the delay is 
dependent on the specified speed of the system clock. (That is the way it is programed in this 
particular program).

xor    outa,    pin
This instruction inverts the signal on pin 16 each time through the loop. (XOR is the exclusive 
OR operation)

Page 11



Page 12 of 50

jmp    #:loop
This instruction tells the program to jump to the location (line) marked ":loop".  This starts the 
process of converting the target line, and the delay over, and re-begins routine that blinks the 
LED at location PIN

We still have the business of defining our constants and telling the processor, where we want 
the information about them to be stored.  This is done on the next three lines.

Pin    Long    |<16
This identifies PIN as location 16 in the register.

Delay    long    6_000_000
Tells the processor that delay will be a “four byte” long with a value of 6_000_000 placed in it.

Time            res  1
Tells the system that the time variable will be located within the workspace assigned in RES 
1.  This is just one of the registers in the resources area. Any number of variables can be 
stored in the RES 1 area.  All un-inialized variables are stored in the RES 1 area so in a way 
this is the area in which we declare the variables that we are going to use in the program.

All assignments in the RES area must be be defined at the end of the program.  

Experimentation.

Next let us make some modifications to the program and play with it to see what happens 
when we make changes.  We will be doing this with almost all the programs we write to 
enhance our learning expedience.  

It is best not to connect the output pin on a propeller directly to an LED.  It would be best to 
use a resistor of between 120 and 500 ohms to limit the load on the line. The larger the value 
you use the dimmer the LED will be.  On the PDB the LEDs already have resistors in series 
with them but we will add a resistor in the line just to get in the habit of limiting the LED 
current.  Adding this resistor will not adversely affect the lighting on the LED.  I used 220 ohm 
resistors 

The circuitry we want to have in place is as shown in Figure XXX

Page 12



Page 13 of 50

Figure XXX

The purpose of these changes is to play with the contents of DIRA. Generally nothing works 
as well as poking around in small programs, for a good learning experience.

Revise the program so that it reads as follows.

con
  _clkmode = xtal1 + pll16x
  _xinfreq = 5_000_000

pub main
  cognew(@toggle, 0)

dat
           org       0
toggle     mov       dira,    pin
           mov       TIME,    CNT
           add       time,    #9
:loop      waitcnt   time,    delay
           xor       outa,    pin
           jmp       #:loop

pin        long      %00000000_00000000_0000000_0000011
delay      long      16_000_000
time       res       1

We will run the program repeatedly as we change the various parameters to see what 
happens.  Of particular interest is what we put in DIRA, the number 9, and the number 
16_000_000.  There are other things that you might want to try  also (logic changes etc.) but 
we will not cover them right here.  

Next let make some major changes to the program so that we can blink LEDs on lines 0 and 
1 alternately.  For this experiment set up the circuitry as shown in Figure XXX

Figure XXX

If you are going to use an oscilloscope to look at what is going on at the pins, you can look at 
either line 0 or 1.  You can just leave the probe there for the next few experiments.

Change the program so that it looks like the following:

con

Page 13



Page 14 of 50

_clkmode = xtal1 + pll16x
_xinfreq = 5_000_000

pub main
cognew(@toggle, 0)

dat
       org      0                      'start of the program storage locations
toggle mov      dira,   pin            'pin now sets lines 0 and 1 as outputs
       mov      time,   cnt            'sets the delay time to 10m cycles
       add      time,   #9             'adds 9 to the time count

:loop  waitcnt  time,   delay          'the wait instruction
       mov      outa,   pin0on         'sets output 0 on and 1 off

       waitcnt  time,   delay          'the wait instruction 
       mov      outa,   pin1on         'sets output 1 on and 0 off

       jmp      #:loop                 'go back and loop.

pin      long %00000000_00000000_00000000_00000011    'used to set 0 and 1 as outputs
kine0on  long %00000000_00000000_00000000_00000001    'used to turn on line 0
line1on  long %00000000_00000000_00000000_00000010    'used to turn on line 1
delay    long 10_000_000                              'delay cycles defined
time  res  1                                          'storage location for time

Program XXX
Blinking lines alternately.

The above program XXX will blink the LEDs on lines 0 and 1 on and off alternately.  This code 
is easy to read but it is archaic and it is not the best way to do it.  An only slightly better way to 
write this program is shown next in Program XXX.  Again the changes are to the looped part 
of the program

con
_clkmode = xtal1 + pll16x
_xinfreq = 5_000_000

pub main
cognew(@toggle, 0)

dat
       org      0                      'start of the program storage locations
toggle mov      dira,   pin            'pin now sets lines 0 and 1 as outputs
       mov      time,   cnt            'sets the delay time to 10m cycles
       add      time,   #9             'adds 9 to the time count

:loop  waitcnt  time,   delay          'the wait instruction
       or      outa,   %01             'sets output 0 on and 1 off

       waitcnt  time,   delay          'the wait instruction 
       or      outa,   %10             'sets output 1 on and 0 off
       jmp      #:loop                 'go back and loop.

delay    long 10_000_000                              'delay cycles defined
time  res  1                                          'storage location for time

Page 14



Page 15 of 50

Program XXX a slightly better way to write program XXX
Blinking lines 0 and 1 alternately.

When you run the above program you will see that two LEDS can be turned on and off 
alternately with the above register assignments.  The program shows you how to set the lines 
as Inputs and Outputs with simple statements and how to affect the I/O operation of the pins. 
However this is both the tedious and archaic way of doing it.  A number of better ways to do it 
follow.  In these examples we are using shorthand notation and binary math techniques to 
manipulate the registers.  Handling registers in this way is important in almost all the things 
that we will be doing.  The techniques we use next use the following principles:

There are three basic things we can do to one bit in one operation.
Change it from a low to high-level (0-->1)
Change it from a high to low-level (1-->0)
Invert its state, in other words toggle the bit.  Make it high if low and low if high.

Assume that the current 4 bits under consideration are %1010
We can change any bit in this group to high with the or operation on that bit.

          1010          current content
or       0001         addresses the last bit
          1011          result: the last bit is turned on (changed from 0 to 1)

If we want to turn a bit off we can do it with the andn operation 

          1010          current content
andn  0010         addresses the third bit
          1000          result: the third bit is turned off (changed from 1 to 0)

If we want to change (or toggle) the state of a bit we use the xor command

          1010          current content
xor    0011          addresses the third and fourth bits.
          1001          result: the third and fourth bit are toggled (changed from 1 to 0 and 0 to 1)

Now let us look at the looping part of the code in our program and see how we can use the 
above commands to make the LEDS flash alternatively.

The simplest way is to first set the two bits that control the LEDs to 01 or 10 with the outa 
command and then do a toggling procedure with the xor command.

dat
       org      0                   'start of the program storage locations
toggle mov      dira,   #%11        'pin now sets lines 0 and 1 as outputs
       mov      time,   cnt         'sets the delay time to 10m cycles
       add      time,   #20         'adds 12 to the time count
       mov      outa,   #%01        'sets the two bits 

Page 15



Page 16 of 50

:loop  waitcnt  time,   delay
       xor      outa,   #%11        'toggles bits 0 and 1
       jmp      #:loop 

Now that we understand the simplest of bit manipulations and the creation of the simplest of 
loops.  Let us expand on these idea to learn how to undertake some other often used 
techniques.

Shifting the bits in a register left and right.

The two instructions used to shift bits left and right are SHL and SHR.  Bits can be shifted 
from 1 to 32 places within the 32 bit registers.

If we use a bit shifting technique to move the ON bit back and forth to alternate the coming on 
of the two bits we have been considering above, the data part of program would look like the 
listing shown in Program XXX.  Here we have to wait after each shift to duplicate the effect in 
program XXX above.

dat
       org      0                   'start of the program storage locations
toggle mov      dira,   #%11        'pin now sets lines 0 and 1 as outputs
       mov      time,   cnt         'sets the delay time to 10m cycles
       add      time,   #20         'adds 12 to the time count
       mov      outa,   #%01        'sets the two bits 
:loop  waitcnt  time,   delay       'delay
       shl      outa,   #%1         'shift left one bit
       waitcnt  time,   delay       'delay
       shr      outa,   #%1         'shift back right one bit
       jmp      #:loop 

Program XXX
Controlling off the LEDs by shifting the active bit left and right.
Tony's code
CON
        _clkmode = xtal1 + pll16x   'Standard clock mode * crystal frequency = 80 
MHz
        _xinfreq = 5_000_000

  
PUB   main
      cognew(@entry,0)

DAT
entry   mov dira,#%11           'pin p0 and p1 as output
        mov time,#5             'first time we only want to wait 1 clock(+ 4 for 
the overhead) 
        add time,cnt            'add current counter value to time

Page 16



Page 17 of 50

loop    waitcnt time, delay     'wait until counter matches time, when done add 
delay to time
        mov outa,#%01           'set pin p0 high, p1 low

        waitcnt time, delay     'wait, time had 15million added to it from above 
waitcnt opcode  
        mov outa,#%10           'set pin p0 low, p1 high
        jmp #loop               'jmp to loop, don't forget the # sign  

delay long 15_000_000           '15 million clock cycles
time  res 1

Creating Subroutines/Methods

PASM has the waitcnt command for creating pauses but we are going to ignore that in the 
immediate discussion.

First let us see how we call a subroutine in PASM.  We will make the wait a part of a 
subroutine and then call the subroutine whenever we need to wait.  This needs to be done 
after each shift command.  The complete code for this is

con
_clkmode = xtal1 + pll16x
_xinfreq = 5_000_000

pub main
cognew(@toggle, 0)

dat
       org      0                   'start of the program storage locations
toggle mov      dira,   #%11        'pin now sets lines 0 and 1 as outputs
       mov      time,   cnt         'sets the delay time to 10m cycles
       add      time,   #200        'adds 12 to the time count
       mov      outa,   #%01        'sets the two bits 
:loop
       call     #clkdelay           'call the delay subroutine
       shl      outa,   #%1         'shift left one bit
       call     #clkdelay           'call the delay subroutine
       shr      outa,   #%1         'shift back right one bit
       jmp      #:loop
       
clkdelay  waitcnt time, delay       'the delay subroutine
clkdelay_ret    ret                 'return for delay subroutine

delay      long 10_000_000          'delay cycles defined
time       res  1                   'location for time

Program XXX
Places the waitcnt command in a subroutine.

