
Using Code::Blocks with Catalina Getting Started

A Tutorial on using Code::Blocks with Catalina 3.0.3

BASIC CONCEPTS...2

PREREQUISITES..2

INSTALLING AND CONFIGURING CODE::BLOCKS...3

STEP 1 – EXTRACT THE COMPONENTS..3
STEP 2 – INSTALL CODE::BLOCKS..3

Windows Installation..4
Linux Installation...5

STEP 3 – UPDATE THE CODE::BLOCKS PERMISSIONS...5
Windows Installation..5
Linux Installation...6

STEP 4 – UPDATE THE CODE::BLOCKS COMPILER PLUGIN...6
STEP 5. INSTALL THE CATALINA WIZARD FILES...8

Windows Installation..8
Linux Installation...8

STEP 6 – INSTALL THE CATALINA TOOLS...9
Windows Installation..9
Linux Installation...9

USING CODE::BLOCKS...11

BUILDING YOUR FIRST CATALINA PROJECT...11
MANUALLY SPECIFYING CATALINA OPTIONS...17
BUILDING A MORE COMPLEX CATALINA PROJECT...21

NOTES ABOUT THE CATALINA TOOLS...27

GENERAL NOTE...27
THE BUILD XMM UTILITIES TOOL...27

ENVIRONMENT VARIABLES AND CODE::BLOCKS...27

CODE::BLOCKS LIMITATIONS...28

WHAT'S NEXT WITH CODE::BLOCKS?..28

Copyright 2011 Ross Higson Page 1 of 28

Using Code::Blocks with Catalina Getting Started

Basic Concepts
Like nearly all compilers, Catalina is essentially a command-line tool.
Fortunately, for Catalina users who don’t like using command-line tools, or would just
prefer to use a Integrated Development Environment (IDE), there is Code::Blocks -
a professional graphical user interface that can be used as a front end for almost
any C compiler.
Code::Blocks provides a complete environment for developing C programs. It
provides support for complex project structures, language sensitive editing, auto-
completion, symbol management, intelligent search functions, automatic build
capabilities and much more. Code::Blocks includes support for many different C
compilers. This support is implemented via plugins.
Catalina provides an enhanced Code::Blocks Compiler plugin which adds support for
the Catalina compiler. A project wizard for creating Catalina projects is also provided,
as are a set of 'tool' wrappers that allow the use of various Catalina utilities (such as
payload and blackbox) from within Code::Blocks.
Version 3.0.3 (and later) of Catalina incorporates several enhancements specifically
intended to simplify the use of Catalina from within Code::Blocks (e.g. enhancements
to blackbox to allow it to automatically find the port to be used when debugging).
This document provides details on installing and using Code::Blocks with Catalina. It
is not a tutorial on either C, Catalina or Code::Blocks. It just provides enough
information to get Code::Blocks up and running, and use it to compile Catalina
programs.

Prerequisites
This document assumes you are installing Code::Blocks for use with Catalina
release 3.0.3 or later, and that you already have this version of Catalina installed in
its default location. If you have not already installed Catalina, you should do that first
- see the Catalina documentation for details.
If you have Catalina installed in a non-default location, the installation will still work
correctly provided you set the environment variable LCCDIR to point to the main
Catalina directory before starting the installation of Code::Blocks (otherwise you will
have to manually configure Code::Blocks to tell it where Catalina is installed).
Catalina 3.0.3 supports only Code::Blocks version 10.05. Previous versions of
Catalina supported Code::Blocks version 8.02, but if you have that version installed
you will need to upgrade it to version 10.05 before you can install the Catalina
support described in this document.
Like Catalina itself, Code::Blocks can be installed and used under either Linux or
Windows. This document applies to both platforms, with any differences (mainly
during the installation process) noted.

Copyright 2011 Ross Higson Page 2 of 28

Using Code::Blocks with Catalina Getting Started

Installing and Configuring Code::Blocks

Step 1 – Extract the Components
In the codeblocks directory of the Catalina distribution are two compressed files –
one specifically for Windows and another one for Linux. Each one contains:

• a file called compiler-0.99.cbplugin (or similar), which is a replacement for
the standard Code::Blocks Compiler plugin, and includes Catalina support;

• a sub-directory called templates, which contains the files necessary to add
the Catalina Project Wizard to Code::Blocks; and

• a file called catalina_tools.conf, which contains the definition of menu entries
for invoking various Catalina utilities from within Code::Blocks.

