
Simple Serial Bus

A New Serial Interface Concept

By James H. Reinholm

1. Introduction

The development of digitally based products has experienced
phenomenal growth worldwide in recent years, and it appears that this
growth will continue to increase at a rapid rate. Various industries such
as telecommunications, data processing, and home entertainment
systems rely heavily on the use of this new digital technology. Current
integrated circuit technology, namely VLSI (very-large-scale
integration), has made it possible to develop special purpose digital
devices and systems that are capable or performing a wide variety of
complex digital processing operations. Some of these processing tasks
are many orders of magnitude faster, smaller, and cheaper than they
were ten years before. Also, many functions that were usually
performed by analog means are now realized by less expensive and
more reliable digital hardware.

Most of these devices and systems require a form of
communication to transmit information to and receive information from
another system or device. As an engineering team goes through a
typical development process for a system or device, they don't think
much about the communication aspects of the system, but instead
they usually focus on the basic functionality from a user point of view
so that the unit would operate as intended when it is plugged in or
turned on. The engineer in this case would come up with a custom
designed module from a selected group of standardized components
and possibly from other components that are designed and built from
scratch. The 'scratch' components would be anything that is non-
standardized and could be just made from raw materials. This could
also be a new idea or concept that has not been tried before. Setting
up a new kind of configuration assembled from standardized
components could also be included in this category.

The standardized components would include any part with a
specification attached to it, such as integrated circuits, transistors,
resistors, etc. This standardized components category would also

include non-physical objects such as programming languages (C++,
Java, Perl, etc.). There are also standardized routines within these
programming languages along with several hardware and software
combinations that can also be considered as standardized
components. The communications protocols and networks can also be
included in this category, and these would include well known
standards such as RS-232, RS-485, USB, SPI, I2C, and many others.

As the engineer moves along in his design process, and he is
trying to come up with a system that would satisfy the customer, he
wouldn't waste much time in developing a new communication
protocol, but would instead use one of the established methods and
make adjustments to his system design so that it fits in. The most
likely choice would be USB, since this is such a universal protocol, and
many existing devices communicate using this protocol (printers,
scanners, cameras, etc.). Because of the popularity and other
advantages of the USB interface, some other interface protocols, such
as RS-232 and RS-485 are becoming obsolete. Even though USB is
simple to connect, the engineer would soon discover many features
about USB data packet transmission that are very difficult to
understand.

To get some idea of the complexity of the USB protocol, it would
be helpful to explain some of its communication methods. When a USB
peripheral device is connected to the host, a process called the
enumeration process is started. This is where the peripheral sends
information to the host about its identity, device drivers needed,
device speed, address, etc. This happens every time a device is
connected or disconnected.

All data transfers between USB devices occur through virtual
‘pipes’ that connect the peripheral's addressable ‘endpoints’ with the
host. An endpoint is a uniquely addressable portion of the peripheral
that is the source or receiver of data. When establishing
communications with the peripheral, each endpoint returns what is
called a ‘descriptor’. A descriptor is a data structure that describes the
endpoint's configuration and expectations, and include transfer type,
max size of data packets, perhaps the interval for data transfers, and
in some cases, the bandwidth needed.

Sometimes an engineer would see that many of these advanced
features would never be used on his project, in which case he would
decide to use RS-232 or RS-485 instead. Even the RS-232 and RS-485
interfaces have extra features that would probably not be needed and
lack certain qualities that would be needed, such as reliability in a
noisy environment and self-adjusting capability. Some of these older

2

protocols also lack reliable methods for detecting connection present
and certain errors that occur during data transfers. I will not discuss
the particular features of RS-232 and RS-485 at this time, but I will
leave that for discussion later on.

There are also instances where hobbyists are designing and
building a simple digital/analog circuit and need an effective method of
communicating with another device without getting involved with the
complexities of USB. An example would be a weather indicator, which
transmits temperature, barometric pressure, wind speed, and wind
direction to a separate display device. Another example would be for
an exercise machine or a bicycle, which can transmit parameters like
speed, cadence, time used, and distance traveled to a recording
device.

The aim here is to come up with a simple serial interface or SSB
(Simple Serial Bus) that would replace some of the more obsolete
methods such as RS-232 and RS-485 and to compete directly with the
established USB interface in terms of increased simplicity and
reliability, particularly in error detection. In designing such an
interface, it is important to consider what the engineer or hobbyist
actually needs in order to implement serial data communication in his
project. He would usually be operating on a limited budget, so he
would probably need something that he can understand easily and
come to a quick determination as to whether it would perform the
needed data transfer in a reliable manner.

In order to begin the design process of such an interface, it
would help to have a simple block diagram as to how the system would
appear to the engineer as he looks for a suitable communication
protocol for his project. I would start with something like:

3

This diagram attempts to simplify things by using two tri-state bi-
directional data lines along with a ground signal through the connector.
The simple arrangement of components as shown would be a good
starting point that could be use to maximize reliability for a basic serial
communication system.