Page 17



Page 18 of 50

Often we need to be able to do something a fixed number of times and then do something 
else.  In order to do this we need to learn how to set up counters.  Let us use a counter that 
uses waits of one quarter (0.25 seconds) repeatedly to make up the delays we need in our 
programs from time to time.  The wait period will need to run through 80_000_000_/4 cycles 
of an empty loop before exiting.  We will then place this method in our blink routine to make 
sure it works.  

Again: our clock is running at 80 MHz, so one second takes 80_000_000 cycles and 0.25 
seconds take 20_000_000 cycles. We also know that the average instruction takes 4 clock 
cycles.  So our 0.25 second subroutine has to have 5_000_000 iterations through its loop.
(Our counts are not exact because we are not counting every instruction but it will be close 
enough for what we are trying to learn at this time.  We will learn to count exact cycles later 
on in the book)

con
_clkmode = xtal1 + pll16x
_xinfreq = 5_000_000

pub main
cognew(@toggle3, 0)

dat
          org      0                   'start of the program storage locations
toggle3   mov      dira,   #%11        'pin now sets lines 0 and 1 as outputs
          mov      outa,   #%01        'sets the two bits   
:loop
          call     #clkdelay           'call the delay subroutine
          shl      outa,   #%1         'shift left one bit
          call     #clkdelay           'call the delay subroutine
          shr      outa,   #%1         'shift back right one bit 
          jmp      #:loop
       
clkdelay  mov      time, deltime       'the delay subroutine, load deltime into toime
take4                                  'imternal to subroutine flag
          sub      time, #1   wz       'sub 1 from time and set flag if 0
  if_nz  jmp       #take4              'if flag not 0 go back to take4
clkdelay_ret     ret                   'return for delay subroutine

deltime    long    5_000_000           'time of delay
time       res     1                   'location for time

Program XXX
Subroutine creation and use for 0.25 second delay.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Passing a variable from PASM to SPIN

Page 18



Page 19 of 50

Understanding the passing of a variable between SPIN and PASM with the PAR command. 
(Read Page 283 of PM slowly.)

You can pass a variable from a PARM method to a SPIN method with the PAR command. The 
best way to do this is with a long variable or 32 bits.

Let us set a variable named “value” in binary notation to

%10101010_11111110_11110111_10111011

The pattern is made different for each of the four bytes so that we can see this reflected in the 
output of the display as we display each of the 4 bytes as eight LEDs.  The original code as 
posted on the discussion forum for this book by Kuroneko (#57)

PUB null | shared
   cognew(@generate, @shared)          ' start incrementer
   dira[16..23]~~                      ' all LEDs are outputs
   repeat                              ' endless loop
     outa[16..23] := shared.byte[2]    ' display byte 2 only

DAT         org     0
generate    add     temp, #1       ' simply increment our value
            wrlong  temp, par      ' share with SPIN cog
            jmp     #generate      ' endless

temp        res     1              ' temporary (yes, blindingly obvious)

Kuroneko's code is designed to run on the demonstration board for the propeller as posted.  I 
have modified it (program XXX) to run on the PDB to match the work we are doing in all the 
experiments.  As modified below it displays the selected byte on pins 0..7 of the PDB.  These 
pins are connected to lines 0..7 of the propeller.  

The long  is transferred as 4 bytes.  The 4 bytes are referred to as Byte[0] to Byte[3] in the 
output of the SPIN routine because we are using only 8 LEDs to display the data.  Byte [0] is 
the least significant byte and is on the right end (the least significant end) in the notation 
shown.

Value is a random with the binary digits in each bit in a different order so that you can easily 
see the changes as you run the program with different value in the byte subscript.

PUB null | Pot_Value
  cognew(@generate, @pot_Value)        ' start incrementer
  dira[0 ..7]~~                        ' all LEDs are outputs
  repeat                               ' endless loop
    outa[0..7] := pot_Value.byte[1]    ' displays byte 1 only

DAT        org    0
generate   mov    temp, value           

Page 19



Page 20 of 50

           wrlong temp, par          
           jmp    generate
           
value  long  %1010_1010_1110_1111_1111_0111_1011_1011
temp   res    1                         ' temporary (yes, blindingly obvious) 

Program XXX
Variable shared between SPIN and PASM 
Created in PASM and moved to SPIN in this case

Run the above program to see how the information is read with the SPIN code. Vary the Byte 
value from 0 to 1 to see all the bits.  

We can use the above code to display the value of the potentiometer we are going to read 
once we have learned to read a potentiometer..

Reading a potentiometer.

We will read the potentiometer with the MCP 3208 A to D chip.  This next section is about how 
to read the information from this chip.

In a lot of our experiments we will be using the input from a potentiometer or two to vary the 
inputs to the program we are experimenting with.  The best way to read a couple of 
potentiometers is by using a chip that is dedicated to doing just that.  The Microchip 
Technologies MCP- 3208 will be discussed in the following experiment.  This 16 pin chip is 
configured as follows

Line 1 Channel 0 Wiper of the 1st potentiometer
Line 2 Channel 0 Wiper of the 2nd potentiometer
Line 3 Channel 0 Wiper of the 3rd potentiometer
Line 4 Channel 0 Wiper of the 4th potentiometer
Line 5 Channel 0 Wiper of the 5th potentiometer
Line 6 Channel 0 Wiper of the 6th potentiometer
Line 7 Channel 0 Wiper of the 7th potentiometer
Line 8 Channel 0 Wiper of the 8th potentiometer

Line 9 Ground Ground
Line 10 Chip select Pin 24 of the propeller, made an output
Line 11 Data in Pin 25 of the propeller, made an output
Line 12 Data out Pin 26 of the propeller, made an input
Line 13 Clock Pin 27 of the propeller, made an output
Line 14 Ground Reference Ground
Line 15 V Ref Reference Volts (5 Volts)
Line 16 5 Volts 5 Volts power

Page 20



Page 21 of 50

The circuit for using this chip is shown in Figure XXX

Figure XXX
Circuitry for reading a MCP 3208

The sequence that you have to follow to read this chip is illustrated in an easy to read 
diagram on the data sheet (See page 16) .  Download this data sheet, print this page, and 
have in in front of you as you follow the program provided in Program XXX below.

Program XXX
Reading channel 0 of the MCP 3208

Reading the potentiometer consists of the following steps:

1.  Selecting the chip with the Chip Select line.  High to low.
2.  Clocking in the parameters needed to identify what you want on the Data In line.5 cycles
3.  Toggling the Clock bit to read the A to D value to 12 bits (0 to 4095).  12 cycles

At the end of the process you will have the reading in a designated register from where it can 
be used as need be.  The routine needs to repeat in its own cog so that the A to D value is 
available to the rest of the cogs at all times. In our case the value read will be stored in the 
variable Pot_Value.

Page 21



Page 22 of 50

Circuitry

Reading the data sheet specifies that in order to read the data from the 3208 we need  the 
following wiring connections:

Start with setting up the 4 control lines going into the chip as
3208 Propeller pin

Make Chip select and output from the propeller pin 10 24
Make Data in and output from the propeller pin 11 25
Make Data Out and input into the propeller pin 12 26 input
Make Clock and output from the propeller pin 13 27

Since we are using lines 24 to 27 to communicate with the 3208 we can need to set the up as 
I/O lines.  On start up, all the lines are inputs so we have to set up the output lines only. We 
can do this with the mov command

mov    dira    |<24
mov    dira    |<25
                 line 26 is already an input line into the 3208 and does not have to be set.
mov    dira    |<27

The chip select line is left high when the chip is not being used.

To select the 3208 make the chip select line low.  It can be left low until all the reading is 
done and we are ready to make the chip dormant again.  It uses less power when dormant.

Clear the register that you are going to read the data to.
Start process with making chip select low and then follow the data sheet diagram.
Data is transferred when the Clock goes from high to low so set the condition you want on the 
Data in line and then make the Clock low.

The sequence will be as follows:

  outa[chipClk]~          'START BIT Clock needs to be low to load data 
  outa[chipDin]~~         'must start with Din high to set up 3202 
  outa[chipClk]~~         'Clock high to read data in
                                   
  outa[chipClk]~          'SINGLE DIFFLow to load      
  outa[chipDin]~~         '1111 High single diff mode 
  outa[chipClk]~~         'High to read
                                           
  outa[chipClk]~          'D2  Low to load 
  outa[chipDin]~          '0000 low channel 0 
  outa[chipClk]~~         'High to read 

Page 22



Page 23 of 50

                                           
  outa[chipClk]~          'D1  Low to load  
  outa[chipDin]~          '0000 low channel 0  
  outa[chipClk]~~         'High to read
                                    
  outa[chipClk]~          'D0  Low to load       
  outa[chipDin]~          '0000 msbf high = MSB first  
  outa[chipClk]~~         'High to read

  outa[chipClk]~ 
  outa[chipClk]~~
          
  outa[chipClk]~          'Low to load Read the null bit, not stored 
  outa[chipDin]~          'NULL  making line low for rest of cycle  
  outa[chipClk]~~         'High to read     
          
  DataRed:=0              'Clear out old data                 
  repeat Bitsread               'Reads the data into DataRed in 12 steps 
    DataRed <<= 1         'Move data by shifting left 1 bit. Ready for next bit   
    outa[chipClk]~         'Low to load                                
    DataRed:=DataRed+ina[chipDout]  'Xfer the data from pin chipDout    
    outa[chipClk]~~        'High to read      
  outa[chipSel]~~          'Put chip to sleep, for low power  
  Pot0:=DataRed     'Finished data read for display 
  result:=datared

