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1. Introduction

The  development  of  digitally  based  products  has  experienced 
phenomenal growth worldwide in recent years, and it appears that this 
growth will continue to increase at a rapid rate. Various industries such 
as  telecommunications,  data  processing,  and  home  entertainment 
systems rely heavily on the use of this new digital technology. Current 
integrated  circuit  technology,  namely  VLSI  (very-large-scale 
integration),  has made it possible to develop special purpose digital 
devices and systems that are capable or performing a wide variety of 
complex digital processing operations. Some of these processing tasks 
are many orders of magnitude faster, smaller, and cheaper than they 
were  ten  years  before.  Also,  many  functions  that  were  usually 
performed by analog means are now  realized by less expensive and 
more reliable digital hardware.

Most  of  these  devices  and  systems  require  a  form  of 
communication to transmit information to and receive information from 
another  system or  device.  As  an engineering  team goes  through  a 
typical development process for a system or device, they don't think 
much about  the  communication  aspects  of  the system, but  instead 
they usually focus on the basic functionality from a user point of view 
so that the unit would operate as intended when it is plugged in or 
turned on. The engineer in this case would come up with a custom 
designed module from a selected group of standardized components 
and possibly from other components that are designed and built from 
scratch.  The  'scratch'  components  would  be  anything  that  is  non-
standardized and could be just made from raw materials. This could 
also be a new idea or concept that has not been tried before. Setting 
up  a  new  kind  of  configuration  assembled  from  standardized 
components could also be included in this category.

The  standardized  components  would  include  any  part  with  a 
specification  attached  to  it,  such  as  integrated  circuits,  transistors, 
resistors,  etc.  This  standardized  components  category  would  also 



include non-physical  objects such as programming languages (C++, 
Java,  Perl,  etc.).  There  are  also  standardized  routines  within  these 
programming  languages  along  with  several  hardware  and  software 
combinations  that  can  also  be  considered  as  standardized 
components. The communications protocols and networks can also be 
included  in  this  category,  and  these  would  include  well  known 
standards such as RS-232, RS-485, USB, SPI, I2C, and many others. 

As the engineer moves along in his design process, and he is 
trying to come up with a system that would satisfy the customer, he 
wouldn't  waste  much  time  in  developing  a  new  communication 
protocol, but would instead use one of the established methods and 
make adjustments to his  system design so that it  fits  in.  The most 
likely choice would be USB, since this is such a universal protocol, and 
many  existing  devices  communicate  using  this  protocol  (printers, 
scanners,  cameras,  etc.).  Because  of  the  popularity  and  other 
advantages of the USB interface, some other interface protocols, such 
as  RS-232 and RS-485 are becoming obsolete.  Even though USB is 
simple to connect, the engineer would soon discover many features 
about  USB  data  packet  transmission  that  are  very  difficult  to 
understand. 

To get some idea of the complexity of the USB protocol, it would 
be helpful to explain some of its communication methods. When a USB 
peripheral  device  is  connected  to  the  host,  a  process  called  the 
enumeration  process  is  started.  This  is  where  the  peripheral  sends 
information  to  the  host  about  its  identity,  device  drivers  needed, 
device  speed,  address,  etc.  This  happens  every  time  a  device  is 
connected or disconnected.

All  data  transfers  between  USB  devices  occur  through  virtual 
‘pipes’ that connect the peripheral's addressable ‘endpoints’ with the 
host. An endpoint is a uniquely addressable portion of the peripheral 
that  is  the  source  or  receiver  of  data.   When  establishing 
communications  with  the  peripheral,  each  endpoint  returns  what  is 
called a ‘descriptor’. A descriptor is a data structure that describes the 
endpoint's configuration and expectations, and include transfer type, 
max size of data packets, perhaps the interval for data transfers, and 
in some cases, the bandwidth needed.

Sometimes an engineer would see that many of these advanced 
features would never be used on his project, in which case he would 
decide to use RS-232 or RS-485 instead. Even the RS-232 and RS-485 
interfaces have extra features that would probably not be needed and 
lack certain qualities  that  would  be needed,  such as reliability  in  a 
noisy environment and self-adjusting capability.  Some of these older 
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protocols also lack reliable methods for detecting connection present 
and certain errors that occur during data transfers. I will not discuss 
the particular features of  RS-232 and RS-485 at this time, but I  will 
leave that for discussion later on.

There  are  also  instances  where  hobbyists  are  designing  and 
building a simple digital/analog circuit and need an effective method of 
communicating with another device without getting involved with the 
complexities of USB. An example would be a weather indicator, which 
transmits  temperature,  barometric  pressure,  wind  speed,  and  wind 
direction to a separate display device. Another example would be for 
an exercise machine or a bicycle, which can transmit parameters like 
speed,  cadence,  time  used,  and  distance  traveled  to  a  recording 
device.

The aim here is to come up with a simple serial interface or SSB 
(Simple  Serial  Bus)  that  would  replace  some  of  the  more  obsolete 
methods such as RS-232 and RS-485 and to compete directly with the 
established  USB  interface  in  terms  of  increased  simplicity  and 
reliability,  particularly  in  error  detection.  In  designing  such  an 
interface,  it  is  important  to  consider what  the engineer or  hobbyist 
actually needs in order to implement serial data communication in his 
project.  He  would  usually  be  operating  on  a  limited  budget,  so  he 
would  probably  need something that  he  can understand easily  and 
come to a quick  determination  as to  whether  it  would  perform the 
needed data transfer in a reliable manner.

In  order  to  begin  the  design  process  of  such  an  interface,  it 
would help to have a simple block diagram as to how the system would 
appear  to  the  engineer  as  he  looks  for  a  suitable  communication 
protocol for his project. I would start with something like:
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This  diagram attempts  to  simplify  things  by  using  two  tri-state  bi-
directional data lines along with a ground signal through the connector. 
The simple arrangement of  components as shown would be a good 
starting point that could be use to maximize reliability for a basic serial 
communication system.

The main advantage that the Simple Serial Bus would have over 
other implementations, such as USB, would be its inherent simplicity, 
and  the  concept  would  allow  easy  inclusion  into  low-level 
microcontroller systems in a similar fashion that standards such as RS-
232 and RS-485 have done in the past.
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2. Data Line States

The DH (data high) and DL (data low) would be set up as two 
interacting  data  lines  that  are  mirror  images  of  each  other.  There 
would  be  an  idle  state  or  condition  where  no  data  transmission  is 
taking place where the DH line is pulled to +5V (logic ’0’) on both sides 
by internal pull-up resistors and the DL line is pulled down to –5V (logic 
‘1’)  on  both  sides  by  internal  pull-down  resistors.  As  long  as  the 
connector  is  plugged  in  and  both  devices  are  active  with  power 
applied,  each  one  of  these  lines  can  be  considered  as  inputs  and 
outputs on both sides simultaneously in  the idle  state.  The internal 
pull-up  resistors  provide  the  mechanism  where  both  sides  can  be 
outputs at the same time without damaging the devices by excessive 
current  drawn.  Normally,  in  the  idle  state  there  wouldn’t  be  any 
current  drawn  through  these  resistors  anyway  because  each 
connected device would pull the line to the same level.