The main advantage that the Simple Serial Bus would have over
other implementations, such as USB, would be its inherent simplicity,
and the concept would allow easy inclusion into low-level
microcontroller systems in a similar fashion that standards such as RS-
232 and RS-485 have done in the past.

4

2. Data Line States

The DH (data high) and DL (data low) would be set up as two
interacting data lines that are mirror images of each other. There
would be an idle state or condition where no data transmission is
taking place where the DH line is pulled to +5V (logic ’0’) on both sides
by internal pull-up resistors and the DL line is pulled down to –5V (logic
‘1’) on both sides by internal pull-down resistors. As long as the
connector is plugged in and both devices are active with power
applied, each one of these lines can be considered as inputs and
outputs on both sides simultaneously in the idle state. The internal
pull-up resistors provide the mechanism where both sides can be
outputs at the same time without damaging the devices by excessive
current drawn. Normally, in the idle state there wouldn’t be any
current drawn through these resistors anyway because each
connected device would pull the line to the same level.

This technique adds a great deal of simplification as compared to
other serial communication circuits where they avoid having both sides
used as outputs at the same time by a multiplexing arrangement or
other logic circuitry. When one end (transmitter or receiver) is used an
output, the other end would have to be set up as an input. Both sides
set up as inputs would also be allowable, but both sides could not be
used as outputs simultaneously because of the push-pull output stage
and there would be excessive current drawn if one is high and the
other low.

The DH and DL lines also have three other possible states other
than the ‘idle state’ just described. These are the ‘active state’ and two
‘zero’ state modes. The ‘active state’ of DH uses a transistor switch
which applies -5 volts directly to the DH line, and the active state of
DL uses another transistor switch which applies +5 volts directly to the
DL line. The following circuit diagram will show what has been
described so far for the active and idle states. This circuit is just a basic
starting point and more features will be added later as developments
are made. The circuit shows just Device 1 instead of both devices for
simplicity.

5

Since the data lines operate from +5 to –5 volts, and the
microcomputer operates only from +5 to 0 volts, there are level
shifting components needed. Q3 is used for the DH output and D1, D2,
D3, and D4 are used for the inputs. There are two inputs needed for
both DL and DH to detect the full range from +5 to –5 volts.

6

This basic circuit would need additional components in order to
use the two ‘zero’ state modes on the data lines. The DH and/or DL line
is set to ground potential (0 volts) in each of the two ‘zero’ state
modes, where one is a ‘strong’ ground and the other is a ‘weak’
ground.

The strong ‘zero’ state mode is mainly used for issuing break
requests and is called break-request-high (BRH). The weak ‘zero’ state
mode is called break request-low (BRL) and is used mostly as a low-
power standby feature where a device disables its driver circuitry in
networks when there is data transfer taking place and it is not on
either transmitting or receiving end. It is also used when a device has
sensed a disconnection, or if the devices (or just one device) are
turned off at the opposite end, or if there is a fault in the circuit. In this
state, the pull-up or pull-down resistor is effectively disconnected and
the active voltage supply switching transistors are off, and creates a
high-impedance input circuit on the data line. This state would be
typical of a low-power mode, and this ‘zero state’ mode could also be
activated if it is desired to conserve power in certain time periods
when there will be no data transmitted or received. The following
diagram will show how the weak ‘zero’ state mode would be added to
the previous circuit. The BRL signal is controlled by the ‘Disconnected”
pin which disconnects the +5 and –5 volt supplies from the driver
circuitry by turning Q5 and Q6 off. In normal operation, Q5 and Q6 are
kept in the ON state. Q4 is just a level shifting transistor.

7

8

The two data lines are independently controlled in the data transfer
process, so it’s possible for both lines to be idle, or one line idle and
the other active, or both lines active at the same time. When a line is
made active on a transmitting device, it can only be an output and not
used as an input unless an “emergency break request” is issued by
another device or a fault condition is detected. The device (or devices)
on the opposite receiving end will immediately become inputs which
will detect the presence of an active data line. This “emergency break
request” is a new feature recently added to for high priority interrupts,
and is rarely used compared to the standard break request.

Since the idle state is determined by the voltage through a pull-
up or pull-down resistor, and an active state sets a data line to +5 or –
5 volts directly, the active state always has priority over and overrides
the idle voltage state. The break request-high (BRH) is an interrupt
feature which can also override the idle voltage and bring the voltage
of the data line to ground potential (0 volts) directly through a
switching transistor. The following diagram shows how the circuit
would look with this feature added. Q9 and Q10 are the switching
transistors that pull DH and DL to ground from their idle states. D5 and
D6 prevent interference between the two active transistors on a data
line. This circuit does not include the rarely used “emergency break
request” feature, so the ordering of the four possible states so far
would be (1) active, (2) break request-high, (3) idle, and (4) break
request-low.

9

10

In the latest development, this break request-high signal will also be
able to override the active state voltage on a data line (this addition is
the “emergency break request” feature). The break request signal
would then have the highest priority of the four data line states, and
any device can use this signal at any time to take immediate control of
the data line. This new state would need a second switching transistor
to bring the opposite voltage level (active state) to ground potential
since a switching transistor can switch current on and off in one
direction only. Therefore, the ordering of four states from strongest to
weakest would become (1) break request-high, (2) active state, (3) idle
state, and (4) break request-low.