PUB null | P_Val
  cognew(@generate, @P_Val)            ' start new cog at "generate" and read variable at P_Val
  dira[0 ..11]~~                       ' all 12 lines are outputs. 12 lines needed for 1.5 bytes
  repeat                               ' endless loop to display data
    outa[0..11] := P_Val               ' displays 1.5 bytes of data                         
  
DAT           org       0                       'sets the starting point in Cog
generate      mov       dira,   set_dira        'sets direction of the prop pins
              call      #chip_sel_lo            'selects chip by pulling line low
              call      #Clk_lo                 'START. Clock needs to be low to load data
              call      #Din_hi                 'must start with Din high to set up 3208
              call      #Tog_clk                'clk hi to read data
 
              call      #Din_hi       'SINGLE DIFF  Low to load
              call      #Tog_Clk      'toggle clock line hi then low to read in the data
 
              call      #Din_lo       'D2 Low to load input line selection sequence 000 for line 0
              call      #Tog_Clk      'toggle clock line hi then low to read in the data
            
              call      #Din_Lo       'D1 Low to load input line selection sequence 000 for line 0
              call      #Tog_Clk                'toggle clock line hi then low to read in the data
  
              call      #Din_Lo       'D0 Low to load input line selection sequence 000 for line 0
              call      #Tog_Clk      'toggle clock line hi then low to read in the data

Page 23



Page 24 of 50

                 
              call      #Din_lo         'blank bit needs a clock cycle, next
              call      #Tog_Clk        'toggle clock line hi then low to read in the data
  
                                        'next toggle is for the null bit, nothing read
              call      #Tog_Clk        'toggle clock line hi then low to read in the data
  
              mov       dat_red,  #0    'Clear register we will read data into             
              mov       count,    #12   'Counter for number of bits we will read
read_bit      mov       temp1,    ina           'read in what is in all the input lines
              andn      temp1,    inputmask wz  'mask off everything except Dout line. Set Z flag
        if_nz add       Dat_red,  #1            'if value is still positive add 1 to data register 
              ror       Dat_red,  #1       'roll register right 1 bit to get ready for next bit
              call      #Tog_Clk           'toggle clock to get next bit ready in Dout
              sub       count,    #1 wz    'decrement the "bits read" counter. Set Z flag
        if_nz jmp       #read_bit          'go up and do it again if counter not 0
              rol       dat_red,  #12   'roll back 12 bits to get data into 12 LSBits of register
              mov       temp,     dat_red  'get data that as read
              wrlong    temp,   par        'put it in PAR to share it as P.Val
              call      #Chip_Sel_Hi  'Put chip to sleep by delselecting it, for low power usage
              jmp       #generate          'go back to do it all again

'Subroutines
Clk_Hi        mov       temp,   outa       'Get the OUTA register
              or        outa,   clk_bit    'OR it with the Clock Bit to male high
              mov       outa,   temp       'put it back in OUTA register
Clk_Hi_ret              ret

Clk_Lo        mov       temp,   outa       'Get the OUTA register    
              andn      temp,   clk_bit    'ANDN it with the Clock Bi to make lowt
              mov       outa,   temp       'put it back in OUTA register
Clk_Lo_ret              ret                'return from this subroutine

Tog_Clk       call      #Clk_hi            'make clock bit high
              call      #clk_lo            'make clock bit low

Tog_Clk_ret             ret                'return from this subroutine
 
Din_Hi        mov       temp,   outa       'Get the OUTA register
              or        temp,   din_Bit    'Makes the Din high
              mov       outa,   temp       'put it back in OUTA register
Din_Hi_ret              ret                'return from this subroutine
                                           
Din_Lo        mov       temp,   outa       'Get the OUTA register
              andn      temp,   din_Bit    'makes Din low
              mov       outa,   temp       'put it back in OUTA register
Din_Lo_ret              ret                'return from this subroutine
                                           
Chip_Sel_Hi   mov       temp,   outa       'Get the OUTA register
              or        temp,   chs_Bit    'Makes Chip select high
              mov       outa,   temp       'put it back in OUTA register
Chip_Sel_Hi_ret         ret                'return from this subroutine
                                           
Chip_Sel_Lo   mov       temp,   outa       'Get the OUTA register
              andn      temp,   chs_Bit    'makes chip select low
              mov       outa,   temp       'put it back in OUTA register
Chip_Sel_Lo_ret         ret                 'return from this subroutine
   
Read_Dout     mov       temp,   ina         'Get the INA register
Read_Dout_ret           ret                 'return from this subroutine

Page 24



Page 25 of 50

   
Read_Next_Bit mov       temp1,  ina         'Get the INA register
              or        temp1,  inputmask   'mask all but Din bit
Read_Next_Bit_ret       ret                 'return from this subroutine

'Constants. This section is similar to the CON block in SPIN           
Set_dira      long      %00001011_00000000_00000000_00000000   'Set dira register 
Chs_Bit       long      %00000001_00000000_00000000_00000000   'Chip select bit     24
Din_Bit       long      %00000010_00000000_00000000_00000000   'Data in bit         25
Dout_Bit      long      %00000100_00000000_00000000_00000000   'Data out bit        26
Clk_Bit       long      %00001000_00000000_00000000_00000000   'Clock bit           27
inputmask     long      %11111011_11111111_11111111_11111111   'Mask for reading the Dout bit only

'Variables. This section is similar to the VAR block in SPIN 
temp          res       1       'temporary storage variable                              
temp1         res       1       'temporary storage variable
count         res       1       'temporary storage variable
Dat_Red       res       1       'temporary storage variable

                                       
Routine to read a bit
put 12 in counter
Read label
recall ina, |<27 Is 1 add 1 to value
if 0 add z to value   call add 0
If 1 add 1 to value   call add 1
shift value left one
Sub 1 from counter
if not zero Go to read
put chip to sleep
put value in Par
go to beginning of routine to read again

Improvements to the pot reader program.

We can make the program considerably shorter by eliminating some instructions that we 
added to make it easier to read the program.  In the routine that set the bits, the 4 lines can 
be reduced to 2 as follows

Chip_Sel_Lo   mov       temp,   outa       'Get the OUTA register
              andn      temp,   chs_Bit    'makes chip select low
              mov       outa,   temp       'put it back in OUTA register
Chip_Sel_Lo_ret         ret                 'return from this subroutine

this reduces to

Chip_Sel_Lo   andn      outa,   chs_Bit    'makes chip select low
Chip_Sel_Lo_ret         ret                'return from this subroutine

We can do this because we can access the OUTA register directly without having to go 
through a temp register.  OUTA can be addresses just like any other register.

Page 25



Page 26 of 50

In the early part of the program we are reading channel1 which is specified with 000 in D0, D1 
and D2.  We specify this by making D0, D1, D2 (on to the null bit) low and toggling them all in 
wit the Clock bit.  Because the Dout line is  low in all these transfers we can eliminate a 
number of lines by toggling just the Clock bit shown below

Original code
              call      #Din_lo       'D2 Low to load input line selection sequence 000 for line 0
              call      #Tog_Clk      'toggle clock line hi then low to read in the data
            
              call      #Din_Lo       'D1 Low to load input line selection sequence 000 for line 0
              call      #Tog_Clk                'toggle clock line hi then low to read in the data
  
              call      #Din_Lo       'D0 Low to load input line selection sequence 000 for line 0
              call      #Tog_Clk      'toggle clock line hi then low to read in the data
                 
              call      #Din_lo         'blank bit needs a clock cycle, next
              call      #Tog_Clk        'toggle clock line hi then low to read in the data
  
                                        'next toggle is for the null bit, nothing read
              call      #Tog_Clk        'toggle clock line hi then low to read in the data

Reduced code
             call       #Din_lo       'D2 Low to load input line selection sequence 000 for line 0
              call      #Tog_Clk      'toggle clock line hi then low to read in the data
              call      #Tog_Clk      'toggle clock line hi then low to read in the data
              call      #Tog_Clk      'toggle clock line hi then low to read in the data
              call      #Tog_Clk      'toggle clock line hi then low to read in the data
              call      #Tog_Clk      'toggle clock line hi then low to read in the data

Keep in mind that when we read channels 2 to 8 we will have to put their address in D0, D1 
and D2 and will not be able to eliminate all the lines like we did above.

Creating pulses.

As is our goal we want to do this using as little SPIN as possible.  We will still read and 
display the P_Val variable in SPIN so we can see what is going on but the generation of the 
pulses will be in a third Cog in PASM.  We will need an oscilloscope to look at the signal that 
we are creating.

We need to learn about  the generation of pulses at different frequencies.  Pulses in all sorts 
of sequences are needed to send information back and forth between various semiconductor 
devices.  To start with let us keep in simple.  A fixed pulse with a short pulse length will be 
repeated at different frequencies controlled by a potentiometer.

Lets write a short program to output our series of pulses.   The pseudo code for doing this is 
as follows

Start the program in SPIN in Cog0
repeat

Page 26



Page 27 of 50

  display the potentiometer on the LEDs

Cog two
  Repeat
    read the potentiometer @generate

Cog 3
  repeat
    toggle the pin
    delay based on the pot reading

We will need a delay routine that uses the potentiometer reading.  We can use the following 
lines placed in the appropriate places in our code to provide this delay.

       waitcnt  time,   delay          'the wait instruction 

and in the constants section

delay    long P_Val               'delay cycles defined

The signal will be designed to appear on Pin 12, the first pin after the 0..11 pin LED display. 