This technique adds a great deal of simplification as compared to 
other serial communication circuits where they avoid having both sides 
used as outputs at the same time by a multiplexing arrangement or 
other logic circuitry. When one end (transmitter or receiver) is used an 
output, the other end would have to be set up as an input. Both sides 
set up as inputs would also be allowable, but both sides could not be 
used as outputs simultaneously because of the push-pull output stage 
and there would be excessive current drawn if  one is  high and the 
other low. 

The DH and DL lines also have three other possible states other 
than the ‘idle state’ just described. These are the ‘active state’ and two 
‘zero’ state modes.  The ‘active state’ of DH uses a transistor switch 
which applies  -5 volts directly to the DH line, and the active state of 
DL uses another transistor switch which applies +5 volts directly to the 
DL  line.  The  following  circuit  diagram   will  show  what  has  been 
described so far for the active and idle states. This circuit is just a basic 
starting point and more features will be added later as developments 
are made. The circuit shows just Device 1 instead of both devices for 
simplicity.
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Since  the  data  lines  operate  from  +5  to  –5  volts,  and  the 
microcomputer  operates  only  from  +5  to  0  volts,  there  are  level 
shifting components needed. Q3 is used for the DH output and D1, D2, 
D3, and D4 are used for the inputs. There are two inputs needed for 
both DL and DH to detect the full range from +5 to –5 volts.
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This basic circuit would need additional components in order to 
use the two ‘zero’ state modes on the data lines. The DH and/or DL line 
is  set  to  ground potential  (0  volts)  in  each  of  the  two ‘zero’  state 
modes,  where  one  is  a  ‘strong’  ground  and  the  other  is  a  ‘weak’ 
ground. 

The strong ‘zero’  state mode is  mainly used for issuing break 
requests and is called break-request-high (BRH). The weak ‘zero’ state 
mode is called break request-low (BRL) and is used mostly as a low-
power standby feature where a device disables its driver circuitry in 
networks  when there  is  data transfer  taking place  and it  is  not  on 
either transmitting or receiving end. It is also used when a device has 
sensed  a  disconnection,  or  if  the  devices  (or  just  one  device)  are 
turned off at the opposite end, or if there is a fault in the circuit. In this 
state, the pull-up or pull-down resistor is effectively disconnected and 
the active voltage supply switching transistors are off, and creates a 
high-impedance  input  circuit  on  the  data  line.  This  state  would  be 
typical of a low-power mode, and this ‘zero state’ mode could also be 
activated if  it  is  desired  to  conserve power  in  certain  time periods 
when  there  will  be  no  data  transmitted  or  received.  The  following 
diagram will show how the weak ‘zero’ state mode would be added to 
the previous circuit. The BRL signal is controlled by the ‘Disconnected” 
pin  which  disconnects  the  +5 and  –5  volt  supplies  from the  driver 
circuitry by turning Q5 and Q6 off. In normal operation, Q5 and Q6 are 
kept in the ON state. Q4 is just a level shifting transistor. 
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The two data lines are independently controlled in the data transfer 
process, so it’s possible for both lines to be idle, or one line idle and 
the other active, or both lines active at the same time. When a line is 
made active on a transmitting device, it can only be an output and not 
used as an input unless an “emergency break request” is issued by 
another device or a fault condition is detected. The device (or devices) 
on the opposite receiving end will immediately become inputs which 
will detect the presence of an active data line. This “emergency break 
request” is a new feature recently added to for high priority interrupts, 
and is rarely used compared to the standard break request. 

Since the idle state is determined by the voltage through a pull-
up or pull-down resistor, and an active state sets a data line to +5 or –
5 volts directly, the active state always has priority over and overrides 
the idle  voltage state.  The break request-high (BRH) is  an interrupt 
feature which can also override the idle voltage and bring the voltage 
of  the  data  line  to  ground  potential  (0  volts)  directly  through  a 
switching  transistor.  The  following  diagram  shows  how  the  circuit 
would  look  with  this  feature  added.  Q9 and Q10  are  the  switching 
transistors that pull DH and DL to ground from their idle states. D5 and 
D6 prevent interference between the two active transistors on a data 
line. This circuit does not include the rarely used “emergency break 
request”  feature,  so  the  ordering  of  the  four  possible  states  so  far 
would  be  (1)  active,  (2)  break  request-high,  (3)  idle,  and (4)  break 
request-low.
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In the latest development, this break request-high signal will also be 
able to override the active state voltage on a data line (this addition is 
the  “emergency  break  request”  feature).  The  break  request  signal 
would then have the highest priority of the four data line states, and 
any device can use this signal at any time to take immediate control of 
the data line. This new state would need a second switching transistor 
to bring the opposite voltage level (active state) to ground potential 
since  a  switching  transistor  can  switch  current  on  and  off  in  one 
direction only. Therefore, the ordering of four states from strongest to 
weakest would become (1) break request-high, (2) active state, (3) idle 
state, and (4) break request-low.

The diagram below modifies the previous circuit to include this 
new “emergency break request” feature.  Q11 has been added which 
is the second switching transistor for break request. There are also two 
more level shifting transistors Q12 and Q13. D6 and D7 provide circuit 
isolation since the current is one-way for each switching transistor.  A 
470 ohm resistor  has  also  been added for  limiting  the  active  state 
current.  I  have  shown   only  the  circuitry  for  the  DH  line,  as  the 
component count is getting a little high (14 transistors and 8 diodes 
total).  The circuitry  for  the DL line would  be in  a similar  format as 
shown  here  anyway,  except  it  would  be  in  reverse  “mirror  image” 
format. This diagram is pretty much what the finalized version of an 
SSB circuit would look like.
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This  circuit  is  actually  simplified  from  what  it  was  in  an  earlier 
development. I had designed a special ‘wired AND’ circuit which was 
used  for  receiver  responses.  It  made  sure  every  receiving  device 
responded to a signal. But this function is now taken care of by the 
Disconnected (BRL) signal.

The following diagram is basically the same circuit as above, but 
I removed all of the “level shifting” components to simplify it so the 
reader  can  get  a  better  understanding  of  how  the  circuit  actually 
works. Only components that directly affect the data line are shown. 
This schematic also shows how the circuit will look when connected to 
other devices.
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To make the diagram simpler, I left out the four driver transistors on 
Devices 2, 3, and 4, but the reader can assume that they are still there 
according to what is shown on Device 1.