The diagram below modifies the previous circuit to include this
new “emergency break request” feature. Q11 has been added which
is the second switching transistor for break request. There are also two
more level shifting transistors Q12 and Q13. D6 and D7 provide circuit
isolation since the current is one-way for each switching transistor. A
470 ohm resistor has also been added for limiting the active state
current. I have shown only the circuitry for the DH line, as the
component count is getting a little high (14 transistors and 8 diodes
total). The circuitry for the DL line would be in a similar format as
shown here anyway, except it would be in reverse “mirror image”
format. This diagram is pretty much what the finalized version of an
SSB circuit would look like.

11

This circuit is actually simplified from what it was in an earlier
development. I had designed a special ‘wired AND’ circuit which was
used for receiver responses. It made sure every receiving device
responded to a signal. But this function is now taken care of by the
Disconnected (BRL) signal.

The following diagram is basically the same circuit as above, but
I removed all of the “level shifting” components to simplify it so the
reader can get a better understanding of how the circuit actually
works. Only components that directly affect the data line are shown.
This schematic also shows how the circuit will look when connected to
other devices.

12

To make the diagram simpler, I left out the four driver transistors on
Devices 2, 3, and 4, but the reader can assume that they are still there
according to what is shown on Device 1.

The four possible states for the two data lines which are each designed
for special purposes according their designated voltage levels are
summarized as follows:

+5 volts - idle state for DH; active state for DL
0 volts - (‘strong’ ground) break request-high (BRH)
0 volts - (‘weak’ ground) missing connection or break

request-low (BRL)
 -5 volts - idle state for DL; active state for DH

13

3. Fault Conditions

The reason that the higher order break request was added is
because the original one can only be used to interrupt transmissions if
at least one of the two data lines is in the idle state. If for some reason
a fault occurs where both data lines are tied up in the active state
voltage potential, it would be necessary for this condition to be
interrupted, and then have each device (or at least the device at fault)
brought into a shut-down or low-power mode of operation. This is the
reason for the ‘emergency break request’, which also is a part of
break request-high (BRH), but uses the second switching transistor. As
it is applied to a data line, it will switch any active voltage on the line
to ground directly through this switching transistor. There still is a
possibility that even an emergency break request will fail to bring the
device at fault out of its active state condition. In this case all devices
on the bus line would probably have to go into their shut-down or low-
power mode. This ‘emergency break request’ will be very rarely used,
if at all, and almost all break requests will be issued by the BRH signal
that controls the first switching transistor, which pulls the idle state to
ground. However, this change alters the ordering of states from
strongest to weakest, so that now break request-high is the strongest
of the data line states, where before the ‘active’ state was the
strongest.

If a fault or disconnection is found anywhere in this circuit, it
would generally be detected by the devices connected to the data lines
and the devices with the fault condition would shut down to a low-
power mode instantly and possibly record or display a message
indicating the problem. For example, if the one of the connector pins
had an open circuit, both devices on a two-device SSB configuration
would note this and shut down accordingly.

One potential problem with using ‘zero’ state in the ‘weak’
ground mode is when the connector is connected and one or more
devices are in their operating mode. In order for the data line to be at
zero volts, both ends would have to be in their high-impedance ‘zero
state’ mode. If any one of the devices were in an active state or idle
state on this line, the entire line would be set at +5 volts or –5 volts. It
would be impossible for one device to signal a ‘break request’ to
another device using this ‘weak’ ground because the +5 volts or –5
volts from the opposing device would override this. Therefore, a
‘strong’ ground was designed which would be used for the break
request, and the ‘weak’ ground for the other conditions, such as
connected/disconnected, device on bus line with power off, or some
other fault condition.

14

Another potential problem is that the circuit as shown would not
be able to detect an open circuit condition between one of the resistors
and ground unless the connector is disconnected and/or special
circuitry for this is added. When the 100K resistors on both sides are
connected, the data lines would see a 50K resistance to ground (two
100K resistors in parallel). If one of the resistors inadvertently becomes
disconnected, the corresponding data lines would see a 100K resistor
to ground. This couldn’t be detected with digital logic circuitry and an
analog comparator would be needed in this case.

15

4. Sensing Connection/Disconnection

When two or more devices are connected together in a simple
common bus line arrangement, the two data lines will normally be in
their idle states, and would go into their active states momentarily as
pulses are applied from the transmitter on one line and the receiver on
the opposite line. With this kind of system, it becomes apparent that
there is no reliable way for the hardware to determine if a device’s
connector is plugged in or not.