Extract the Catalina files from the appropriate archive for your platform – i.e. either
codeblocks_win32.zip (which when unzipped will create a Windows folder) or
codeblocks_Linux.tgz (which when uncompressed will create a Linux folder).

Step 2 – install Code::Blocks
Catalina does not include a copy of Code::Blocks itself. You must download version
10.05 of Code::Blocks from http://www.codeblocks.org. The Code::Blocks support
included with this release of Catalina will not work with any previous version, and if
you have such a version of Code::Blocks installed you should remove it before
installing version 10.05.
Note that you only need a binary distribution of Code::Blocks – you do not need to
build either Code::Blocks (or Catalina) from source to use Catalina with
Code::Blocks. Binary distributions for Code::Blocks are available from the
Code::Blocks web site for many Windows and Linux platforms.
Note that during the installation of Code::Blocks you can select various options,
including which plugins to install and which C compiler to set as default. However,
the standard distribution of Code::Blocks doesn’t know about Catalina yet, so if you
are prompted to select a C compiler during the installation process, you can select
any of the compilers listed (such as the GNU GCC compiler).
Separate instructions for Windows and Linux installation are given separately below.

Copyright 2011 Ross Higson Page 3 of 28

http://www.codeblocks.org/

Using Code::Blocks with Catalina Getting Started

Windows Installation
Under Windows, you simply run the Code::Blocks setup program and follow the
instructions.
There are only two special things to note – the first is that you must install the C:B
Share Config component, since we will need to use it later.
This component can be selected in the Choose Components dialog:

The second is that you should make a note of where Code::Blocks is installed, since
you will need this information later. This information is displayed during installation in
the Choose Install Location dialog:

Copyright 2011 Ross Higson Page 4 of 28

Using Code::Blocks with Catalina Getting Started

Linux Installation
Under Linux, the easiest way to install Code::Blocks is by using yum (or the
equivalent package installer for your Linux distribution). You will probably want to
install both codeblocks and codeblocks-contrib (which contains additional useful
Code::Blocks plugins). For example:

yum install codeblocks-10.05 codeblocks-contrib-10.05
The Linux version of the C::B Share Config utility (called cb_share_config) is
installed automatically.

Step 3 – Update the Code::Blocks permissions
As initially installed, Code::Blocks does not know about the Catalina compiler. We
therefore need to subsequently install an updated version of the Compiler plugin
which adds Catalina support. This updated version also supports all the existing
Code::Blocks compilers, so it is safe to install it even if you already have
Code::Blocks installed for use with another compiler.
However, before we can update any Code::Blocks plugins, we need to grant the
current user the required access to the Code::Blocks installation directory.
The method to do this is different for Windows and Linux installations. Each is
described separately, below.

Windows Installation
The simplest way to set the required permissions is to open Windows Explorer to the
location you just installed Code::Blocks, right click on the main CodeBlocks folder
(where you just installed it) and select Properties. In the Properties dialog box,
select the Security tab, then press the Edit button. Select the Users node and then
select Full Control in the Allow column. Apply the changes and close the dialog.
The method of doing this may vary slightly under different versions of Windows:

Copyright 2011 Ross Higson Page 5 of 28

Using Code::Blocks with Catalina Getting Started

Linux Installation
The precise command to execute will depend on where Code::Blocks is installed in
your Linux distribution, and also whether you have a 32 or 64 bit version of Linux and
CodeBlocks.
In any case, the simplest way to update the permissions is to locate the codeblocks
lib directory, and then execute a command similar to the following (this must be
executed as root):

chmod -R a+w /usr/lib/codeblocks
or:

chmod -R a+w /usr/lib64/codeblocks
or:

chmod -R a+w /usr/local/lib/codeblocks
or:

chmod -R a+w /usr/local/lib64/codeblocks
If you cannot find the appropriate directory, you can still update the Compiler plugin –
but you will have to do so while running Code::Blocks as root.

Step 4 – Update the Code::Blocks Compiler plugin
Now start Code::Blocks. If this is the first time you have run Code::Blocks you may
see a Compilers auto-detection dialog. This dialog will not show Catalina yet, as
the standard Code::Blocks Compiler plugin does not know how to detect it:

You don't need to select a compiler at this point (although it does not matter if you
do) – just press OK.
Also, it doesn't matter if this dialog does not appear (e.g. if you chose not to include
the standard Code::Blocks Compiler plugin during the installation process).