The four possible states for the two data lines which are each designed 
for  special  purposes  according  their  designated  voltage  levels  are 
summarized as follows:

+5 volts - idle state for DH; active state for DL
0 volts - (‘strong’ ground) break request-high (BRH)
0 volts - (‘weak’ ground) missing connection or break  

request-low (BRL)
 -5 volts - idle state for DL; active state for DH
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3. Fault Conditions

The reason that the higher order  break request was added is 
because the original one can only be used to interrupt transmissions if 
at least one of the two data lines is in the idle  state. If for some reason 
a fault occurs where both data lines are tied up in the active state 
voltage  potential,  it  would  be  necessary  for  this  condition  to  be 
interrupted, and then have each device (or at least the device at fault) 
brought into a shut-down or low-power mode of operation. This is the 
reason for  the ‘emergency break request’,   which  also  is  a  part  of 
break request-high (BRH), but uses the second switching transistor. As 
it is applied to a data line, it will switch any active voltage on the line 
to  ground  directly  through  this  switching  transistor.  There  still  is  a 
possibility that even an emergency break request will fail to bring the 
device at fault out of its active state condition. In this case all devices 
on the bus line would probably have to go into their shut-down or low-
power mode. This ‘emergency break request’ will be very rarely used, 
if at all, and almost all break requests will be issued by the BRH signal 
that controls the first switching transistor, which pulls the idle state to 
ground.  However,  this  change  alters  the  ordering  of  states  from 
strongest to weakest, so that now break request-high is the strongest 
of  the  data  line  states,  where  before  the  ‘active’  state  was  the 
strongest.

If  a fault  or disconnection is  found anywhere in  this  circuit,  it 
would generally be detected by the devices connected to the data lines 
and the devices with the fault condition would shut down to a low-
power  mode  instantly  and  possibly  record  or  display  a  message 
indicating the problem. For example, if the one of the connector pins 
had an open circuit, both devices on a two-device SSB configuration 
would note this and shut down accordingly.

One  potential  problem  with  using  ‘zero’  state  in  the  ‘weak’ 
ground mode is when the connector is  connected and one or more 
devices are in their operating mode. In order for the data line to be at 
zero volts, both ends would have to be in their high-impedance ‘zero 
state’ mode. If any one of the devices were in an active state or idle 
state on this line, the entire line would be set at +5 volts or –5 volts. It 
would  be  impossible  for  one  device  to  signal  a  ‘break  request’  to 
another device using this ‘weak’ ground because the +5 volts or –5 
volts  from  the  opposing  device  would  override  this.  Therefore,  a 
‘strong’  ground  was  designed  which  would  be  used  for  the  break 
request,  and  the  ‘weak’  ground  for  the  other  conditions,  such  as 
connected/disconnected, device on bus line with power off,  or some 
other fault condition.
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Another potential problem is that the circuit as shown would not 
be able to detect an open circuit condition between one of the resistors 
and  ground  unless  the  connector  is  disconnected  and/or  special 
circuitry for this is added. When the 100K resistors on both sides are 
connected, the data lines would see a 50K resistance to ground (two 
100K resistors in parallel). If one of the resistors inadvertently becomes 
disconnected, the corresponding data lines would see a 100K resistor 
to ground. This couldn’t be detected with digital logic circuitry and an 
analog comparator would be needed in this case.
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4. Sensing Connection/Disconnection

When two or more devices are connected together in a simple 
common bus line arrangement, the two data lines will normally be in 
their idle states, and would go into their active states momentarily as 
pulses are applied from the transmitter on one line and the receiver on 
the opposite line. With this kind of system, it becomes apparent that 
there is no reliable way for the hardware to determine if  a device’s 
connector is plugged in or not. 

The only effective way that can be found to determine if there is 
no  connection  is  by  momentarily  turning  off  the  drivers  through 
software which sets the high impedance-input state and checks to see 
if the data line is still pulled low (or high) by the other side. The device 
could be put in a check mode for 1 millisecond for every 1 second 
period, for example. If the other device (or devices) are turned off or 
there is  no connection,  the line would  be at zero volts  through the 
100K resistor. In this case a shutdown occurs, and the disconnected 
device would go into a low-power mode where all of its data lines are 
held in their high-impedance state and kept at zero volts through a 
100K resistor. Another important consideration is that the DH and DL 
pins should not be left floating in the low-power mode, but they should 
be set to an acceptable voltage level through the 100K resistors. 

Once there is a disconnection and a device is in the low-power 
mode,  it  should  be  possible  to  determine  when  the  connector  is 
plugged in  again  and thus bring  the  device  back into  its  operating 
mode. When the device is plugged in again to a network configuration, 
it  will  sense  the  voltage  levels  on  the  data  lines  immediately  and 
power up accordingly. But if there is a two-device configuration, and 
both devices are inactive with their inputs held in a high-impedance 
input state, they would not be able to tell the difference between a 
connection and a disconnection. Each of the four inputs would only see 
a ground potential (zero volts) through either a 100K resistance (no 
connection) or a 50K resistance (connected). As I mentioned earlier, an 
analog comparator circuit would be needed to detect this. 

A simpler way would be to apply a 1 millisecond pulse for every 1 
second  period  in  a  similar  manner  as  when  a  check  is  made  for 
disconnection. This time, instead of momentarily putting one data line 
in the high impedance-input state, the data line would be momentarily 
taken out of the impedance-input state. An input on one end would 
become and output for 1 millisecond in its idle state voltage. The high-
impedance  input  on  the  other  end  would  immediately  detect  this 
change and would assume that the connection is made and go back 
into normal operating mode. The end that sent the pulse would then 
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detect the power up on the opposite end also power up into its active 
state. All inputs would then become as outputs with idle state voltages. 

There is one main difference between this pulse sending check 
for  connection  and  the  one  for  disconnection.  The  check  for 
disconnection  requires  all  four  I/O  pins  to  send  a  pulse  at  certain 
intervals. This is done so a thorough check can be made for an open 
circuit,  the device opposite end being turned off,  etc. The check for 
connection only requires one I/O pin on one end to send a pulse at 
certain intervals (All four I/O pins could be sending pulses, but this is 
not necessary). As soon as a positive response is found on one pulse 
(or several pulses, to add a ‘debounce’  mechanism), the entire circuit 
on both ends would become activated accordingly.
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5. Data Transmission and Reception

So far I  have only discussed idle state circuit  conditions when 
there is no actual data being transmitted from one end to the other. I 
have  done  this  to  verify  the  basic  structure  of  the  circuit  and  the 
extent of the hardware needed for reliable data transmission to make 
it  relatively  error-free  with  adequate  fault  detection.  The  following 
discussion  will  move  away  from  the  hardware  aspects  of  SSB  and 
consider more in the software end of the spectrum as the sequential 
timing and logic for data transmission and reception is explained. 