The only effective way that can be found to determine if there is
no connection is by momentarily turning off the drivers through
software which sets the high impedance-input state and checks to see
if the data line is still pulled low (or high) by the other side. The device
could be put in a check mode for 1 millisecond for every 1 second
period, for example. If the other device (or devices) are turned off or
there is no connection, the line would be at zero volts through the
100K resistor. In this case a shutdown occurs, and the disconnected
device would go into a low-power mode where all of its data lines are
held in their high-impedance state and kept at zero volts through a
100K resistor. Another important consideration is that the DH and DL
pins should not be left floating in the low-power mode, but they should
be set to an acceptable voltage level through the 100K resistors.

Once there is a disconnection and a device is in the low-power
mode, it should be possible to determine when the connector is
plugged in again and thus bring the device back into its operating
mode. When the device is plugged in again to a network configuration,
it will sense the voltage levels on the data lines immediately and
power up accordingly. But if there is a two-device configuration, and
both devices are inactive with their inputs held in a high-impedance
input state, they would not be able to tell the difference between a
connection and a disconnection. Each of the four inputs would only see
a ground potential (zero volts) through either a 100K resistance (no
connection) or a 50K resistance (connected). As I mentioned earlier, an
analog comparator circuit would be needed to detect this.

A simpler way would be to apply a 1 millisecond pulse for every 1
second period in a similar manner as when a check is made for
disconnection. This time, instead of momentarily putting one data line
in the high impedance-input state, the data line would be momentarily
taken out of the impedance-input state. An input on one end would
become and output for 1 millisecond in its idle state voltage. The high-
impedance input on the other end would immediately detect this
change and would assume that the connection is made and go back
into normal operating mode. The end that sent the pulse would then

16

detect the power up on the opposite end also power up into its active
state. All inputs would then become as outputs with idle state voltages.

There is one main difference between this pulse sending check
for connection and the one for disconnection. The check for
disconnection requires all four I/O pins to send a pulse at certain
intervals. This is done so a thorough check can be made for an open
circuit, the device opposite end being turned off, etc. The check for
connection only requires one I/O pin on one end to send a pulse at
certain intervals (All four I/O pins could be sending pulses, but this is
not necessary). As soon as a positive response is found on one pulse
(or several pulses, to add a ‘debounce’ mechanism), the entire circuit
on both ends would become activated accordingly.

17

5. Data Transmission and Reception

So far I have only discussed idle state circuit conditions when
there is no actual data being transmitted from one end to the other. I
have done this to verify the basic structure of the circuit and the
extent of the hardware needed for reliable data transmission to make
it relatively error-free with adequate fault detection. The following
discussion will move away from the hardware aspects of SSB and
consider more in the software end of the spectrum as the sequential
timing and logic for data transmission and reception is explained.

It can be generally assumed that the Simple Serial Bus would be
a peer-to-peer half-duplex link between two devices. There should be
no specific requirements placed on the serving devices, and the data
transfer speed should be self-adjusting and entirely dependent on the
instantaneous conditions over the link. The auto-adjusting features of
SSB will allow it to accommodate devices of different speeds. By using
these features, along with a special signal ‘debounce’ filter algorithm,
SSB should perform very well in noisy environments.

Another major difference between SSB and other technologies is
that SSB utilizes a pseudo-differential transmission channel that differs
both from single channel and normal differential lines. Two data lines
are required as in the normal differential lines, yet they can be
controlled individually and independently of each other as though they
were single channel links.

As a device transmits or receives data, it does so one bit at a
time, so that the data transfer can be thought of as a sequence of bits
rather than bytes. Each sequence of bits can be thought of as a block
of data, and each block
is terminated with a ‘break request’ from either the receiver or
transmitter which signals the end of the block. This eliminates a lot of
extra overhead on the system and also allows the transmission to be
interrupted during any bit in the sequence by a ‘break request’ from
either the receiving end or the transmitting end.

The process of data transmission in SSB starts when the
transmitting device issues a ‘beak request’ followed by a 6 bit address
which is for the intended receiving device. This 6 bit address is a
recent development for SSB networking, and is used to verify that
there is a receiving unit connected to the data lines and is enabled to
receive data. More will be said about this later, but for now it will just
be stated that the break request-low signal (BRL) will be used to
confirm the receiver’s presence on the data lines. Since this is a ‘wired
AND’ signal, all non-transmitting devices will issue this signal except

18

for the intended receiver. So if the data lines are both not at ground
(BRL) potential, then the transmitter has its confirmation, and will
commence with the transmission. If any data line is at ground (BRL)
potential, then the transmitter assumes that the intended receiver is
not available, and the transmission is aborted, and the transmitter
issues another break request-high (BRH) to signal to the remaining
devices that the transmission has ended.

If the transmitter has received the confirmation, it will
immediately start transmitting one bit after another until the
transmission is complete for a block of data or a ‘break request’ is
issued by either transmitter or receiver for some reason which
terminates the transmission during the transfer of the interrupted bit in
the sequence.