=====================================================================
I know this is not quite right but...
Why does this not open up a third cog and toggle line 12
It compiles but I get a dead line 12
In other ;words how do you start two PASM cogs

[code]
PUB null | P_Val, Delay_Val
  cognew(@generate, @P_Val)            ' start second cog at "generate" 
  cognew(@Toggle, @Delay_Val)          'start third cog  at toggle
  repeat
   'do something unrelated to other cogs
DAT
Org  0
generate  mov     outa,               set_dira
                  jmp     #generate

org  30
toggle    mov     dira,               set_dira
          mov     outa,               pin_hi
          mov     outa,               pin_lo
          jmp     #toggle

                  'Constants. This section is similar to the CON block in SPIN           
Set_dira      long      %00000001_00000000_00010000_00000000   'Set dira register
Pin_Hi        long      %00000000_00000000_00010000_00000000                          
Pin_Lo        long      %00000000_00000000_00010000_00000000
                  jmp     #toggle

Page 27



Page 28 of 50

[/code]

=============================================================

CON
  _clkmode = xtal1 + pll16x
  _xinfreq = 5_000_000

PUB null | P_Val
  cognew(@generate, @P_Val)            ' start new cog at "generate" and read variable at P_Val
  cognew(@Toggle, 0)                   ' start new cog at Toggle         
'================================================================================================
'===========================COG 1 works fine==========================================
'================================================================================================
  dira[0 ..11]~~                       ' all lines are outputs except 26
  repeat                               ' endless loop to display data
    outa[0..11] := P_Val               ' displays 1.5 bytes of data                         
   
DAT 

'================================================================================================
'============COG 2 works fine====================================================================
'================================================================================================
              org 0               'sets the starting point in Cog
generate      mov       dira,   set_dira        'sets direction of the prop pins
              call      #chip_sel_lo            'selects chip by pulling line low
              call      #Clk_lo                 'START. Clock needs to be low to load data
              call      #Din_hi                 'must start with Din high to set up 3208
              call      #Tog_clk                'clk hi to read data
           
              call      #Din_Hi                 'SINGLE DIFF  Low to load
              call      #Tog_Clk                'toggle clock line hi then low to read in the data
                 
              call      #Din_Lo                 'D2 Low to load input line sequence 000 for line 0
              call      #Tog_Clk                'toggle clock line hi then low to read in the data
            
              call      #Din_Lo                 'D1 Low to load input line sequence 000 for line 0
              call      #Tog_Clk                'toggle clock line hi then low to read in the data
           
              call      #Din_Lo                 'D0 Low to load input line sequence 000 for line 0
              call      #Tog_Clk                'toggle clock line hi then low to read in the data
                 
              call      #Din_Lo                 'blank bit needs a clock cycle, next
              call      #Tog_Clk                'toggle clock line hi then low to read in the data
                 
                                                'next toggle is for the null bit, nothing read
              call      #Tog_Clk                'toggle clock line hi then low to read in the data
          
              mov       dat_red,  #0            'Clear register we will read data into             
              mov       count,    #12           'Counter for number of bits we will read
read_bit      mov       temp,     ina           'read in what is in all the input lines
              andn      temp,     inputmask wz  'mask off everything except Dout line. Set Z flag
        if_nz add       Dat_red,  #1            'if value is still positive add 1 to data register 
              ror       Dat_red,  #1            'roll reg rt 1 bit to get ready for next bit
              call      #Tog_Clk                'toggle clock to get next bit ready in Dout
              sub       count,    #1 wz         'decrement the "bits read" counter. Set Z flag
        if_nz jmp       #read_bit               'go up and do it again if counter not 0
              rol       dat_red,  #12           'roll back 12 bits = 12 LSBits of register  
              wrlong    dat_red, par            'put it in PAR to share it as P.Val

Page 28



Page 29 of 50

              call      #Chip_Sel_Hi            'Put chip to sleep , for low power usage
              mov       temp2,  dat_red         'get data that as read    
              jmp       #generate               'go back to do it all again 
 
'Subroutines
Clk_Hi        mov       temp,   outa            'Get the OUTA register
              or        temp,   clk_bit         'OR it with the Clock Bit to male high
              mov       outa,   temp            'put it back in OUTA register
Clk_Hi_ret              ret

Clk_Lo        mov       temp,   outa            'Get the OUTA register    
              andn      temp,   clk_bit         'ANDN it with the Clock Bi to make lowt
              mov       outa,   temp            'put it back in OUTA register
Clk_Lo_ret              ret                     'return from this subroutine

Tog_Clk       call      #Clk_hi                 'make clock bit high
              call      #clk_lo                 'make clock bit low
Tog_Clk_ret             ret                     'return from this subroutine
                                            
Din_Hi        mov       temp,   outa            'Get the OUTA register
              or        temp,   din_Bit         'Makes the Din high
              mov       outa,   temp            'put it back in OUTA register
Din_Hi_ret              ret                     'return from this subroutine
                                              
Din_Lo        mov       temp,   outa            'Get the OUTA register
              andn      temp,   din_Bit         'makes Din low
              mov       outa,   temp            'put it back in OUTA register
Din_Lo_ret              ret                     'return from this subroutine
                                                
Chip_Sel_Hi   mov       temp,   outa            'Get the OUTA register
              or        temp,   chs_Bit         'Makes Chip select high
              mov       outa,   temp            'put it back in OUTA register
Chip_Sel_Hi_ret         ret                     'return from this subroutine
                                              
Chip_Sel_Lo   mov       temp,   outa            'Get the OUTA register
              andn      temp,   chs_Bit         'makes chip select low
              mov       outa,   temp            'put it back in OUTA register
Chip_Sel_Lo_ret         ret                     'return from this subroutine
                                              
Read_Dout     mov       temp,   ina             'Get the INA register
Read_Dout_ret           ret                     'return from this subroutine
                                           
Read_Next_Bit mov       temp,   ina             'Get the INA register
              or        temp,   inputmask       'mask all but Din bit
Read_Next_Bit_ret       ret                     'return from this subroutine
              
'Constants. This section is similar to the CON block in SPIN           
Set_dira      long      %00001011_00000000_00000000_00000000   'Set dira register 
Chs_Bit       long      %00000001_00000000_00000000_00000000   'Chip select bit     24
Din_Bit       long      %00000010_00000000_00000000_00000000   'Data in bit         25
Dout_Bit      long      %00000100_00000000_00000000_00000000   'Data out bit        26
Clk_Bit       long      %00001000_00000000_00000000_00000000   'Clock bit           27
inputmask     long      %11111011_11111111_11111111_11111111   'Mask for read the Dout bit only
 
'Variables. This section is similar to the VAR block in SPIN 
temp          res       1       'temporary storage variable 
temp2         res       1       'temporary storage variable 
count         res       1       'temporary storage variable
Dat_Red       res       1       'temporary storage variable

Page 29



Page 30 of 50

'=================================================================================================
'==============================COG 3 can't move temp2 into variable effectively============
'===============================================================================================
              
              org       0              'begin a 0
toggle        mov       dira, pin_12   'set pin 12 as output

toggle1       mov       temp1,   outa  'read in outa                       
              or        temp1, pin_12  'make pin 12 lo
              mov       outa, temp1    'put it back in outa 
              call      #clkdelay      'call the delay subroutine
              
              mov       temp1, outa    'read in outa
              andn      temp1, pin_12  'make pin 12 high
              mov       outa, temp1    'put it back in outa
              call      #clkdelay      'call the delay subroutine
              
              jmp      #toggle1        'repeat
             
clkdelay      mov      time, temp2     'the delay subroutine,load TEMP2 into time ACTS LINE TEMP2=0
              add      time, #$ff      'delay added to skip past underflow of CNT
dloop         sub      time, #1 wz     'sub 1 from time and set flag if 0
        if_nz jmp      #dloop          'if flag not 0 go back to take4
clkdelay_ret           ret             'return for delay subroutine

'Constants. This section is similar to the CON block in SPIN
Pin_12         long      %00000000_00000000_00010000_00000000
del_time       long      400
'Variables. This section is similar to the VAR block in SPIN
deltime2       res      1      'temporary storage variable
temp1          res      1      'temporary storage variable  
time           res      1      'temporary storage variable

PAR Instruction

The purpose of the PAR instruction is to allow SPIN Cogs to communicate with PASM cogs by 
addressing the same variables. (Yes more than one variable can be shared.)

Here is how the Par instruction works

Par is one of the 16 SPRs (special purpose registers) in each active Cog in the propeller.

When you start a cog with Cognew or Coginit a designated value is passed to the PAR 
register.  This designated value is the address of the variable Shared in the cognew statement 
as shown below
 
Cognew (@Psmcode, @Shared)

PAR is created by the initial SPIN code when the PASM Cog is started and is used by the 
PASM code to address the shared variable.

Page 30



Page 31 of 50

Let us look as a typical situation where we start and run a SPIN Cog.  ;No PASM cog or cog 
to start with.

You can actually run this code on your computer to follow along

VAR
  long  Shared

PUB Main 
dira[0]~~
shared:=10
  repeat
    !outa[0]
    waitcnt(clkfreq/shared,cnt)

Here shared has a value of 10 and is used to control the rate at which pin 0 blinks.  The rate 
is 10 times a second.  So far there is nothing fancy about this. There is no PAR interaction, 
there is not second Cog.