It can be generally assumed that the Simple Serial Bus would be 
a peer-to-peer half-duplex link between two devices. There should be 
no specific requirements placed on the serving devices, and the data 
transfer speed should be self-adjusting and entirely dependent on the 
instantaneous conditions over the link. The auto-adjusting features of 
SSB will allow it to accommodate devices of different speeds. By using 
these features, along with a special signal ‘debounce’ filter algorithm, 
SSB should perform very well in noisy environments. 

Another major difference between SSB and other technologies is 
that SSB utilizes a pseudo-differential transmission channel that differs 
both from single channel and normal differential lines. Two data lines 
are  required  as  in  the  normal  differential  lines,  yet  they  can  be 
controlled individually and independently of each other as though they 
were single channel links.

As a device transmits or receives data, it does so one bit at a 
time, so that the data transfer can be thought of as a sequence of bits 
rather than bytes. Each sequence of bits can be thought of as a block 
of data, and each block
is  terminated  with  a  ‘break  request’  from  either  the  receiver  or 
transmitter which signals the end of the block. This eliminates a lot of 
extra overhead on the system and also allows the transmission to be 
interrupted during any bit in the sequence by a ‘break request’ from 
either the receiving end or the transmitting end. 

The  process  of  data  transmission  in  SSB  starts  when  the 
transmitting device issues a ‘beak request’ followed by a 6 bit address 
which  is  for  the  intended  receiving  device.  This  6  bit  address  is  a 
recent  development  for  SSB networking,  and  is  used  to  verify  that 
there is a receiving unit connected to the data lines and is enabled to 
receive data. More will be said about this later, but for now it will just 
be  stated  that  the  break  request-low  signal  (BRL)  will  be  used  to 
confirm the receiver’s presence on the data lines. Since this is a ‘wired 
AND’ signal, all non-transmitting devices will  issue this signal except 
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for the intended receiver.  So if the data lines are both not at ground 
(BRL)  potential,  then  the  transmitter  has  its  confirmation,  and  will 
commence with the transmission. If any data line is at ground (BRL) 
potential,  then the transmitter assumes that the intended receiver is 
not  available,  and  the  transmission  is  aborted,  and  the  transmitter 
issues another  break request-high (BRH)  to  signal  to  the remaining 
devices that the transmission has ended.

If  the  transmitter  has  received  the  confirmation,  it  will 
immediately  start  transmitting  one  bit  after  another  until  the 
transmission is  complete for  a block of  data or a ‘break request’  is 
issued  by  either  transmitter  or  receiver  for  some  reason  which 
terminates the transmission during the transfer of the interrupted bit in 
the sequence.

Since this  transmission process is  bit  oriented instead of  byte 
oriented as in other protocols, a sequence of eleven bits for example 
would be transferred as a sequence of eleven bits instead of two bytes 
(sixteen bits) as in other protocols. If the data length is more than one 
bit, the least significant bit is always transmitted first, so that an entire 
byte of information would be transmitted as:

If the data length is more than one byte, it would be transferred as one 
continuous stream of bits unless the ‘break request’ feature is used for 
one device to signal to the other that that an entire byte has been 
transmitted (or received). The transmitted data sequence doesn’t have 
to be broken down into bytes, but it could be a block of data bits of any 
reasonable  length.  It  would  be  possible  to  transmit  very  long  data 
sequences  using  this  method  with  no interruptions,  but  in  order  to 
avoid errors, it is recommended to break the long sequence down into 
several blocks of data. 

If there was a data transfer done using blocks rather than one 
continuous  sequence,  there  should  be  an  ‘agreement’  between 
transmitting and receiving units as to how long each block of data bits 
should be. For example,  if  the transmitter plans on sending several 
blocks of data with fifteen bits each, the receiver could know this block 
size number (15), so that it can issue a ‘break request’ every time a 
block of fifteen bits has been received
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If there is no agreement between transmitter and receiver about 
the number of bits in each block, the transmitter can still send several 
blocks with fifteen bits each, but they would be counted as separate 
data transmission sequences, and the transmitter would send a ‘break 
request’ signal to the receiver whenever the transmission of a data 
sequence is finished. 

The ‘break request’ signal doesn’t have to be sent only at the 
end  of  the  data  sequence,  but  can  be  sent  anytime  during  the 
transmission  of  any  bit  by  either  transmitter  or  receiver.  This 
interruption can occur for many reasons, such as data buffer full, error 
in data transfer,  or  another higher priority  task is  to be performed. 
Therefore, the data transfer process will continue until the transmitter 
or receiver issues a final break request signaling to the other device 
that all of the data has been transmitted or until one device signals to 
the other that the transmission should be stopped, and the remainder 
of the data transfer process would be aborted. If the receiver issued a 
break request to signal a condition such as error found in transmitting 
or receiving data, this would cause the transmitter to resend the data 
previously  sent.  Sometimes  the  internal  capabilities  of  a  receiving 
device only allow a limited number of bits to be transferred, so in this 
case  the  receiver  would  issue  a  ‘break  request’  on  the  last  bit 
allowable, and the transmitter would cease immediately and abort the 
remainder of the data block transfer, if any. Up to this point, a break 
request  has  always  indicated  the  start  or  end  of  data  transfer 
sequences,  where  the  transmitting  device  issues  the  initial  break 
request, and either transmitter or receiver can issue the data block 
ending break request.

The timing diagrams for a ‘break request’ issued by a transmitter 
differs in format from a ‘break request’ issued by a receiver. This will 
be explained later following the data transfer timing diagrams. 
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6. Timing Diagrams

The  timing  diagrams  shown  below  will  demonstrate  how  the 
actual transmission of a bit of data takes place on the two data lines 
(DL and DH). Voltages in the range of +5 volts to –5 volts are shown in 
the vertical coordinate, and the time between the various states are 
shown in the horizontal coordinate. The DH data line is indicated by the 
blue timing waveform, and the DL data line is indicated by the red 
timing waveform. 

Each of the D-lines are used specifically for one the two binary 
data bit values. The DH data line is used basically for transmitting and 
receiving a logic ‘1’  value,  while the DL line is for transmitting and 
receiving a logic ‘0’ value. During the transmission of one of these two 
values,  the  opposite  data  line  automatically  becomes  a  data 
acknowledgement  signal  line  where  the  receiver  would  provide 
confirmation  to  the  transmitter  that  a  valid  bit  of  data  has  been 
received.

An example  diagram showing the process  of  transmitting  and 
receiving a single data bit is shown below for the transmission of the 
logic ’1’ value. The DH and DL lines start in their idle state voltages as 
explained before, and then the transmitter initializes the process by 
energizing the DH line from its idle state (+5V) to its active state (-5V). 
The line is kept in this state and held until  the opposite line (DL) is 
activated  by  the  receiver  as  confirmation  (state  1).  When  the 
transmitter receives this acknowledgement signal, it can assume that 
data transfer was successful, and proceeds to deactivate the DH line 
back  to  its  idle  state  (state  2).  During  this  time,  the  receiver  was 
waiting for the DH line to return to idle as it indicates to the receiver 
that the transmitting device has received the acknowledgement signal. 
After sensing this signal, the receiver will be able to return the DL line 
back to its idle state which completes the data transfer process for a 
single data bit value of ‘1’ (state 3).