Since this transmission process is bit oriented instead of byte
oriented as in other protocols, a sequence of eleven bits for example
would be transferred as a sequence of eleven bits instead of two bytes
(sixteen bits) as in other protocols. If the data length is more than one
bit, the least significant bit is always transmitted first, so that an entire
byte of information would be transmitted as:

If the data length is more than one byte, it would be transferred as one
continuous stream of bits unless the ‘break request’ feature is used for
one device to signal to the other that that an entire byte has been
transmitted (or received). The transmitted data sequence doesn’t have
to be broken down into bytes, but it could be a block of data bits of any
reasonable length. It would be possible to transmit very long data
sequences using this method with no interruptions, but in order to
avoid errors, it is recommended to break the long sequence down into
several blocks of data.

If there was a data transfer done using blocks rather than one
continuous sequence, there should be an ‘agreement’ between
transmitting and receiving units as to how long each block of data bits
should be. For example, if the transmitter plans on sending several
blocks of data with fifteen bits each, the receiver could know this block
size number (15), so that it can issue a ‘break request’ every time a
block of fifteen bits has been received

19

If there is no agreement between transmitter and receiver about
the number of bits in each block, the transmitter can still send several
blocks with fifteen bits each, but they would be counted as separate
data transmission sequences, and the transmitter would send a ‘break
request’ signal to the receiver whenever the transmission of a data
sequence is finished.

The ‘break request’ signal doesn’t have to be sent only at the
end of the data sequence, but can be sent anytime during the
transmission of any bit by either transmitter or receiver. This
interruption can occur for many reasons, such as data buffer full, error
in data transfer, or another higher priority task is to be performed.
Therefore, the data transfer process will continue until the transmitter
or receiver issues a final break request signaling to the other device
that all of the data has been transmitted or until one device signals to
the other that the transmission should be stopped, and the remainder
of the data transfer process would be aborted. If the receiver issued a
break request to signal a condition such as error found in transmitting
or receiving data, this would cause the transmitter to resend the data
previously sent. Sometimes the internal capabilities of a receiving
device only allow a limited number of bits to be transferred, so in this
case the receiver would issue a ‘break request’ on the last bit
allowable, and the transmitter would cease immediately and abort the
remainder of the data block transfer, if any. Up to this point, a break
request has always indicated the start or end of data transfer
sequences, where the transmitting device issues the initial break
request, and either transmitter or receiver can issue the data block
ending break request.

The timing diagrams for a ‘break request’ issued by a transmitter
differs in format from a ‘break request’ issued by a receiver. This will
be explained later following the data transfer timing diagrams.

20

6. Timing Diagrams

The timing diagrams shown below will demonstrate how the
actual transmission of a bit of data takes place on the two data lines
(DL and DH). Voltages in the range of +5 volts to –5 volts are shown in
the vertical coordinate, and the time between the various states are
shown in the horizontal coordinate. The DH data line is indicated by the
blue timing waveform, and the DL data line is indicated by the red
timing waveform.

Each of the D-lines are used specifically for one the two binary
data bit values. The DH data line is used basically for transmitting and
receiving a logic ‘1’ value, while the DL line is for transmitting and
receiving a logic ‘0’ value. During the transmission of one of these two
values, the opposite data line automatically becomes a data
acknowledgement signal line where the receiver would provide
confirmation to the transmitter that a valid bit of data has been
received.

An example diagram showing the process of transmitting and
receiving a single data bit is shown below for the transmission of the
logic ’1’ value. The DH and DL lines start in their idle state voltages as
explained before, and then the transmitter initializes the process by
energizing the DH line from its idle state (+5V) to its active state (-5V).
The line is kept in this state and held until the opposite line (DL) is
activated by the receiver as confirmation (state 1). When the
transmitter receives this acknowledgement signal, it can assume that
data transfer was successful, and proceeds to deactivate the DH line
back to its idle state (state 2). During this time, the receiver was
waiting for the DH line to return to idle as it indicates to the receiver
that the transmitting device has received the acknowledgement signal.
After sensing this signal, the receiver will be able to return the DL line
back to its idle state which completes the data transfer process for a
single data bit value of ‘1’ (state 3).

21

The data transfer process for a single bit of logic value ‘1’ data can be
summarized as follows:

State 1: Transmitter puts DH to active state (-5V)
State 2: Receiver puts DL to active stage (+5V)
State 3: Transmitter returns DH to idle state (+5V)
State 4: Receiver returns DL to idle state (-5V)

The logic ‘0’ value is sent in a similar way but in a kind of ‘mirror
image’ format. Again, both lines start in their idle states as before, and
then the transmitter starts the process by changing the DL line from its
idle state (-5V) to its active state (+5V). The line is kept active and the
transmitter waits for the opposite line (DH) to be activated by the
receiver as confirmation (state 1). As the transmitter receives this
acknowledgement signal, it means that the data transfer was
successful, and then returns the DL line back to its idle state (state 2).
Finally, the receiver returns DH back to the idle state as it receives
confirmation that the transmitter has received its acknowledgement
signal (state 3). This completes the data transfer process for a single
data bit value of ‘0’.