Copyright 2011 Ross Higson Page 6 of 28

Using Code::Blocks with Catalina Getting Started

Next, from the main Code::Blocks menu, select Plugins -> Manage Plugins … A
dialog box similar to the following will appear:

If this dialog shows a version of the Compiler plugin already installed, select it and
press Uninstall. Then press Install new to install the new version of the plugin. The
new version of the plugin is located in the Catalina codeblocks folder for your
operating system. For example (for both 32 bit and 64 bit Windows):

C:\Program Files\Catalina\codeblocks\Windows\compiler-0.99.cbplugin
or (for 32 bit Linux)

/usr/local/lib/catalina/codeblocks/Linux/32_bit/libcompiler-0.99.cbplugin
or (for 64 bit Linux)

/usr/local/lib/catalina/codeblocks/Linux/64_bit/libcompiler-0.99.cbplugin

Copyright 2011 Ross Higson Page 7 of 28

Using Code::Blocks with Catalina Getting Started

Once you have successfully installed the plugin, the Compilers auto-detection
may appear again, and if Catalina has been installed correctly, it should now show
the Catalina compiler as Detected:

In this dialog, you can select the Catalina C Compiler and press Set as Default.
If the dialog box does not appear, or it does not show Catalina as Detected, don't
worry – you can configure the default compiler later from within Code::Blocks itself.

Step 5. Install the Catalina Wizard files

For this step, we must first close Code::Blocks, locate the Code::Blocks templates
directory, and then copy the Catalina Project Wizard files from the Catalina
codeblocks directory.

Windows Installation
Under Windows you should copy the contents of the templates folder from your
Catalina distribution, such as:

 C:\Program Files\Catalina\codeblocks\Windows\templates
to the CodeBlocks templates folder, which will be in a location off the main
CodeBlocks installation folder such as:

C:\Program Files (X86)\CodeBlocks\share\CodeBlocks\templates
You will need Administrator privileges to do this copy. Make sure to copy all the files
in the source folder (i.e. copy recursively).

Linux Installation
Under Linux you should copy the contents of the templates folder from your Catalina
distribution, such as:

/usr/local/lib/catalina/codeblocks/Linux/templates

Copyright 2011 Ross Higson Page 8 of 28

Using Code::Blocks with Catalina Getting Started

to the CodeBlocks templates folder, which will be in a location off the main
CodeBlocks installation folder such as:

/usr/share/codeblocks/templates
or:

/usr/local/share/codeblocks/templates
You will need to be root to do this copy. Make sure to copy all the files in the source
folder (i.e. copy recursively).

Step 6 – Install the Catalina tools
Code::Blocks allows additional tools to be configured as menu items, and it is
convenient to add Catalina tools such as payload and blackbox to the menu so that
you can use them from within Code::Blocks. To install them, we will use the
Code::Blocks C:B Share Config utility. This utility is separate to Code::Blocks itself,
which should remain closed for this step.

Windows Installation
You access the C:B Share Config utility via the Windows Start menu.
In Windows XP:

Start->Programs->CodeBlocks->CB Share Config
In Windows Vista or Windows 7:

Start->All Programs->CodeBlocks->CB Share Config

Linux Installation
You must access the C:B Share Config utility via the command-line:

cb_share_config
In both Windows and Linux, a dialog box similar to the following will appear:

In the left panel select the file catalina_tools.conf from the Catalina codeblocks
directory appropriate to your operating system – i.e. (in Windows):

C:\Program Files\Catalina\codeblocks\Windows\catalina_tools.conf

Copyright 2011 Ross Higson Page 9 of 28

Using Code::Blocks with Catalina Getting Started

or (in Linux):
/usr/local/lib/catalina/codeblocks/Linux/catalina_tools.conf

In the right panel you need to locate and select your Code::Blocks configuration file.
This will be located in your configuration data folder.
For example (in Windows XP):

C:\Documents and Settings\<your_name>\Application Data\
 codeblocks\default.conf

or (in Windows Vista or Windows 7):
C:\Users\<your_name>\AppData\Roaming\codeblocks\default.conf

or (in Linux)1:
/home/<your_name>/.codeblocks/default.conf

In the left pane, check the <tools> node (it may be the only entry) and press
Transfer>> to copy the tools entries to your own default.conf file:

Confirm the transfer, then press Save to save the destination configuration file. Then
close the CB Share Config utility.