21



The data transfer process for a single bit of logic value ‘1’ data can be 
summarized as follows:

State 1:   Transmitter puts DH to active state (-5V)
State 2:   Receiver puts DL to active stage (+5V)
State 3:   Transmitter returns DH to idle state (+5V)
State 4:   Receiver returns DL to idle state (-5V)

The logic ‘0’  value is  sent in a similar way but in a kind of  ‘mirror 
image’ format. Again, both lines start in their idle states as before, and 
then the transmitter starts the process by changing the DL line from its 
idle state (-5V) to its active state (+5V). The line is kept active and the 
transmitter  waits  for  the  opposite  line  (DH)  to  be  activated by  the 
receiver  as  confirmation  (state  1).  As  the  transmitter  receives  this 
acknowledgement  signal,  it  means  that  the  data  transfer  was 
successful, and then returns the DL line back to its idle state (state 2). 
Finally, the receiver returns DH back to the idle state as it receives 
confirmation  that the transmitter has received its  acknowledgement 
signal (state 3). This completes the data transfer process for a single 
data bit value of ‘0’. 
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The data transfer process for a single bit of logic value ‘0’ data can be 
summarized as follows:

State 1:   Transmitter puts DL to active state (+5V)
State 2:   Receiver puts DH to active stage (-5V)
State 3:   Transmitter returns DL to idle state (-5V)
State 4:   Receiver returns DH to idle state (+5V)

The transmitter was also waiting for the final receiver signal in state 3 
of both diagrams and both lines are back in their idle state, where a 
new bit transfer can be initiated or the control  could be transferred 
somewhere else depending on interrupts,  break conditions,  etc.   Of 
course, a certain “debounce” time must pass before another event can 
take place.
This  data  transfer  method  should  work  well  even  when one  of  the 
devices operates at a clock speed far greater than the clock speed of 
the other device. There is no clock synchronization between devices, 
so the transfer speed is  self-adjusting in  the sense that one device 
always  waits  for  the  opposite  device  to  send  its  acknowledgement 
signal. 

There is no time limit for keeping a line in an active or idle state 
in any of the three states shown in the above diagrams. Any of the two 
lines can be kept in any state indefinitely while waiting for the other 
device  to  respond.  This  would  make  this  SSB  protocol  completely 
independent of device speed.

As seen above, this form of data transfer ‘handshaking’ reverses 
the functionality of the two data lines in the transfer process of logic 
value ‘1’ and logic value ‘0’. The DH line is a data transmission line and 
DL is the receiver acknowledgement line for logic value ‘1’. The DL line 
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then becomes the  the  data  transmission  line  and DH becomes the 
receiver  acknowledgement  line  for  logic  value  ‘0’.  They  would  also 
operate at opposite voltage levels for these bit transfers, so in a sense, 
the pattern for the logic ‘1’ transfer and the pattern for the logic ‘0’ 
transfer are mirror images of one another.

This  feature  of  using opposite  voltage levels  on  the two data 
lines provides an error detecting feature that would prevent errors in 
mixing up the two data lines when connecting a new device. The DH 
line has an idle state voltage of +5 volts and is usually at this level at 
all times while connected unless a data transfer is taking place where 
there are short pulses to –5 volts. In a similar way, the DL line has an 
idle state voltage of -5 volts except when there are short pulses to +5 
volts.  Checking these idle state voltages can easily determine which 
data line is DH and which one is DL. 

If the DH and DL did not operate at opposite voltage levels, but 
instead operated at the same level as other communication protocols 
normally do, the pulses for data bits would appear the same way for 
both logic values. The acknowledgement pulses would also appear the 
same way and the two data lines could easily become reversed. A logic 
value ‘0’ could be mistaken for a ‘1’, and  a ‘1’ could be mistaken for a 
‘0’.
 

This  data  transfer  method  would  eliminate  at  least  one  and 
possibly two the the handshaking control lines used in other serial data 
transmission  protocols.  Most  of  these  protocols  use  a  ‘Data  Valid’ 
signal line along with a separate data bit line as the transmitter sends 
its data. The receiver would then respond with a ’Data Accepted’ signal 
on a separate control line in the same fashion as is done here with the 
opposite data line.  This  new SSB method combines the ‘Data Valid’ 
signal with the data bit signal into just one signal line as their timing 
and polarity is the same in each case for both logic ‘0’ and logic ‘1’ 
transmission.  The  opposite  line  always  becomes  a  control  or 
‘confirmation’ line when transmitting data.

Other  control  lines,  such  as  DSR  (Data  Set  Ready),  and  CTS 
(Clear  to Send)  normally  found in  protocols  such as RS-232 can be 
effectively  eliminated  since  these  signals  basically  just  let  the 
transmitter (master) know that the receiver (slave) is ready to receive 
data. With this SSB protocol, these signals are automatically implied 
when both data lines are in their idle states and a certain ‘debounce’ 
time has passed since the last data line transition. Once a transmitter 
takes  over  the  data  lines  and  initiates  a  transmission,  only  the 
intended receiver is automatically enabled to receive data while the 
other receivers on the bus lines (if any) are disabled.
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The ‘debounce’ time is a certain minimum time that must pass 
after the final transition in state 3 where both data lines are in their 
idle states before a new data bit can be sent. In fact, any time there is 
a transition at all  in the previous timing diagrams, there must be a 
certain ‘debounce’ time where the data line is required to be in the 
same state for at least this minimum time in order to be considered 
valid  by  the  receiving  device.  This  ‘debounce’  time  can  be 
programmed individually for each device, and each device would use 
this same debounce time for detection of  ‘idle’  state, ‘active’  state, 
‘break request’, ‘disconnected’, and data bit transfer complete.

The  SSB  configuration  does  not  use  edge-sensitive  logic  like 
some protocols do, but uses level-sensitive logic instead. The diagram 
below shows what a typical ‘debounce’ time period might look like for 
detecting an ‘active’ state.
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7. Break Request

I  have explained earlier  about how a ‘break request’  signal  is 
used anytime by either transmitter or receiver to indicate end of data 
transfer, unable to receive data, error in data sent, and many other 
conditions.  This  is  a  multi-purpose  feature  that  would  allow  this 
transmission protocol to eliminate many of the control lines found in 
other  serial  communications  methods,  such as  DTR,  DSR,  RTS,  etc. 
There would also be no need for certain software methods, such as an 
enumeration process, as the information needed about the device is 
already  assumed  through  DIP  switch  settings  or  other  similar 
parameter setting methods.