22

The data transfer process for a single bit of logic value ‘0’ data can be
summarized as follows:

State 1: Transmitter puts DL to active state (+5V)
State 2: Receiver puts DH to active stage (-5V)
State 3: Transmitter returns DL to idle state (-5V)
State 4: Receiver returns DH to idle state (+5V)

The transmitter was also waiting for the final receiver signal in state 3
of both diagrams and both lines are back in their idle state, where a
new bit transfer can be initiated or the control could be transferred
somewhere else depending on interrupts, break conditions, etc. Of
course, a certain “debounce” time must pass before another event can
take place.
This data transfer method should work well even when one of the
devices operates at a clock speed far greater than the clock speed of
the other device. There is no clock synchronization between devices,
so the transfer speed is self-adjusting in the sense that one device
always waits for the opposite device to send its acknowledgement
signal.

There is no time limit for keeping a line in an active or idle state
in any of the three states shown in the above diagrams. Any of the two
lines can be kept in any state indefinitely while waiting for the other
device to respond. This would make this SSB protocol completely
independent of device speed.

As seen above, this form of data transfer ‘handshaking’ reverses
the functionality of the two data lines in the transfer process of logic
value ‘1’ and logic value ‘0’. The DH line is a data transmission line and
DL is the receiver acknowledgement line for logic value ‘1’. The DL line

23

then becomes the the data transmission line and DH becomes the
receiver acknowledgement line for logic value ‘0’. They would also
operate at opposite voltage levels for these bit transfers, so in a sense,
the pattern for the logic ‘1’ transfer and the pattern for the logic ‘0’
transfer are mirror images of one another.

This feature of using opposite voltage levels on the two data
lines provides an error detecting feature that would prevent errors in
mixing up the two data lines when connecting a new device. The DH
line has an idle state voltage of +5 volts and is usually at this level at
all times while connected unless a data transfer is taking place where
there are short pulses to –5 volts. In a similar way, the DL line has an
idle state voltage of -5 volts except when there are short pulses to +5
volts. Checking these idle state voltages can easily determine which
data line is DH and which one is DL.

If the DH and DL did not operate at opposite voltage levels, but
instead operated at the same level as other communication protocols
normally do, the pulses for data bits would appear the same way for
both logic values. The acknowledgement pulses would also appear the
same way and the two data lines could easily become reversed. A logic
value ‘0’ could be mistaken for a ‘1’, and a ‘1’ could be mistaken for a
‘0’.

This data transfer method would eliminate at least one and
possibly two the the handshaking control lines used in other serial data
transmission protocols. Most of these protocols use a ‘Data Valid’
signal line along with a separate data bit line as the transmitter sends
its data. The receiver would then respond with a ’Data Accepted’ signal
on a separate control line in the same fashion as is done here with the
opposite data line. This new SSB method combines the ‘Data Valid’
signal with the data bit signal into just one signal line as their timing
and polarity is the same in each case for both logic ‘0’ and logic ‘1’
transmission. The opposite line always becomes a control or
‘confirmation’ line when transmitting data.

Other control lines, such as DSR (Data Set Ready), and CTS
(Clear to Send) normally found in protocols such as RS-232 can be
effectively eliminated since these signals basically just let the
transmitter (master) know that the receiver (slave) is ready to receive
data. With this SSB protocol, these signals are automatically implied
when both data lines are in their idle states and a certain ‘debounce’
time has passed since the last data line transition. Once a transmitter
takes over the data lines and initiates a transmission, only the
intended receiver is automatically enabled to receive data while the
other receivers on the bus lines (if any) are disabled.

24

The ‘debounce’ time is a certain minimum time that must pass
after the final transition in state 3 where both data lines are in their
idle states before a new data bit can be sent. In fact, any time there is
a transition at all in the previous timing diagrams, there must be a
certain ‘debounce’ time where the data line is required to be in the
same state for at least this minimum time in order to be considered
valid by the receiving device. This ‘debounce’ time can be
programmed individually for each device, and each device would use
this same debounce time for detection of ‘idle’ state, ‘active’ state,
‘break request’, ‘disconnected’, and data bit transfer complete.

The SSB configuration does not use edge-sensitive logic like
some protocols do, but uses level-sensitive logic instead. The diagram
below shows what a typical ‘debounce’ time period might look like for
detecting an ‘active’ state.

25

7. Break Request

I have explained earlier about how a ‘break request’ signal is
used anytime by either transmitter or receiver to indicate end of data
transfer, unable to receive data, error in data sent, and many other
conditions. This is a multi-purpose feature that would allow this
transmission protocol to eliminate many of the control lines found in
other serial communications methods, such as DTR, DSR, RTS, etc.
There would also be no need for certain software methods, such as an
enumeration process, as the information needed about the device is
already assumed through DIP switch settings or other similar
parameter setting methods.

The following diagrams will show how a ‘break request’ issued by
either transmitter or receiver can abruptly halt any data transferring
activity, and then have the data lines set back in their ‘idle’ mode. The
break request timing diagram format differs between transmitter and
receiver as follows: When the receiver issues a break request, instead
of acknowledging the data bit sent by activating the opposite data line,
it places it at ground potential, or zero volts (state 1) by activating BRH
for that line. At this point, the transmitter is notified that the receiver
cannot accept more data bits and terminates the transfer by returning
its data line back to its idle state (state 2). This confirms that the data
transfer has been terminated, and marks the end of the data block.
After detecting this transition, the receiver is also due to reset the
opposite data line to its idle state (state 3).