Now let us start Cog_1 a PASM Cog that blinks 4 LEDs at a different rate but is completely 
independent from Cog_0 the starting Cog.  We will connect their operation together later

Here is the program with the code added

VAR
  long  Shared

PUB Main 
dira[0]~~
shared:=15
cognew(@newCog, @Shared)
  repeat
    !outa[0]
    waitcnt(clkfreq/shared+cnt)

DAT
Org 0
newCog       
             mov    dira, pin_0_7          'sets up first 8 line I/O
             mov 400, PAR
:loop        or     outa,  pins            'turn on pin
             call   #pause
             andn   outa, pins             'turn off pin
             call   #pause 
             jmp    #:loop                 'loop again

pause         mov      time,  DELAY        'the delay subroutine
              add      time,  #$f          'delay added to skip past underflow of CNT
delay_loop    sub      time,  #1 wz        'sub 1 from time and set flag if 0
        if_nz jmp      #delay_loop         'if flag not 0 go back
pause_ret     ret

Page 31



Page 32 of 50

pin_0_7    long %00000000_00000000_00000000_11110001 'sets OUTAA
pins       long %00000000_00000000_00000000_11110000 'on-off mask using OR and ANDN
delay      long  800000>>1
mem        res   1
time       res   1

PAR is the address or a variable/register/parameter.  It is the address of the parameter that is 
passes to the PASM routine when it is started. On out case, PAR is the address to the Shared 
variable.  If we want to read the shared variable we read it with 

Mov Read_value, PAR

If we stick with a 4 (0 to 12) bit variable, we can display the variable on the LEDs that we have 
connected to the pins of the propeller.  We will write to the variable in the SPIN routine in the 
bits 0-3 and read it in  PARM routine and display them at 4-7

===================================================================
Using a debugger.

The general consensus is that the debugger of choice is the PASD debugger by the German 
group Insonics.  The software was written by Andy Schenk and Eric Moyer.  It is down 
loadable from the web site at

www.insonix.ch/propeller/prop_pasd.html 

There is no charge.  The manual I available both in English and in German.

Download the debugger and start  reading the manual while we put together our first PAM 
program.

In the propeller system, all programs reside within a SPIN shell.  Even a 100% PASM needs 
to be called from a SPIN instruction that starts the Cog the PASM instructions the executed in 
and tells the system where to load the program within the target Cog.  If any constants will be 
used or if other OBJECTs will be called by the program, they too are called out in the SPIN 
part of the program. The program itself is defined as a set of DAT (data) statements that are 
the PASM instructions that will make up the program.

A typical program might look like this

{{
*****************************************
* The first thing we need is a good     *
* description of what the program does, *
* who wrote it and when.                *
* Terms of use if any. Copyrights etc   *
*****************************************
}}
CON

Page 32

http://www.insonix.ch/propeller/prop_pasd.html


Page 33 of 50

..Set the clock speed parameters here
  List the constants here

OBJ 
  lists the objects to be use here

PUB ProgName (sample)
  cognew(@program_Loc, variable)   'launch assembly program in a COG
  display of variables is done here in SPIN

DAT
org

The body of the PASM program goes here
It is almost always a loop that need to
do something very fast and provide a
result in a variable defined earlier as 
a part of the cognew statement.

Next let us fill in the above program so that we have a working program that we can follow 
with the debugger.  We want to make the program as simple as possible or now so that there 
are no logical manipulations that are hard to follow

The program will be designed to turn count from 1 to 10 over and over again and display the 
number every ¼ second.  Here is a listing of the program.  You can copy this program and run 
it to watch its operation.  It is described after the listing.

{{
*****************************************
* Program to turn and LED on and of.    *
* Test program for introducing the use  *
* of a debugger.                        *
* Harprit Sandhu    02 Aug '11          *
* MIT license terms apply.              *
*****************************************
}}
CON
  _clkmode = xtal1 + pll2x
  _xinfreq = 5_000_000

VAR
  long count, old_count

OBJ 
  fds : "FullDuplexSerial"

PUB count_1to100
fds.start(31,30,0,115200)   'start console at 115200 for debug output 
cognew(@counter,@count)     'start PASM routine in its own cog
waitcnt(clkfreq/20+cnt)     'to let everything start up and stabilize
old_count:=0                'set the initial value of the old counter to 0
  repeat                    'print loop
    if(old_count)==count    'check to see if we have a new value
                            'if not we do not print value to console
    else                    'if so we have to print to the console
      fds.dec(count)        'print value
      fds.tx(" ")           'print a separating space

Page 33



Page 34 of 50

      if count==maximum_value   'check to see if we have reached 100
        fds.tx($d)          'new line
        fds.tx($d)          'new line
     old_count:=count       'remember the value as the old value
 
DAT             org      0                     'start at location 0
counter         mov      current_count,  #0    'put a 0 into the counter
add_one         add      current_count,  #1    'add 1 to the counter
                call     #delay                'delay to allow print routine to catch up
                                               'there is a minimum value that is needed for
                                               'the print routine to get done before proceeding
                wrlong   current_count,  par   'write the value into the PASM/SPIN shared long
                sub      current_count,  maximum_value   wz   'subtract the maximum value
                                                 'to be printed and set Z flag
         if_z   jmp      #counter               'if the answer is 0 we are done and start over
                add      current_count,  maximum_value   'add the max value back in 
                jmp      #add_one               'go back and keep subtracting 1s

delay           mov      delay_counter,   delay_value     'load the delay counter
redo            sub      delay_counter,   #1        wz    'subtract 1 and set zero test value
         if_z   jmp      #delay_ret            'if it is 0 we are done so return from sub
                jmp      #redo                 'if not keep subtracting
delay_ret       ret

delay_value    long       6000                 'delay value has to be long enough for print 
maximum_value  long       100                  'max value can be anything above 1

current_count   res        1                   'define variable
delay_counter   res        1                   'define variable 

The program is divided into two components, the SPIN method and the PASM method.  The 
counting takes place in the PASM method and the displayed is done in the SPIN method. 
Since the PASM counting routine is much faster than the ability of the SPIN code to output the 
values to the console, a delay (of 6000 loops) has to be added in the PASM routine to slow 
things down.  When things are slowed down, the possibility exists that the print routine will 
print a value more than once.  In order to avoid this the print routine makes sure that the old 
value and the new value are not the same before printing the value.

It is worth the time to vary the delay_value and observe what happens when it gets too small.

Next we will look at the program with the PASD debugger.
=================================posted=======================
Debugging with PASD

The program is designed so that it is easy to add errors into the code. The two main error 
sources are the timing in the PASM code and the inability of the SPIN code to keep up with 
the much faster PASM code.  The two have been reconciled as listed the last time but let us 
modify some parameters to make the program error prone to see what happens and then see 
if we can find the errors with the debugger.  The delay routine is also easily modified so that 
errors can be introduced into it as well.

We may also find that the debugger is not very good at finding timing problems!  Things 

Page 34



Page 35 of 50

change when we are not running in real time.

Let us start over.

Just like my spin book.  My PASM book will be for bonafide beginners.
 The book will be divided into three sections similar to the four sections of my spin book.

The general outline of the book.  The basics, we need to understand PASM, and what we had to work with

Basic input.
Basic output.
Building simple projects. 
Relelvant appendices 

The end product will be a basic understanding of PASM and the ability to write simple programs that will be adequate to 
control small projects.

Any cog that runs PASM code has to be started from within a cog that are is running SPIN.  Here are the few lines of codes 
needed to start a cog running assembly language. We will be using two commands in the program

The first command is the mov command.  Mov moves data between registers. It moves date from the second register 
mentioned to the first.

[code]
     mov   into,  from
[/code]
will move whatever is in the "from" register the "into" register.  All registers are game.

The jmp instruction directs program flow.  Its lets you jump to any marked location within the program.

[code]
VAR
   long shared_var
   
PUB Object_name
cognew(@Prog_start, @shared_Var)
  repeat

DAT  org  0
Prog_start
do_again              mov    dira,   init_dira
                           jmp    #do_again

init_dira    long    %00000000_00000000_00000000_00001111
[/code]

The program sets the DIRA register so that the first four pins of the propeller are set as outputs again and again.

Here is what we needed to do to accomplish that.

First we defined a variable in a VAR block

We have to have at least one public method in the object so we started with naming the method.  As soon as we did that we 

Page 35



Page 36 of 50

can start the PASM cog with the cognew command and the two @ variables.  These two variables tell the program where in 
the cog to start writing the program and provide an address that will point to a variable that can be shared between SPIN and 
PASM programs.

The program itself is described in a DAT data block.  The block starts by telling the cog to start the program at location 0 
with the Org 0 statement.

The next two lines are the program.  The Prog_start marker is the target of the cognew command mentioned above (the 
shared variable has not yet been addressed).  The first line sets the DIRA register to the value init_dira which is delfined as a 
long at the end of the program.

The program then jumps back to the do_again line.  

What we have created is a basic program in its absolute minimum.  We still have to define all the other blocks that might be 
needed to support the program that we are going to write and we will add thesse as we proceed with the learning process.

Harprit
=====================++++++====================+++++===========
Turning pins on and off and creating delays.

Next we need to learn how to turn propeller pins on and off and how to create a timed delay.
Be warned that there are more elegant ways to do this but we are beginners and so we will 
stick with easy to understand code as is necessary at this time

We can turn pins on and off by OR-ing and ANDN-ing them with value we are interested in 
with the DIRA register once the DIRA register has been defined.  The valued we are going to 
use for the binary manipulations have to been pre-defined as constants at the tail end of the 
program.  Any number of pins in any patern can be turned ON off at one time.

In our previous program we defined pin 0 and pin 1 as outputs.  We can turn them on with the 
OR instruction;.  Let us consider pin 1 only for now.  We identify this pin with the constant

pin_1     long   %00000000_00000000_000000_00000010

we can also identify is in decimal and hex notation as follows

pin_1     long     2
pin_1     long     $00_00_00_02  (The underscores are ignored)

but for now binary notation will be easier for us and I will use it throughout the book for 
consistency.  A binary notation makes it possible to see the function of each pin at a glance 
without having to do any mental manipulations.

Mov     dira,      init_dira       'the original line of code
or        outa,      pin_1           'the  instruction to turn pin 1 ON

And add the following line at the end of the program to identify pin 1 

Page 36



Page 37 of 50

pin_1     long   %00000000_00000000_000000_00000010

and we can turn the pin off with the ANDN instruction as follows

Mov     dira,      init_dira       'the original line of code
anda      outa,      pin_1           'the  instruction to turn pin 1 OFF

do_again        Mov     dira,      init_dira       'the original line of code
                       or        outa,      pin_1           'the new instruction to turn pin 1 ON
                      andn    outa,    pin_1           'the new instruction to turn pin 1 OFF
                       jmp  #do_again

pin_1     long   %00000000_00000000_000000_00000010

The above instructions will turn line 1 on and off about as fast as you can with a propeller. 
You will notice that the delay between ON and OFF is shorter than the delay between OFF 
and ON because the JMP instruction takes time as we go through the loop.