The following diagrams will show how a ‘break request’ issued by 
either transmitter or receiver can abruptly halt any data transferring 
activity, and then have the data lines set back in their ‘idle’ mode. The 
break request timing diagram format differs between transmitter and 
receiver as follows: When the receiver issues a break request, instead 
of acknowledging the data bit sent by activating the opposite data line, 
it places it at ground potential, or zero volts (state 1) by activating BRH 
for that line. At this point, the transmitter is notified that the receiver 
cannot accept more data bits and terminates the transfer by returning 
its data line back to its idle state (state 2). This confirms that the data 
transfer has been terminated, and marks the end of the data block. 
After  detecting this  transition,  the receiver  is  also due to reset  the 
opposite data line to its idle state (state 3). 

At this point,  both data lines are in their idle states, and both 
devices  have  been  given  information  that  data  transmission  has 
stopped, and the data lines are in their normal operating mode again, 
waiting for the the transmission of a new block of data to begin. As 
shown  below,  the  timing  diagram for  the  receiver  issuing  a  break 
request is the same as the one for a normal data bit being sent, except 
that the acknowledgement pulse from the receiver is ‘clipped’ to zero 
volts.

26



Under normal conditions, the break request will only need to be issued 
by the transmitter to mark the beginning and ending of a data block 
transfer. (Although a transmitter can interrupt data transfer for other 
reasons too, such as error conditions.) As shown in the diagram, the 
transmitter  starts  by  placing  one  of  the  two  data  lines  (it  doesn’t 
matter which one, but not both)  at ground potential  (zero volts)  by 
activating BRH for that line. The transmitter then waits for a response 
as  the  receiver  confirms  the  break  request  signal  by  setting  the 
opposite data line to ground potential (state 1) by activating its BRH 
signal. At this point, both data lines are at the zero volt level indicating 
break request. As soon as transmitter detects that its break request 
has been verified, it will return its data line back to the idle state (state 
2). This transition would also indicate to the receiver that the break 
request has been verified and it will reset the opposite data line to its 
idle state (state 3). 

So at the final stage, both data lines are back in their idle states, 
and both  devices know that data transmission has stopped, and the 
data lines are in their normal operating mode again waiting for new 
transmission  block.  As  shown  below,  the  timing  diagram  for  the 
transmitter issuing a break request is the same as the one for a normal 
data  bit  being  sent,  except  that  both  the  data  bit  pulse  from  the 
transmitter  and the acknowledgement pulse from the receiver have 
been ‘clipped’ to zero volts.
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A break request pulse issued in this way can be considered as a 
third pulse type along with the first two pulse types for logic value ‘0’ 
and logic value ‘1’. So instead of being a binary protocol, the system 
would  have  essentially  a  ‘trinary’  protocol.  A  sequence  of  two  bits 
would have 3 * 3 or 9 possible combinations instead of the 2 * 2 or 4 
combinations possible in a binary code. This would add much control 
capability to the system as each bit sent can contain not only data bit 
value information, but also control information. This is how the break 
request  feature  can  replace  some  of  the  control  lines  found  in 
protocols like RS-232, such as RTS, DTR, and DSR.

The break request signal should be such that it dominates, or has 
priority over the active and idle state signals on each of the two data 
lines. Therefore, it would be possible for any device to issue a break 
request at any time on either bus line, and it would take control over 
the data lines and abruptly stop any transmissions taking place. This 
would allow a higher priority activity to be done on the bus lines, such 
as  an  emergency  procedure.  For  example,  one  device  could  be 
drawing  excess  current,  and  the  data  lines  need  to  be  brought  to 
ground level (0 volts) immediately.

The order of precedence, from strongest to weakest of each of 
the possible states on the common data bus lines are as follows: (1) 
break  request,  (2)  active  state,  (3)  idle  state,  and  (4)  disconnect 
ground. I have thoroughly discussed the first three, and I will mention 
more about the disconnect ground later.
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8. SSB Networking

So far, this document has mostly described the basics for SSB 
communications  between  two  devices,  so  the  break  request  as 
described was only used to mark the beginning or ending of a data 
block  or  some  other  condition  which  requires  data  transmission  to 
stop. But when more than two devices are connected, as they would 
be  in  a  network  configuration  with  common  bus  lines,  the  break 
request signal could be used for other purposes.

When  a  transmitter  sends  data  in  this  configuration,  it  isn’t 
necessary for all of the non-transmitting devices to receive data, but 
only  the  intended  receiver  should  receive  it.  In  this  case,  the 
transmitter  needs to send a  message indicating the address  of  the 
intended  receiver,  so  each  of  the  non-transmitting  devices  can 
distinguish this, and enable or disable themselves accordingly. 

This addressing message would be sent by the transmitter just 
before the data message itself, and this would be the SSB protocol for 
common bus line networking. The addressing message itself would be 
a simple binary number about 6 or 7 bit long, which can address up to 
127  devices.  This  binary  address  would  mark  the  beginning  of  a 
sequence or block of data to be transmitted.
 

This is a simplified approach to adding additional devices to the 
basic  two-device  SSB  communication  system.  One  of  the  main 
problems with this approach would be the possibility of transmission 
collisions.  One  of  the  ways  of  solving  this  would  be  by  using  the 
‘random  delay’  concept  similar  to  what  is  used  in  Ethernet.  A 
transmission collision can be detected by all devices on the bus line 
within the first few bits of information, which can be used as a signal to 
shut down all transmissions for a certain time period. This time period 
is programmed to be a ‘random delay’ which would be different for 
each device to avoid another collision when data transmission starts 
again. If the two devices that had their transmission cancelled are still 
actively  waiting  to  re-transmit,  the  device  with  the  shortest  delay 
period would have an opportunity  to transmit  again with almost no 
chance of collision.

Another  major  problem  that  needs  to  be  solved  with  SSB 
networking is how to determine how devices are to be notified when 
any other device (or devices) are plugged in or unplugged from the 
common bus  line.  It  would  be  a  simple  matter  to  determine  when 
devices are removed (exclusion). When another device tries to send an 
addressing message to it, it would immediately sense no response, and 
thus determine that the device is excluded. Since each device on the 
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bus lines are listening to the transmit and receive activity,  all  non-
transmitting device would also be able to sense device responses or no 
responses  and  they  would  be  able  to  record  information  for  the 
removal of a device accordingly. The removed device itself (if it’s still 
on)  would  use  the  pulsing  technique  described  above for  detecting 
whether or not its connector is plugged in or not, and it will disable 
itself by going into the low-power ‘zero’ state mode (BRL) immediately. 

Detecting the inclusion  of  a device is  a little  more difficult  to 
solve. In a normal network mode, transmitters would be sending data 
only to those devices with ID numbers that have been recorded for the 
network at  that particular  moment.  Each device’s  ID number would 
correspond to  a  bit  in  a  bit-map.  If  a  new device  plugs  in  with  an 
address that is different from these recorded addresses, it would be 
ignored since its  address is  not  included with those on the bit-map 
(each  device  has  exactly  the  same  bit–map  set  up  for  connected 
devices).