The configuration of Code::Blocks for Catalina is now complete - let's start using it!

1 Note that on some versions of Linux, you will need to explicitly select Show Hidden Files in the file selection
dialog box to see folders such as .codeblocks

Copyright 2011 Ross Higson Page 10 of 28

Using Code::Blocks with Catalina Getting Started

Using Code::Blocks
When you first start Code::Blocks, the main window will look something like the
following:

Building your first Catalina Project
There are various ways to create a new project from within Code::Blocks, but the
simplest way to get started is use the Catalina Project Wizard. To do this, select the
entry File->New->Project... from the main menu – a dialog box similar to the one
shown below will appear. Select Catalina Project and press Go:

Copyright 2011 Ross Higson Page 11 of 28

Using Code::Blocks with Catalina Getting Started

After displaying a welcome page (just press Next >) Code::Blocks will display a page
asking you for a title (name) and a directory for your project. Choose a suitable name
for your project (don't use any embedded spaces) and where you want the directory
for this project to be created (this can be anywhere, but you may choose to use the
same directory for all your Catalina projects):

Then press Next >
On the next page, Code::Blocks will display some information regarding various
project options, such as what compiler to use (Catalina!) and whether to create both
a release and a debug version of your program:

At this stage, there is no reason to change anything here, so just press Next > again.

Copyright 2011 Ross Higson Page 12 of 28

Using Code::Blocks with Catalina Getting Started

On the next page, things start to get interesting. Here you can choose the Propeller
platform you have. Select the most appropriate entry from the list (some platforms
have multiple entries, if they can be configured various ways) and press Next >

On the next page, you can select what basic library configuration you want:

For the purposes of this example, select the Standard C Library and then press
Next >
On the next page, you will be able to select what memory model you want to use for
this project.

Copyright 2011 Ross Higson Page 13 of 28

Using Code::Blocks with Catalina Getting Started

If you have a platform with XMM RAM, you can select any of the Catalina memory
models here – but for the purposes of this example, just select the TINY memory
model (which applies to all Propeller platforms) then press Finish

Now Code::Blocks will create a project for you with the selected options. In the
Projects tab of the Navigation pane, you will see your project:

Open the project node and you will see a node called Sources. Open this node and
you will see that a file has been automatically created for your project called main.c
– double click on this file to display it in the source code editor window.

Copyright 2011 Ross Higson Page 14 of 28

Using Code::Blocks with Catalina Getting Started

For the purposes of this example, lets simply add a single line to this file in the text
editor. Where the file contains the line:

// insert your code here
we will add the line:

printf("hello, world!");
As you type this line, you will probably notice that Code::Blocks is anticipating what
you intended – for instance, it knows about the printf() function, and will prompt you
as soon as you have typed a few characters. Just press TAB when the prompt is
indicating the correct function.
Next, make sure we are working with the Release version by choosing Release in
the Build Target drop down list, or by selecting Build->Select Target->Release
from the menu (we will work with Debug versions later):

Then we can compile this project. We can do this by pressing Ctrl-F9, or by
selecting Build->Build from the menus, or by right clicking on the project in the
navigation pane and selecting Build. The output of the build will be shown in the
build log pane. It will look something like this:

Copyright 2011 Ross Higson Page 15 of 28

Using Code::Blocks with Catalina Getting Started

Assuming the project built correctly (which it should do if you typed the line in
correctly!) you can now do things with the project executable that has been
generated by selecting various Catalina utilities from the Tools menu.
For instance, if you have a Propeller connected to your computer and it is powered
on, just select Tools->Download to Hub RAM, as shown below:

If everything works correctly, after a few seconds you should see your Propeller
displaying a friendly greeting!

Copyright 2011 Ross Higson Page 16 of 28

Using Code::Blocks with Catalina Getting Started

Manually Specifying Catalina Options
The Catalina Project Wizard sets up various basic compiler options for you, but
there are many more options that you can set manually in your project. To see them
all, select Project->Build Options … from the main menu.
A dialog box similar to the one shown below will appear. The most important (and
initially confusing) thing about setting options in Code::Blocks is that you can set
them at the Project level, or at the level of each Build Target (e.g. Release or
Debug).
It is generally a good idea to only set all options at the Project level unless there is a
good reason to do otherwise - so whenever you open this dialog box, it is worthwhile
getting into the habit of checking which node is selected, and selecting the Project
node if it is not already selected:

The selected compiler for all projects created using the Catalina Project Wizard will
be the Catalina C Compiler, and the Compiler Flags tab will show a complete list
of Catalina compiler options. Some options will already have been selected by the
Wizard.