In order to be able to see an LED connected to line 1 go on and off we need a much longer 
delay.  There are a number of ways of creating a delay but as beginners we can create a 
conventional delay loop of any length just as we would  in a language like BASIC .  The code 
is as follows

delay             mov      delay_counter,      delay_count      'load the delay counter
redo              sub      delay_counter,      #1  wz           'subtract 1 and set zero testvalue
          if_z    jmp      #delay_ret                           'if it is 0 we are done so return from sub
                  jmp      #redo                                'if not keep subtracting
delay_ret         ret

This is set up as a subroutine here but you can also use the same technique for in line 
coding.  The subroutine loads the delay value and then keeps subtracting 1 each time through 
the loop till the value reaches 0.  It then returns control to the point from where it was called.

Whenever you want to call this delay you put in the line

call #delay

The length of the delay is determined by the constant delay_count which is defined along with 
other constants at the end of the program.  We define a ¼ second delay with a count of 
2_000_000  times through the loop.  We do this with 

count_delay       long.......2_000_000

At 80 MHz, 2 million counts should take 1/40 of a second but we have other instructions that 

Page 37



Page 38 of 50

have to be executed as a loop and that adds time to the delay.  Making these additions to our 
program yields the following code.

[code]
CON
  _clkmode = xtal1 + pll16x
  _xinfreq = 5_000_000

VAR
   long shared_var
   
PUB Object_name
cognew(@Prog_start, @shared_Var)
  repeat

DAT  org  0
Prog_start        mov       dira,     init_dira
                  mov       outa,     init_dira              
do_again          or        outa,     pin_1                     'the new 
instruction to turn pin 1 ON
                  call      #delay
                  andn      outa,     pin_1                     'the new 
instruction to turn pin 1 OFF
                  call      #delay
                  jmp       #do_again
              
delay             mov      delay_counter,      delay_count      'load the delay 
counter
redo              sub      delay_counter,      #1  wz           'subtract 1 and 
set zero testvalue
          if_z    jmp      #delay_ret                           'if it is 0 we are 
done so return from sub
                  jmp      #redo                                'if not keep 
subtracting
delay_ret         ret

pin_1             long      %00000000_00000000_00000000_00000010
init_dira         long      %00000000_00000000_00000000_00000010
delay_count       long      2_000_000

delay_counter     res       1
[/code]

Run this program and make changes to see what happens.

WE now know how to write a rudimentary program in PASM.  We now know how to turn 
any propeller line ON and OFF and we know how to add delays into our program when 
we need to.

Harprit

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Using the Full Duplex Serial Object

Before we start, we need a good way to be able to look into the programs that we are running.  One of the best ways of 
doing this is to send the information to the PST (parallax serial terminal).  This terminal appears in a separate window on 
your monitor when you run the 

Page 38



Page 39 of 50

Parallax Serial Terminal.exe

program.  We can communicate with this terminal with the FDS (full duplex serial) object that is provided by parallax as a 
part of the object exchange.  This software also comes as one of the programs in the parallax tool editing suite.  It is also 
possible to use the parallax serial terminal program,

Parallax Serial Terminal.spin

 but the PST uses some non-standard coding, and I avoid it for that reason.  The FDS software on the other hand, uses 
standard serial communications commands and if you are already familiar with them using it is painless.  We will use FDS 
in all our programs that require us to look at what is going on in the program. In fact we will design our programs so that 
this is one of our primary tools.

In order to use FDS.  You have to have the FDS file in the same folder as the other work that you are doing.  If you have not 
already done so, make a copy of the program and add it to your work folder. 

In your program, list the PDS in the OBJ block with the following llines of code just as you would have done in a SPIN 
program.  As a matter of fact we are going to be running this software in the SPIN cog in our programs.

OBJ 
  fds : "FullDuplexSerial" 

The FDS software is activated within your program by issuing the following command

fds.start(31,30,0,115200)     'start console at 115200 for debug output

Once this has been done, all standard commands that a serial terminal accepts are applicable to the FDS.  Here is a list of 
some sample commands that you will need in almost every program. The entire ASCII coding standard is supported.

fds.bin(P_val,12)        'print value as binary to 12 places                                 
fds.tx($d)                   'new line                                  
fds.dec(P_val)            'print a decimal value                              
fds.tx(" ")                   'print a space             
fds.tx($3)                   'clear screen and go to 0,0 position
fds.tx($1)                   'go to 0,0 position on screen, do not erase
                                'the tx prefix supports the entire ASCII set of commands
                                'and alphanumerics.  

It is a good idea to provide one or a few spaces after printing a variable to erase any old information that may be left after 
the last printout of the same data was made. (This happens when the new output is shorter than the old.)

Most printing routines are used in a loop that monitors whatever we are interested in.  A 1/60 second delay at the end of the 
loop is adequate for providing a steady flicker free display.  

Harprit
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

{{

}}
CON
  _clkmode = xtal1 + pll16x
  _xinfreq = 5_000_000

Page 39



Page 40 of 50

VAR
  long p_val2
  long stack2[25]         'space for Cog_PST  
OBJ 
  fds : "FullDuplexSerial"
  
PUB null | P_VAL  
fds.start(31,30,0,115200)   'start console at 115200 for debug output
  cognew(@generate, @P_Val)            ' start new cog at "generate" and read 
variable at P_Val
  cognew(osco, @stack2)
  dira[0 ..12]~~                       ' all 12 lines are outputs. 12 lines needed 
for 1.5 bytes
  repeat
    P_VAL2:=P_VAL                               ' endless loop to display data
    outa[0..11] := P_Val               ' displays 1.5 bytes of data
    fds.bin(P_val,12)        'print value                                 
    fds.tx($d)                                                      
    fds.dec(P_val)           'print value                              
    fds.tx(" ")                                
    fds.tx($d)   
    fds.tx(1)           'print a separating spac 
    waitcnt(clkfreq/60+cnt)

PRI osco
dira [12]~~
  repeat
     !outa[12]
     waitcnt(clkfreq/(P_VAL2+5)+cnt)
      
DAT org 0 'sets the starting point in Cog
generate mov dira, set_dira 'sets direction of the prop pins

call #chip_sel_lo 'selects chip by pulling line low
call #Clk_lo 'START. Clock needs to be low to load data
call #Din_hi 'must start with Din high to set up 3208
call #Tog_clk 'clk hi to read data           
call #Din_Hi 'SINGLE DIFF  Low to load
call #Tog_Clk       'toggle clock line hi then low to read data 
call #Din_Lo 'D2 Low to load input sequence 000 for line 0

              call      #Tog_Clk         'toggle clock line hi then low to read in 
the data            
              call      #Din_Lo          'D1 Low to load input line selection 
sequence 000 for line 0
              call      #Tog_Clk        'toggle clock line hi then low to read in 
the data           
              call      #Din_Lo         'D0 Low to load input line selection 
sequence 000 for line 0
              call      #Tog_Clk                'toggle clock line hi then low to 
read in the data                 
              call      #Din_Lo                 'blank bit needs a clock cycle, 
next
              call      #Tog_Clk                'toggle clock line hi then low to 
read in the data                
                                                'next toggle is for the null bit, 
nothing read
              call      #Tog_Clk                'toggle clock line hi then low to 
read in the data          
              mov       dat_red,  #0            'Clear register we will read data 
into             
              mov       count,    #12          'Counter for number of bits we will 
read

Page 40



Page 41 of 50

read_bit      mov       temp,    ina           'read in what is in all the input 
lines
              andn      temp,    inputmask wz  'mask off everything except Dout 
line. Set Z flag    
              shl       Dat_red,  #1            'roll register right 1 bit to get 
ready for next bit
        if_nz add       Dat_red,  #1            'if value is still positive add 1 
to data register    
              call      #Tog_Clk                'toggle clock to get next bit 
ready in Dout
              sub       count,    #1 wz         'decrement the "bits read" 
counter. Set Z flag
        if_nz jmp       #read_bit               'go up and do it again if counter 
not 0
              wrlong    dat_red,   par          'put it in PAR to share it as 
P.Val
              call      #Chip_Sel_Hi            'Put chip to sleep by delselecting 
it, for low power usage
              jmp       #generate               'go back to do it all again

'Subroutines
Clk_Hi        or        outa,   clk_bit         'OR it with the Clock Bit to make 
high
Clk_Hi_ret              ret

Clk_Lo        andn      outa ,   clk_bit         'ANDN it with the Clock Bi to 
make low
Clk_Lo_ret              ret                     'return from this subroutine

Tog_Clk       call      #Clk_hi                 'make clock bit high
              call      #clk_lo                 'make clock bit low
Tog_Clk_ret             ret                     'return from this subroutine
                                            
Din_Hi        or        outa ,   din_Bit         'Makes the Din high
Din_Hi_ret              ret                     'return from this subroutine
                                              
Din_Lo        andn      outa ,   din_Bit         'makes Din low
Din_Lo_ret              ret                     'return from this subroutine
                                                
Chip_Sel_Hi   or        outa ,   chs_Bit         'Makes Chip select high
Chip_Sel_Hi_ret         ret                     'return from this subroutine
                                              
Chip_Sel_Lo   andn      outa,   chs_Bit         'makes chip select low
Chip_Sel_Lo_ret         ret                     'return from this subroutine
                                              
Read_Dout     mov       temp,   ina             'Get the INA register
Read_Dout_ret           ret                     'return from this subroutine
                                           
Read_Next_Bit mov       temp,  ina             'Get the INA register
              or        temp,  inputmask       'mask all but Din bit
Read_Next_Bit_ret       ret                     'return from this subroutine

'Constants. This section is similar to the CON block in SPIN           
Set_dira      long      %00001011_00000000_00011111_11111111   'Set dira register 
Chs_Bit       long      %00000001_00000000_00000000_00000000   'Chip select bit 
24
Din_Bit       long      %00000010_00000000_00000000_00000000   'Data in bit 
25
Dout_Bit      long      %00000100_00000000_00000000_00000000   'Data out bit 
26
Clk_Bit       long      %00001000_00000000_00000000_00000000   'Clock bit 
27

Page 41



Page 42 of 50

inputmask     long      %11111011_11111111_11111111_11111111   'Mask for reading 
the Dout bit only 
Pin_12        long      %00000000_00000000_00010000_00000000   'Set dira register 

'Variables. This section is similar to the VAR block in SPIN 
temp          res       1       'temporary storage variable, misc
count         res       1       'temporary storage variable, bit counter
Dat_Red       res       1       'temporary storage variable, data being read

++++++++++++++++++++++++++++++++++++++++=++++++++++++++++++++++++++++++++++++

For now, let us set up the following standard for the propeller pins usage.