The most recent development in SSB networking that will solve 
both  the  collision  problem and the  inclusion/exclusion  problem is  a 
scheme  that  uses  a  rotational  “taking  turns”  concept.  With  this 
algorithm, only one device can have control of the bus lines at any 
given moment. Each device gets a time slot for this as this bus line 
control is passed sequentially in a rotational pattern to each connected 
device, one at a time. As one device takes its turn for controlling the 
bus lines, it will have the option of transmitting a block of data. If it has 
no data to transmit, it just passes control of the bus to the device with 
the next higher ID number. If this number is already the highest, then 
it  passes  to  the  lowest.  If  the  bus-controlling  device  has  data  to 
transmit, then it will transmit the data sequentially as explained above, 
and then transfer control to the next device.

Each  device  looks  up the  address  for  the  next  corresponding 
device in the bit-map as it transfers control to it. So each connected 
device  is  addressed  directly  from  the  preceding  one.  This  scheme 
solves the collision problem since it is only possible for one device to 
transmit at any given moment. The problem of exclusion is also easily 
solved as explained above when there is  no device response to an 
address.  However,  this  approach  still  doesn’t  solve  the  inclusion 
problem since the addressing messages are sent only to those devices 
that  have corresponding bits  set in  the bit-map.  If  a  new device is 
plugged in, it will be ignored as before. 

There  is  a  way  to  solve  this  using  the  same  basic  rotational 
“taking turns” method. Instead of addressing each connected device 
directly according to a bit-map, the devices could be addressed in a 
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sequential  manner  with  the  next  ID  number  (ID+1).  As  one  device 
passes its bus line control over to the next device, it would start by 
incrementing its own ID by one and send an address message using 
that  ID.  If  there  is  no  device  response  for  ID+1,  it  will  send  the 
message to ID+2 and so on until a valid response is received and bus 
control  would  then  pass  on  to  another  device.  This  process  would 
continue for one complete revolution. In this way, a complete scan is 
made of all possible addresses, and newly added devices (inclusion) 
can easily be determined and plotted on the bit-map.

This ID+1 version of the rotational concept would not need to 
done for every cycle, but instead it would be done for one cycle for 
every 63 cycles of the direct addressing form of the rotational concept. 
This would combine the two concepts to create an efficient networking 
scheme with minimum overhead. The detection of devices added and 
devices  removed  from  the  bus  lines  is  considered  low  priority 
compared to scanning connected devices for data to transmit.

So the only difference between SSB networking and regular two-
device SSB communication  is  the inclusion  of  the intended receiver 
address  message  just  before  the  data  message  and  the  rotational 
“taking turns” concept that allows only one device to use the bus at a 
time in sequential order. The collision problem and exclusion problem 
are solved using this method. The inclusion problem is solved by using 
the ID+1 form of addressing once every 64 cycles. The direct form of 
addressing using bit-maps is used for the other 63 cycles for higher 
speed and efficiency.
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9. Disconnect Feature

There is a disconnect when there is no connection between the 
disconnected  device  and  any  other  device.  A  device  can  also  be 
considered disconnected if one of its data lines has a bad connection 
or there is some other fault in the device’s driver circuitry. If one of 
these conditions occurs, the device automatically turns all of its output 
driver transistors off, and the device goes into a low power mode with 
high-impedance  data  line  inputs.  These  inputs  are  also  connected 
through a high value resistor to ground, so the device’s two data lines 
would be at ground potential (0 volts), assuming that both lines are 
disconnected from any other device.

This would be a ‘weak’ ground, and it would be the weakest state 
of all the four data line states, and any connected device can dominate 
a data line in this ‘weak’ ground state by applying an idle or active 
state voltage.  The only  way to bring that  data line back to ground 
potential (0 volts) then would be to override the idle or active state 
voltage  with  a  break  request.  This  is  a  ‘strong’  ground  and  is  the 
strongest of the four data line states.

The diagram below shows how the data line voltages would look 
as an individual device is connected and later disconnected from the 
other device (or devices). If  the devices were set up according to the 
regular  two-device  SSB  communication  format,  both  devices  would 
show this waveform on their data lines. If  the devices were set up for 
SSB  networking,  only  the  disconnected  device  would  show  this 
waveform,  while  the  data  line  voltages  on  the  networked  devices 
remain the same, since they don’t sense a valid disconnection. They 
would only sense the exclusion of one of the connected devices.
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It  may also  be desirable  to  use the ‘disconnected’  state when it  is 
known that a device will not need to transmit or receive data for a long 
period of time. A device in this case will  be able to put itself in the 
‘disconnected’ state even though it is connected to another device (or 
devices). The device would be in a very low power mode where all of 
its driver transistors are off, and this would become a third state as 
found in typical tri-state circuitry where the inputs are high–impedance 
and  are  connected  through  a  high  value  resistor  to  ground.  This 
method would increase noise immunity and network efficiency.
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10. Connector Specifications

The following chart is a preliminary electrical specification for the 
basic SSB circuit as described. This shows the voltage ranges each or 
the  four  data  line  states  (active,  idle,  ‘strong’  ground,  and  ‘weak’ 
ground). The transition between states is done with hysteresis. 

Idle Active
DH +2.4V to +5V -2.4V to -5V
DL -2.4V to -5V +2.4V to +5V
Zero -0.8V to +0.8V
Power +4.5V to +5.5V DC 1A max.

The  basic  SSB  circuit  will  use  a  4-pin  connector  with  pin 
assignments  for  VCC,  DL,  DH,  and  GND.  The  fourth  pin  can  be 
considered optional as it is used only to transfer electrical power (VCC) 
between devices. This would work well for configurations where only 
one device on the network has an internal power supply,  but if more 
than one device on the network has a power supply, or to shut down 
power transfer when there is excessive current being drawn, a power 
distribution circuit should be used as discussed in the next section.

Therefore,  the  connector  would  be  either  3-pin  or  4-pin, 
depending on the voltage supply configuration. The connector should 
be  designed  such  that  it  mechanically  prevents  itself  from  being 
plugged in a reversed state. If possible, a connector should be found 
which would be able to drive both the data lines to ground directly or 
through a small value resistive load in the disconnected state. 

Also, the recommended connector should be able to connect the 
GND pin before the data line pins. If the VCC pin is used, it should be 
connected before the data line pins also. 
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11. SSB Power Distribution

There are times when devices hooked up to a SSB circuit don’t 
have their own internal power supply, and it becomes necessary to rely 
on the power supply in another connected device for operation. In this 
case a fourth pin on the connector is needed which will allow power to 
be transferred between devices. 

This  creates  a  variety  of  problems  with  a  common  bus  line 
configuration, however. The first problem is when there is more than 
one  device  hooked  up  which  have  internal  power  supplies.  This 
question  would  be how to  determine which  of  these devices  would 
supply power to the non-powered devices on the network (if any).  The 
next consideration would be how to design the power transfer circuit 
so that each of the devices with internal power can operate normally 
with no interference from other powered devices in the network.