Copyright 2011 Ross Higson Page 17 of 28

Using Code::Blocks with Catalina Getting Started

The complete list of compiler options is far too cumbersome to be much use, so
instead, choose a particular category of options from the Categories drop down list:

The categories are intended to group the available options by function. The
categories are:

• Platform Selection

• CPU Selection

• C Library Selection

• Other Library Selection

• Memory Model, Size and Cache Options

• Special Load Options

• HMI Driver Selection

• HMI Related Options

• Proxy Driver Selection

• Kernel Options

• Debugging and Optimization Options

• Listing and Output Options

• Miscellaneous Options
Some of these options you will have already seen in the Wizard. Others are for
advanced use only. The options are all the same as those used when invoking
Catalina from a command line – but with Code::Blocks you don't have to remember
them all, or what each one is for!.

Copyright 2011 Ross Higson Page 18 of 28

Using Code::Blocks with Catalina Getting Started

For example, here are the options listed under the Memory Model, Size and Cache
options:

The TINY option is shown as selected because this is what we chose in the Wizard.
If your Propeller platform has no XMM, this is the only option you will ever need to
select from this category – the others are of interest for platforms with XMM RAM.
The Code::Blocks IDE allows you to specify multiple options even if they are
incompatible – e.g. here you could select both TINY and LARGE as your memory
model. However, one reason for arranging the options in categories is that it makes it
much easier to see if you have selected incompatible combinations. However, it is
still possible to select incompatible options at the Project and Build Target levels, so
if the build is not behaving as you expected, it is worth checking that options
specified at different levels are not interfering with each other.
For more detail about each option, refer to the Catalina Reference Manual (the
actual command-line option that corresponds to each selection is shown in square
brackets).
In some cases, the option indicates that it requires a named variable which must be
specified on the Custom Variables tab. An example in the category above would be
the Set Memory Size option, which expects the actual memory size to be specified
in a variable called MEM_SIZE. To use this option, you not only need to select it in
this dialog box, you then need to go to the Custom Variables tab and enter both the
appropriate variable and an appropriate value for it.

Copyright 2011 Ross Higson Page 19 of 28

Using Code::Blocks with Catalina Getting Started

For example, to use the value 128k as the Memory Size, you would define the
MEM_SIZE variable on the Custom Variable tab as shown below:

Note that if there is no predefined option to do what you need, you can also specify
compiler options by specifying them on the Other Options tab, or define arbitrary
symbols by specifying them on the #defines tab (note that these will be normal C
symbols, not Catalina symbols).
After changing any Compiler options, it is a good idea to rebuild the project and
verify that the options are correctly specified in the command line shown in the build
log. To do this, it may be useful to modify the default logging to show the actual
command-line used. This is discussed in the next section.

Copyright 2011 Ross Higson Page 20 of 28

Using Code::Blocks with Catalina Getting Started

Building a more Complex Catalina Project
Now we are ready to build a more complex project. We will build a project using files
that already exist in the Catalina demos directory, and also use this project to
demonstrate the use of the blackbox debugger from within Code::Blocks.
You don't need to close the current project. Simply invoke the Catalina Project
Wizard again (File->New->Project...) and specify Debug_Example as the name of
the project (don't use spaces in the project name, as this name is also used as the
name of the final executable).
Also in the wizard, select your Propeller platform (e.g. C3), but this time select the
Integer-Only C Library (the Standard C Library will result in too large an
executable on some platforms), and the TINY memory model.
When the new project has been built, it will again contain a default main.c source file,
but we don't want that file – so right click on the file and select Remove File From
Project:

Then, right click on the project node and select Add Files …
In the file file selection dialog box that appears, navigate to the Catalina debug
example in the demo folder – e.g. (in Windows):

C:\Program Files\Catalina\demos\debug
Or (in Linux):

/usr/local/lib/catalina/demos/debug
Then select the following four files (by holding down SHIFT while selecting each
one):

debug_test.h
debug_functions_1.c
debug_functions_2.c
debug_main.c

Copyright 2011 Ross Higson Page 21 of 28

Using Code::Blocks with Catalina Getting Started

When you press Open, you will see a dialog box similar to the following appear:

Since we do want to add all these files to both the Release and Debug targets, just
press OK.
Now when you open the project node in the navigation pane, and keep opening each
sub-node, you will end up with something like the following:

This is how CodeBlocks displays files that are included from a path outside the
Project directory – these files have not been copied to the project directory – they still
only exist in the demo folder – the project refers to them by their original path.