Pins 0 to 11 would be connected to 12 LEDs on the PDB
pins 30 and 31 are reserved for serial communications.  
Pins, 28 and 29 will be left untouched because we don't want to interfere with 
system operations. 
Pins, 24 to 27 will be connected to the MCP 3208 for reading in the potentiometers 
that will be used in experiments to come. We will read 4 5K pots eventually
Pin 23 will be the output for an oscilloscope.
Pin 22 will be the output for a small speaker.

This might change from time to time, but for now, you can set this up this way and 
it should serve for the next few experiments. I will try to stick with this 
arrangement throughout, but we may have to make changes.

The oscilloscope and speaker are on separate cogs so that the outputs can be 
tailored to meet the requirements of each device.

All the experiments that we do will be able to be done on a simple breadboard.  If 
that is your preference.  However, I will be using the PDB, the professional 
development Board, provided by parallax, because this board has a lot of ancillary 
devices on it that make it very easy to use.  For example, it has 16 LEDs that 
already have the resistors, they need in the series connected to them.  So that 
making these LEDs active is a simple matter of running jumpers from the propeller 
pins to the LED pins.  There are also resisters on the push buttons and on the 
switches, which makes life easier.  When we need to pull pins up for any number of 
purposes.

Setting  up the MCP 3208.

The 3208 is a chip that allows you to read up to eight channels of analog input in 
a hurry.  It is capable of providing about 100,000 conversions per second.  If the 
software to read this device is written in spin. it slows things down 
considerably.  So, we have an interest in writing software in PASM to speed things 
up. It's not that you can't read one potentiometer quickly in spin its that if you 
want to read all eight channels, things can get just a bit sluggish. 

In this next exercise we will read channel 0, on the 3208 and display the 12 bits 
that we read on 12 of the LEDs that be have connected up on the professional 
development Board.  It would be a good idea at this time, if you were to download 
that data sheet for the 3208 and have it available for easy reference. 

The connections to the 16 pin 3208 are as follows.

Line 1 Channel 0 Wiper of the 1st potentiometer
Line 2 Channel 0 Wiper of the 2nd potentiometer
Line 3 Channel 0 Wiper of the 3rd potentiometer
Line 4 Channel 0 Wiper of the 4th potentiometer
Line 5 Channel 0 Wiper of the 5th potentiometer

Page 42



Page 43 of 50

Line 6 Channel 0 Wiper of the 6th potentiometer
Line 7 Channel 0 Wiper of the 7th potentiometer
Line 8 Channel 0 Wiper of the 8th potentiometer

Line 9 Ground, main ground
Line 10 Chip select Pin 24 of the propeller, made an output
Line 11 Data in Pin 25 of the propeller, made an output
Line 12 Data out Pin 26 of the propeller, made an input
Line 13 Clock Pin 27 of the propeller, made an output
Line 14 Ground Reference Ground
Line 15 V Ref Reference Volts (5 Volts)
Line 16 5 Volts 5 Volts power

The potentiometers we are interested in reading are placed between 5 V and ground 
and the wipers are connected to pin 1 through 8.  Five volts is not mandatory for 
the potentiometer power but all the pots have to use the same reference voltage in 
that there is only one input pin for a reference voltage connection.  For now we 
will connect one potentiometer to pin 1 of the 3208.

The procedure for reading one of the input lines is described in detail in the 
data sheet .  Of special interest is the upper diagram on page 16.  Figure 5-1. 
This figure gives you the timing information that you have to follow in order to 
be able to read the potentiometers.  Essentially, it is a matter of toggling data 
in and out of the device with the clock bit as various bits are manipulated and 
read.  Read about the procedure in the data sheet before you study the following 
program so that you will have a better idea of what we are doing here.

Notes on using PAR command.

When you start a PASM cog with a command like

  cognew(@generate, @P_Val

It specifies that whatever long you write to PAL with a command like

  wrlong    dat_red,   par

in the PASM cog will be available to be read in the SPIN cog that started the PASM 
cog with the P_val variable.  It is not available to all other SPIN cogs that 
might have been started immediately before or after the PASM cog.  If you want it 
to be available to other SPIN cogs, create a global variable and then copy P_val 
to it.  

If you want to share more than one variable, find the address of P_Val and then 
store the other variables at addresses above the P_Val address.  Each long takes 4 
bytes so the address are 4 bytes apart.  All cogs read the other variables from 
their addresses.  

You get the address of a variable with

mov  address_of_var,  @variable_name

and 

address_of_var   res   1

at the end of the program to set up the variable storage space

H
=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v=v

Page 43



Page 44 of 50

Chapter 6

In order to get effective use from our propellers chip we need to be able to 

interface them to any number of devices, that react with the real world, and 

provide us with information that we can use with microprocessor.  Though there are 

any number of devices that you might start with, we going to start with the 3208 

because it allows us to read potentiometers into the propellers chip.  We will use 

the information that they provide to drive any number of devices from speakers to 

motors in our later experiments.

Take a close look at Figure 6-1 herein. Then refer it from time to time so see how 

the data transfer takes place.  Also see page 16 of the data sheet Figure 5-1

Figure 6-1

Page 44



Page 45 of 50

Segments of the program to read the 3208 are included in the following text. The 

entire program is listed at the end of the chapter and can be run on your 

propeller.  The program is also on line in the discussion forum if you want to 

downloaded it from there it will be easier. (Page 12  post #236)

The 3208 is capable of reading up to eight potentiometers one at a time at about 

100,000 reading a second.  We will place our potentiometers across 5 V and connect 

the wipers of the potentiometers to the eight input lines on the 3208.  To start 

with, we will use only one potentiometer and it should be connected to Pin one. 

Though we are connecting the potentiometer across 5 V it is not necessary that the 

potentiometers read across 5 V.  There is a ground line, and a reference voltage 

line dedicated to the use with the input devices.  The limitation is that since 

there is only one reference voltage line for all the potentiometers they all have 

to play be placed across this same voltage.

We are interested in potentiometers because a potentiometer is a device that is 

easily manipulated to provide a variable input.  When we build other devices and 

connect them to a propellers chip for whatever purpose we may have in mind we can 

make the connections through the 3208 to provide the interface. The importance of 

a variable signal is to be appreciated, because we want to be able to make sure 

that we are actually reading or manipulating a changing signal.  The signal may be 

an input or may be an output but in either case, we will have to see the results 

change in some way to make sure that the device is actually working.  If nothing 

changes, not much can be deduced.

The 3208 is particularly well suited to our purpose or reading our first device, 

because the device is fairly easy to connect to and to use.  Here is the procedure 

for reading the device.  Follow along with the diagrams provided so that you can 

see exactly what we are going to do and how the system will respond.

There are four lines that control the operation of the 30 28.  They are.

The clock line.

The data input line.

The data output line. We read the signal that comes out of this line

The chip select line.

The chip is dormant when the chip select line is high.  We select the chip by 

making the chip select line low.  When we make the chip select line low the 3028 

responds by seeing it as a start signal for the whole next clock cycle.  

Page 45



Page 46 of 50

DAT           org       0                       'sets the starting point in Cog

generate      mov       dira,   set_dira        'sets direction of the prop pins

              call      #chip_sel_lo            'selects chip by pulling line low

              call      #Clk_lo                 'START. Clock needs to be low to load data

              call      #Din_hi                 'must start with Din high to set up 3208

              call      #Tog_clk                'clk hi-lo to read data           

              call      #Din_Hi                 'SINGLE DIFF  Low to load

              call      #Tog_Clk                'toggle clock line hi then low to read in the data 

The next bit, we send it is a bit that selects the mode in which we want the 3208 

to respond.  For our purposes, we are interested in a single response and this is 

selected by making the data input line, low and toggling the clock chip high and 

then low it.  

We next send out three the more bits.  These bits identify one of the eight lines 

that we are going to read. A three bit signal can select one of the eight lines on 

the 3208.  We will select line 0 in the initial experiment so the address we 

transmit to make the selection will be 000. Each line is impressed on the Din line 

and each time the clock is toggled high and then low one bits is read the the 

3208.

            call      #Din_Lo       'D2 Low to load input line selection sequence 000 for line 0

           call      #Tog_Clk      'toggle clock line hi then low to read in the data            

           call      #Din_Lo       'D1 Low to load input line selection sequence 000 for line 0

           call      #Tog_Clk      'toggle clock line hi then low to read in the data           

           call      #Din_Lo       'D0 Low to load input line selection sequence 000 for line 0

           call      #Tog_Clk      'toggle clock line hi then low to read in the data 

           call      #Din_Lo       'blank bit needs a clock cycle, next

           call      #Tog_Clk      'toggle clock line hi then low to read in the data 

                                   'next toggle is for the null bit, nothing read

           call      #Tog_Clk      'toggle clock line hi then low to read in the data 

Once the chip has accepted the three bit signal that the Din line goes into a 

don't care state.  And we have no interest in it for the rest of the reading 

cycle.