At this point, both data lines are in their idle states, and both
devices have been given information that data transmission has
stopped, and the data lines are in their normal operating mode again,
waiting for the the transmission of a new block of data to begin. As
shown below, the timing diagram for the receiver issuing a break
request is the same as the one for a normal data bit being sent, except
that the acknowledgement pulse from the receiver is ‘clipped’ to zero
volts.

26

Under normal conditions, the break request will only need to be issued
by the transmitter to mark the beginning and ending of a data block
transfer. (Although a transmitter can interrupt data transfer for other
reasons too, such as error conditions.) As shown in the diagram, the
transmitter starts by placing one of the two data lines (it doesn’t
matter which one, but not both) at ground potential (zero volts) by
activating BRH for that line. The transmitter then waits for a response
as the receiver confirms the break request signal by setting the
opposite data line to ground potential (state 1) by activating its BRH
signal. At this point, both data lines are at the zero volt level indicating
break request. As soon as transmitter detects that its break request
has been verified, it will return its data line back to the idle state (state
2). This transition would also indicate to the receiver that the break
request has been verified and it will reset the opposite data line to its
idle state (state 3).

So at the final stage, both data lines are back in their idle states,
and both devices know that data transmission has stopped, and the
data lines are in their normal operating mode again waiting for new
transmission block. As shown below, the timing diagram for the
transmitter issuing a break request is the same as the one for a normal
data bit being sent, except that both the data bit pulse from the
transmitter and the acknowledgement pulse from the receiver have
been ‘clipped’ to zero volts.

27

A break request pulse issued in this way can be considered as a
third pulse type along with the first two pulse types for logic value ‘0’
and logic value ‘1’. So instead of being a binary protocol, the system
would have essentially a ‘trinary’ protocol. A sequence of two bits
would have 3 * 3 or 9 possible combinations instead of the 2 * 2 or 4
combinations possible in a binary code. This would add much control
capability to the system as each bit sent can contain not only data bit
value information, but also control information. This is how the break
request feature can replace some of the control lines found in
protocols like RS-232, such as RTS, DTR, and DSR.

The break request signal should be such that it dominates, or has
priority over the active and idle state signals on each of the two data
lines. Therefore, it would be possible for any device to issue a break
request at any time on either bus line, and it would take control over
the data lines and abruptly stop any transmissions taking place. This
would allow a higher priority activity to be done on the bus lines, such
as an emergency procedure. For example, one device could be
drawing excess current, and the data lines need to be brought to
ground level (0 volts) immediately.

The order of precedence, from strongest to weakest of each of
the possible states on the common data bus lines are as follows: (1)
break request, (2) active state, (3) idle state, and (4) disconnect
ground. I have thoroughly discussed the first three, and I will mention
more about the disconnect ground later.

28

8. SSB Networking

So far, this document has mostly described the basics for SSB
communications between two devices, so the break request as
described was only used to mark the beginning or ending of a data
block or some other condition which requires data transmission to
stop. But when more than two devices are connected, as they would
be in a network configuration with common bus lines, the break
request signal could be used for other purposes.

When a transmitter sends data in this configuration, it isn’t
necessary for all of the non-transmitting devices to receive data, but
only the intended receiver should receive it. In this case, the
transmitter needs to send a message indicating the address of the
intended receiver, so each of the non-transmitting devices can
distinguish this, and enable or disable themselves accordingly.

This addressing message would be sent by the transmitter just
before the data message itself, and this would be the SSB protocol for
common bus line networking. The addressing message itself would be
a simple binary number about 6 or 7 bit long, which can address up to
127 devices. This binary address would mark the beginning of a
sequence or block of data to be transmitted.

This is a simplified approach to adding additional devices to the
basic two-device SSB communication system. One of the main
problems with this approach would be the possibility of transmission
collisions. One of the ways of solving this would be by using the
‘random delay’ concept similar to what is used in Ethernet. A
transmission collision can be detected by all devices on the bus line
within the first few bits of information, which can be used as a signal to
shut down all transmissions for a certain time period. This time period
is programmed to be a ‘random delay’ which would be different for
each device to avoid another collision when data transmission starts
again. If the two devices that had their transmission cancelled are still
actively waiting to re-transmit, the device with the shortest delay
period would have an opportunity to transmit again with almost no
chance of collision.

Another major problem that needs to be solved with SSB
networking is how to determine how devices are to be notified when
any other device (or devices) are plugged in or unplugged from the
common bus line. It would be a simple matter to determine when
devices are removed (exclusion). When another device tries to send an
addressing message to it, it would immediately sense no response, and
thus determine that the device is excluded. Since each device on the

29

bus lines are listening to the transmit and receive activity, all non-
transmitting device would also be able to sense device responses or no
responses and they would be able to record information for the
removal of a device accordingly. The removed device itself (if it’s still
on) would use the pulsing technique described above for detecting
whether or not its connector is plugged in or not, and it will disable
itself by going into the low-power ‘zero’ state mode (BRL) immediately.