Copyright 2011 Ross Higson Page 22 of 28

Using Code::Blocks with Catalina Getting Started

Ensure that the Debug target is selected, and build the project (e.g. press Ctrl-F9).
When you do so, you will receive an error – don't worry, this is expected! We will
use this error to demonstrate another place you may need to configure things in
Code::Blocks. The error will appear similar to that below:

This error is because the project contains an include file, but (by default)
Code::Blocks does not include the appropriate path to find the include file - since the
files do not not actually exist within the project structure Code::Blocks has built –
these are merely links to the files in their original location2. This is quite normal
behavior for Code::Blocks, and has nothing to do with Catalina.

2 This can be an important thing to remember – if you edit this file in this project, but the file is also used in
another project, any changes you make will appear in that project as well! If you do not want this behavior,
you should instead manually make a copy of the file in the project directory first, and then include it in the
project.

Copyright 2011 Ross Higson Page 23 of 28

Using Code::Blocks with Catalina Getting Started

To rectify this problem, select Setting->Compiler and Debugger from the main
menu. You will see a dialog box similar to the following:

The first thing to notice is that this dialog box has a set of compiler flags that looks a
lot like the Project Build Options dialog box – except that this set of options will be
used for ALL projects built using the selected compiler. We don't want to set any of
these options here (although if you only have one Propeller platform and use it for
every project, setting your preferred options here may be simpler than using the
Project Wizard each time!).
Instead, just make sure the Catalina C Compiler is selected in the top drop down
box (and note that - if you have not done so already - you can press the Set As
Default button here to make your selection the default compiler). Then select the
Other Settings Tab.

Copyright 2011 Ross Higson Page 24 of 28

Using Code::Blocks with Catalina Getting Started

The dialog box will then appear as shown below:

The option we need to select to rectify our problem is Explicitly add currently
compiling File's directory to compiler search dirs – make sure this option is
selected.
However, while we are here, there are a couple of other options it is worth knowing
about. You may want to select Full Command Line for the Compiler Logging
option, and also the Save Build Log to HTML file when compile is finished option
– both of these are useful in diagnosing problems when your selected compiler
options don't seem to be doing what you expected.
When you have selected the necessary options, close this dialog box and rebuild the
Debug_Example project.
This time the project should build without errors (if you get an error message saying
Too Big by xx Longs error, double check to ensure that you are building the project
to use the Integer-only C Library rather than the Standard C Library).

Copyright 2011 Ross Higson Page 25 of 28

Using Code::Blocks with Catalina Getting Started

Next, select Tools->Download to Hub RAM and Debug from the main menu. A
DOS command window (or a Linux command shell) will open, displayed in front of
Code::Blocks, similar to the following:

This command box displays the progress of the payload loader, and is then used to
run the blackbox debugger (initiated after the program has been downloaded). Once
the debugger starts, press n <ENTER> a few times to step to the next line, and you
should see the program output appear on whatever screen is connected to your
Propeller. When you have finished debugging, press e <ENTER> to exit the
debugger and return to Code::Blocks. Or at any time you can simply close the
command window.
If you would prefer to use a graphical debugger instead, then (on Windows only) you
could easily add another Tool to invoke the BlackCat debugger.
Select Tools->Configure tools... to see how to add another Tool to Code::Blocks.

Copyright 2011 Ross Higson Page 26 of 28

Using Code::Blocks with Catalina Getting Started

Notes about the Catalina Tools

General Note
The Catalina items in the Tools menu will not work until you have a Catalina C
Project open in Code::Blocks. This is because the path to the executable tools is not
specified in the tools themselves – it is only set once you have specified the
Compiler to use.