Once the 3208 chip now  knows, which line to read.  It starts sending us the 

information about that line as 14 bits released by 14 clock cycles that we sent to 

the 3208.  The first cycle provides indeterminate information and is to be 

ignored.  The next bit as a low bit, to make sure we initiate our reading cycle 

Page 46



Page 47 of 50

properly.  This bit is to be considered a null bit but it does tells us that the 

cycle has started.  The next 12 bits are the data that we are interested in, and 

they are transmitted one bit at a time.  Each bit arriving when the clock goes 

from low to high.

              mov       dat_red,  #0        'Clear register we will read data into 

              mov       count,    #12       'Counter for number of bits we will read

read_bit      mov       temp,    ina        'read in what is in all the input lines

              andn      temp,    inputmask wz   'mask off everything except Dout line. Set Z flag

              shl       Dat_red,  #1        'shift reg left 1 bit to get ready for next bit

        if_nz add       Dat_red,  #1        'if value is still positive add 1 to data register    

              call      #Tog_Clk            'toggle clock to get next bit ready in Dout

              sub       count,    #1 wz     'decrement the "bits read" counter. Set Z flag

        if_nz jmp       #read_bit           'go up and do it again if counter not yet 0

We read the bits by first clearing the register we are going to read into and then 

setting a counter to 12 to represent the 12 bits that we are going to read in. The 

bits are read by reading in the entire I/O register and then masking every bit 

except that the Dout bit from the 3208.  If the masked answer is a one we add one 

to the register we are reading into and shift the whole register to the left one 

bit.  If the red bit is a zero, we'd just shift all the bits left one bit.  This 

makes the LSB in the register to zero.  We do this 12 times and at the end of the 

12 cycles.  We have the reading from the potentiometer in our register.

              wrlong    dat_red,   par      'write it in PAR to share it as P.Val

              call      #Chip_Sel_Hi        'Put chip to sleep , for low power usage

              jmp       #generate           'go back to do it all again

We then write this information into the PAR register and it becomes available to 

the SPIN cog in our program, and we can use it for what ever we want.  I have 

written in the code needed to send what is needed to the parallax serial terminal 

both as 12 bits binary and as a decimal quantity.  As you manipulate the control 

knob of the potentiometer, the readings should go from 0 to 1111_11111111 on line 

1 and from zero to 4095 on line 2.

B null | P_VAL  

fds.start(31,30,0,115200)       'start console at 115200 for debug output

  cognew(@generate, @P_Val)     'start new cog at "generate" and read variable into P_Val

  cognew(oscope, @stack1)       'open cog to generate osc signals 

  cognew(spkr, @stack2)         'open cog to generate speaker signals

  dira[0 ..11]~~                'sets 12 lines as outputs. 12 lines needed for 1.5 bytes

Page 47



Page 48 of 50

  repeat                        'loop

    global_value:=P_VAL         'endless loop to display data

    outa[0..11] := P_Val        'displays 1.5 bytes of data on the LEDs

    fds.bin(P_val,12)           'print value to the PST in binary to match LEDs 

    fds.tx($d)                  'new line                                    

    fds.dec(P_val)              'print value as decimal                              

    fds.tx("   ")               'spaces

    fds.tx($1)                  'home to 0,0

    waitcnt(clkfreq/60+cnt)     'flicker free wait

Here is the listing of the entire program.

{{

Program to read a pot

August 05 2011

Sandhu

Works.

Using a speaker or the o'scope is optional.

LEDs and serial terminal both show what is being read

}}

CON

  _clkmode = xtal1 + pll16x

  _xinfreq = 5_000_000

  spkr_line=22

  osc_line=23

  

VAR

  long global_value

  long stack1[25]         'space for oscope 

  long stack2[25]         'space for speaker

  

OBJ 

  fds : "FullDuplexSerial"

  

PUB null | P_VAL  

fds.start(31,30,0,115200)       'start console at 115200 for debug output

  cognew(@generate, @P_Val)     'start new cog at "generate" and read variable into P_Val

  cognew(oscope, @stack1)       'open cog to generate osc signals 

  cognew(spkr, @stack2)         'open cog to generate speaker signals

  dira[0 ..11]~~                'sets 12 lines as outputs. 12 lines needed for 1.5 bytes

  repeat                        'loop

    global_value:=P_VAL         'endless loop to display data

    outa[0..11] := P_Val        'displays 1.5 bytes of data on the LEDs

    fds.bin(P_val,12)           'print value to the PST in binary to match LEDs 

    fds.tx($d)                  'new line 

    fds.dec(P_val)              'print value as decimal 

    fds.tx("   ")               'spaces

Page 48



Page 49 of 50

    fds.tx($1)                  'home to 0,0

    waitcnt(clkfreq/60+cnt)     'flicker free wait

PRI oscope                      'oscilloscope output cog

dira [osc_line]~~               'set pin direcion as output

  repeat                        'loop

     !outa[osc_line]            'invert line

     waitcnt(clkfreq/(global_value+20)+cnt) 'wait suitable for osc view

PRI spkr                        'speaker oputput cog

dira [spkr_line]~~              'set pin direcion as output 

  repeat                        'loop

    !outa[spkr_line]            'invert line

     waitcnt(clkfreq/(global_value+20)+cnt)  'wait suitable for speaker

     

DAT           org       0                       'sets the starting point in Cog

generate      mov       dira,   set_dira        'sets direction of the prop pins

              call      #chip_sel_lo            'selects chip by pulling line low

              call      #Clk_lo                 'START. Clock needs to be low to load data

              call      #Din_hi                 'must start with Din high to set up 3208

              call      #Tog_clk                'clk hi-lo to read data           

              call      #Din_Hi                 'SINGLE DIFF  Low to load

              call      #Tog_Clk                'clock line hi then low to read in the data 

              call      #Din_Lo                 'D2 Low to load input sel 000 for line 0

              call      #Tog_Clk                'clock line hi then low to read in the data 

              call      #Din_Lo                 'D1 Low to load input seq 000 for line 0

              call      #Tog_Clk                'clock line hi then low to read in the data 

              call      #Din_Lo                 'D0 Low to load line seq 000 for line 0

              call      #Tog_Clk                'clock line hi then low to read in the data 

              call      #Din_Lo                 'blank bit needs a clock cycle, next

              call      #Tog_Clk                'lock line hi then low to read in the data 

                                                'next toggle is for the null bit 

              call      #Tog_Clk                'tlock line hi then low to read in the data 

              mov       dat_red,  #0            'Clear register we will read data into 

              mov       count,    #12           'Counter for number of bits we will read

read_bit      mov       temp,    ina            'read in what is in all the input lines

              andn      temp,    inputmask wz   'mask off except Dout line. Set Z flag    

              shl       Dat_red,  #1            'shift reg left 1 bit, ready for next bit

        if_nz add       Dat_red,  #1            'if still positive add 1 to data register 

              call      #Tog_Clk                'toggle clock to get next bit ready in Dout

              sub       count,    #1 wz         'decr the "bits read" counter. Set Z flag

        if_nz jmp       #read_bit               'go up and do it again if counter not yet 0

              wrlong    dat_red,   par          'write it in PAR to share it as P.Val

              call      #Chip_Sel_Hi            'Put chip to sleep by de selecting 

              jmp       #generate               'go back to do it all again

Page 49



Page 50 of 50

'Subroutines

Clk_Hi        or        outa,   clk_bit         'OR it with the Clock Bit to make high

Clk_Hi_ret              ret                     'return from this subroutine 

Clk_Lo        andn      outa ,   clk_bit        'ANDN it with the Clock Bi to make low

Clk_Lo_ret              ret                     'return from this subroutine

Tog_Clk       call      #Clk_hi                 'make clock bit high

              call      #clk_lo                 'make clock bit low

Tog_Clk_ret             ret                     'return from this subroutine

                                            

Din_Hi        or        outa ,   din_Bit        'Makes the Din high

Din_Hi_ret              ret                     'return from this subroutine

                                              

Din_Lo        andn      outa ,   din_Bit        'makes Din low

Din_Lo_ret              ret                     'return from this subroutine

                                                

Chip_Sel_Hi   or        outa ,   chs_Bit        'Makes Chip select high

Chip_Sel_Hi_ret         ret                     'return from this subroutine

                                              

Chip_Sel_Lo   andn      outa,   chs_Bit         'makes chip select low

Chip_Sel_Lo_ret         ret                     'return from this subroutine

                                           

Read_Next_Bit mov       temp,  ina              'Get the INA register

              or        temp,  inputmask        'mask all but Din bit

Read_Next_Bit_ret       ret                     'return from this subroutine

'Constants. This section is similar to the CON block in SPIN           

Set_dira      long      %00001011_11000000_00001111_11111111   'Set dira register 

Chs_Bit       long      %00000001_00000000_00000000_00000000   'Chip select bit 24

Din_Bit       long      %00000010_00000000_00000000_00000000   'Data in bit         25

Dout_Bit      long      %00000100_00000000_00000000_00000000   'Data out bit        26

Clk_Bit       long      %00001000_00000000_00000000_00000000   'Clock bit           27

inputmask     long      %11111011_11111111_11111111_11111111   'Mask for Dout bit only 

Pin_23        long      %00000000_10000000_00000000_00000000   'osc line

Pin_22        long      %00000000_01000000_00000000_00000000   'Speaker line 

'Variables. This section is similar to the VAR block in SPIN 

temp          res       1       'temporary storage variable, misc

count         res       1       'temporary storage variable, read bit counter

Dat_Red       res       1       'temporary storage variable, data being read

Page 50