The second main problem is on how to handle a situation when 
there  is  excess  power  being  drawn  by  one  of  the  devices  in  the 
network.  In this  case,  the fourth (power transfer) pin should not  be 
used at all, and effectively removed from the circuit, so that a 3-pin 
configuration is used. This condition also shuts down all non-powered 
devices in the network, so that only the self-powered devices remain in 
operation. As soon as the defective device is disconnected from the 
network, each of the connected devices would sense this, and power 
themselves up back to normal operation. 

A standard USB network uses the “tiered star topology” to solve 
these  problems  on  how  to  distribute  power  between  devices.  This 
arrangement  uses  a  hub  system where  each  hub  on  a  device  can 
supply power to one and only one device in the downstream direction. 
A downstream device cannot transfer  power to an upstream device 
(host). The enumeration process informs the upstream device what the 
power requirements are in the connected downstream device. In this 
way,  there is  no confusion about  which devices  will  be transferring 
power to another, and each of the self-powered devices can use their 
own power as designated through the enumeration process. 

The  problem  of  current  overload  is  easily  solved  with  this 
method, since each downstream device connects to only one upstream 
device. The upstream device can just shut down power transfer to the 
one device below it that has is drawing excess current. And each or the 
remaining devices  can continue with  normal  operation,  whether it’s 
self-powered or not. 

The SSB network will not use many of these advanced features, 
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so its power transfer capability will have to be somewhat limited. With 
a common bus line approach, there can only be one device that can be 
selected  that  will  transfer  power  to  the  non-powered  devices 
connected to the bus.  This  device will  be selected according to the 
voltage level of its internal power supply. In normal operation, there 
are slight differences in these voltage levels between devices, and the 
one  that  is  found  to  have  the  highest  voltage  level  automatically 
selected  as  the  main  network  power  source.  Since  there  is  some 
hysteresis using this method, any self-powered device on the network 
can continue using its own internal power supply without depending on 
the main network power. However, any non-powered device will have 
to depend on the power received from the device selected as the main 
power source. 

The  device  with  the  highest  voltage  level  on  the  network  is 
selected according to the circuit below, where CMP1 compares the bus 
line power voltage directly with the voltage of its own internal power 
supply. If the bus line voltage is higher, SW1 is turned off, and the bus 
power line is used to supply power for the device. If its own internal 
supply voltage is higher, SW1 is turned on, and the device will become 
the main network power  source,  unless  there is  a current  overload 
somewhere, in which case CMP2 will turn SW1 off, and the device will 
again rely on its own internal power supply, if any. If there is a current 
overload  condition  on  the  network,  all  devices  on  the  network  will 
detect this, and this effectively disconnects the bus line power pin on 
the  connector  for  each  device.  The  self-powered  devices  can  still 
operate normally on its own power supply through D2. However, each 
of the non-powered devices will have to be shut down, which is one 
disadvantage  over  the  USB  protocol.  As  I  stated  before,  normal 
operation resumes as soon as the device at fault is removed from the 
network.

The  circuit  below  describes  the  concept  as  discussed  so  far. 
CMP1 compares the bus line voltage with the internal supply voltage, 
and  CM2 compares  the  bus  line  voltage to  a  lower  level  based on 
current overload conditions. SW2 and SW3 form a “wired AND” circuit, 
so that SW1 is on only when the bus line voltage is greater than the 
overload voltage and less than the internal supply voltage. 
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CM2 has priority  over  CMP1,  so that if  CMP2 shows excess  voltage 
drop, CMP1 has no effect on circuit operation. The circuit would still 
have to apply short pulses to the power line periodically to check if the 
device at fault has been removed. If it is, then the network can go back 
to normal operation. The diodes are important because they prevent a 
higher level voltage source from shorting out to a lower level voltage 
source on the bus line. If bus line voltage is greater than the internal 
power  supply  voltage,  D2 does the  current  blocking.  If  the internal 
power supply voltage is greater than the bus line voltage, D1 does the 
current blocking.

This circuit also works if there is no internal power supply preset, 
as this would register as zero volts on the comparators. SW3 would be 
on, and SW2 would be off, so then SW1 is off, which disconnects the 
internal  power  and  allows  externally  supplied  power  to  be  used. 
Another circuit, which has these it features, but may be a little simpler, 
is shown as follows:
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In  this  circuit,  the  output  of  CMP2  is  tied  directly  to  the  negative 
terminal  of  CMP1,  and  eliminates  the  need  for  the  “wired  AND” 
transistors. However, this doesn’t provide a reliable reference voltage, 
as the bus line voltage should be compared directly with the internal 
(+5 volt) supply voltage. There is also a problem when the bus power 
line is shorted to ground. This would set the CMP2 output low, but may 
not be low enough to set the output of CMP1 to high, which turns SW1 
off.  In  this  case  SW1 would  be  on,  and  the  device  will  attempt  to 
transfer power to a shorted bus line. This problem is corrected in the 
previous circuit, where SW3 is turned off whenever the bus line voltage 
is below a certain level.

12. Flowchart

Before I conclude this discussion, I will provide a flowchart here 
that  will  describe the various  concepts introduced in  this  document 
about  SSB.  This  is  by  no  means  complete  and  is  just  preliminary 
flowchart.  Many  topics  discussed  here  have  been  intentionally 
excluded. For example, I have a complete bit-by-bit description of how 
data reception takes place, but for transmitting data, there is just one 
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block that indicates “Transmit data”.  

The  main  idea  here  is  just  to  show  how  transmission  and 
reception  of  data  takes  place  and  how  the  addressing  scheme for 
networking works. As each device in the network takes its turn on the 
bus  according  to  the  rotational  “taking  turns”  algorithm,  it  will  go 
through  the  sequence  described  here  for  transmitting  options.  The 
receiving  devices  will  each  go  through  the  address  decoding 
mechanism, and if  it  matches its  ID,  it  will  go to the sequence for 
receiving data.

Each of the devices in a SSB network will use exactly the same 
software and exactly the same hardware. This is unlike protocols such 
as USB, where they use different hardware and software combinations 
for  the  host,  hubs,  peripherals,  and  now  the  recent  “On-The-Go” 
specification.
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13. Conclusion

This  concludes the preliminary  discussion of  the Simple Serial 
Bus concept. As you can see, there have been many design phases 
experimented with in order to find a solution that will work in a real 
world operating environment. As further development continues, many 
of the ideas presented here will be modified according to the particular 
needs at the moment. Hopefully,  this document can provide a basic 
foundation  for  further  development  that  will  create  a  serial 
communication protocol that can be easily understood by engineers, 
technicians, and hobbyists, and to make it relatively easy to implement 
in their projects as compared to other protocols.

May 28, 2011
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