The Build XMM Utilities Tool
One of the items in the Tools menu represents a utility developed specifically to
simplify the use of Code::Blocks in conjunction with Propeller platforms with XMM
RAM. This is the Build XMM Utilities menu item.
When you invoke this tool (make sure you have your Catalina XMM project open
first!) you will be guided through a set of questions much like the Catalina Project
Wizard. The purpose of these questions is to build the appropriate XMM utilities
necessary to download and debug programs on the XMM platform you are using.
Before you use any of the other XMM tools, you will need to invoke this tool (once)
when you build projects for a Propeller platform with XMM RAM. If you subsequently
need to download or debug projects on a different XMM platform, you should re-
invoke the tool. Also, note that your Catalina Project must use the same options as
you specify in this tool, or the other XMM RAM tools will not work correctly.

Environment Variables and Code::Blocks
The environment variables used by the Catalina command-line compiler also apply
when Catalina is invoked by Code::Blocks. If you set these environment variables at
the system or user level3 then this this may cause unwanted conflicts with the
Catalina options set in your Code::Blocks project.
If in doubt, enable logging of the full command line in Code::Blocks, and also add
the Verbose (-v) option to Catalina to list what options are actually in effect when
building your project.
However, if you installed Catalina to a non-standard location, setting at least the
LCCDIR environment variable at the system level is very useful. It not only simplifies
usage of Catalina via the command-line, it also allows Code::Blocks to auto-detect
where Catalina is installed.
Also, when Code::Blocks successfully auto-detects Catalina, it will import the current
settings of the following two environment variables. They will be configured as the
default search directories in the Code::Blocks Compiler configuration. The purpose
of this is to try and make projects built in Code::Blocks continue to build correctly
even if you subsequently change these variables for using Catalina in command-line
mode:

CATALINA_INCLUDE
CATALINA_LIBRARY

3 For example, in Windows you do this from System Properties - e.g. in Windows 7, select Start->Control
Panel->System and Security->Advanced System Settings (the precise location differs in other versions of
Windows). In the resulting dialog box, select the Advanced Tab and press Environment Variables.

Copyright 2011 Ross Higson Page 27 of 28

Using Code::Blocks with Catalina Getting Started

These settings can be manually modified later in the Search Directories tab of the
Settings->Compiler and Debugger... dialog box if required.

Code::Blocks Limitations
Code::Blocks was initially developed for self-hosted development. While it is
increasingly being used for cross compilation and embedded development its roots
are sometimes still evident.
For example, in the current release (10.05) it is not possible to configure the
extension of the final executable program built by Code::Blocks – it always assumes
this will be .exe (for Windows) or blank (for Linux). Since the convention for
Propeller executables is to generally use .binary or .eeprom, this leads to
Code::Blocks believing it has not yet built the final executable, so the Build
command will always redo the final link step, even if the executable is actually up to
date.
It is possible to change this behavior, but not from within the Compiler plugin – it has
to be changed in the base Code::Blocks program. This means that to fix this
limitation in release 10.05, the entire Code::Blocks program itself would have to be
redistributed. However, this limitation is likely to be addressed in a future release of
Code::Blocks.
Also, the Code::Blocks Debugger plugin does not currently support the Catalina
debuggers - the blackbox and blackcat debuggers can be launched from
Code::Blocks, but will run in separate windows. This may be added in a future
release of Catalina, but at present it is probably best to disable or remove the
Code::Blocks Debugger plugin altogether (unless you also use it in conjunction with
other compilers).

What's Next with Code::Blocks?
Code::Blocks is a very sophisticated IDE, and has many more features than have
been discussed here. For more information, consult the Code::Blocks
documentation.
Also, there are many additional plugins available for Code::Blocks that are designed
to assist in the development of C programs. These plugins will generally work
perfectly well with Catalina.

Copyright 2011 Ross Higson Page 28 of 28

	Basic Concepts
	Prerequisites
	Installing and Configuring Code::Blocks
	Step 1 – Extract the Components
	Step 2 – install Code::Blocks
	Windows Installation
	Linux Installation

	Step 3 – Update the Code::Blocks permissions
	Windows Installation
	Linux Installation

	Step 4 – Update the Code::Blocks Compiler plugin
	Step 5. Install the Catalina Wizard files
	Windows Installation
	Linux Installation

	Step 6 – Install the Catalina tools
	Windows Installation
	Linux Installation

	Using Code::Blocks
	Building your first Catalina Project
	Manually Specifying Catalina Options
	Building a more Complex Catalina Project

	Notes about the Catalina Tools
	General Note
	The Build XMM Utilities Tool

	Environment Variables and Code::Blocks
	Code::Blocks Limitations
	What's Next with Code::Blocks?