Detecting the inclusion of a device is a little more difficult to
solve. In a normal network mode, transmitters would be sending data
only to those devices with ID numbers that have been recorded for the
network at that particular moment. Each device’s ID number would
correspond to a bit in a bit-map. If a new device plugs in with an
address that is different from these recorded addresses, it would be
ignored since its address is not included with those on the bit-map
(each device has exactly the same bit–map set up for connected
devices).

The most recent development in SSB networking that will solve
both the collision problem and the inclusion/exclusion problem is a
scheme that uses a rotational “taking turns” concept. With this
algorithm, only one device can have control of the bus lines at any
given moment. Each device gets a time slot for this as this bus line
control is passed sequentially in a rotational pattern to each connected
device, one at a time. As one device takes its turn for controlling the
bus lines, it will have the option of transmitting a block of data. If it has
no data to transmit, it just passes control of the bus to the device with
the next higher ID number. If this number is already the highest, then
it passes to the lowest. If the bus-controlling device has data to
transmit, then it will transmit the data sequentially as explained above,
and then transfer control to the next device.

Each device looks up the address for the next corresponding
device in the bit-map as it transfers control to it. So each connected
device is addressed directly from the preceding one. This scheme
solves the collision problem since it is only possible for one device to
transmit at any given moment. The problem of exclusion is also easily
solved as explained above when there is no device response to an
address. However, this approach still doesn’t solve the inclusion
problem since the addressing messages are sent only to those devices
that have corresponding bits set in the bit-map. If a new device is
plugged in, it will be ignored as before.

There is a way to solve this using the same basic rotational
“taking turns” method. Instead of addressing each connected device
directly according to a bit-map, the devices could be addressed in a

30

sequential manner with the next ID number (ID+1). As one device
passes its bus line control over to the next device, it would start by
incrementing its own ID by one and send an address message using
that ID. If there is no device response for ID+1, it will send the
message to ID+2 and so on until a valid response is received and bus
control would then pass on to another device. This process would
continue for one complete revolution. In this way, a complete scan is
made of all possible addresses, and newly added devices (inclusion)
can easily be determined and plotted on the bit-map.

This ID+1 version of the rotational concept would not need to
done for every cycle, but instead it would be done for one cycle for
every 63 cycles of the direct addressing form of the rotational concept.
This would combine the two concepts to create an efficient networking
scheme with minimum overhead. The detection of devices added and
devices removed from the bus lines is considered low priority
compared to scanning connected devices for data to transmit.

So the only difference between SSB networking and regular two-
device SSB communication is the inclusion of the intended receiver
address message just before the data message and the rotational
“taking turns” concept that allows only one device to use the bus at a
time in sequential order. The collision problem and exclusion problem
are solved using this method. The inclusion problem is solved by using
the ID+1 form of addressing once every 64 cycles. The direct form of
addressing using bit-maps is used for the other 63 cycles for higher
speed and efficiency.

31

9. Disconnect Feature

There is a disconnect when there is no connection between the
disconnected device and any other device. A device can also be
considered disconnected if one of its data lines has a bad connection
or there is some other fault in the device’s driver circuitry. If one of
these conditions occurs, the device automatically turns all of its output
driver transistors off, and the device goes into a low power mode with
high-impedance data line inputs. These inputs are also connected
through a high value resistor to ground, so the device’s two data lines
would be at ground potential (0 volts), assuming that both lines are
disconnected from any other device.

This would be a ‘weak’ ground, and it would be the weakest state
of all the four data line states, and any connected device can dominate
a data line in this ‘weak’ ground state by applying an idle or active
state voltage. The only way to bring that data line back to ground
potential (0 volts) then would be to override the idle or active state
voltage with a break request. This is a ‘strong’ ground and is the
strongest of the four data line states.

The diagram below shows how the data line voltages would look
as an individual device is connected and later disconnected from the
other device (or devices). If the devices were set up according to the
regular two-device SSB communication format, both devices would
show this waveform on their data lines. If the devices were set up for
SSB networking, only the disconnected device would show this
waveform, while the data line voltages on the networked devices
remain the same, since they don’t sense a valid disconnection. They
would only sense the exclusion of one of the connected devices.

32

It may also be desirable to use the ‘disconnected’ state when it is
known that a device will not need to transmit or receive data for a long
period of time. A device in this case will be able to put itself in the
‘disconnected’ state even though it is connected to another device (or
devices). The device would be in a very low power mode where all of
its driver transistors are off, and this would become a third state as
found in typical tri-state circuitry where the inputs are high–impedance
and are connected through a high value resistor to ground. This
method would increase noise immunity and network efficiency.

33

10. Connector Specifications

The following chart is a preliminary electrical specification for the
basic SSB circuit as described. This shows the voltage ranges each or
the four data line states (active, idle, ‘strong’ ground, and ‘weak’
ground). The transition between states is done with hysteresis.

Idle Active
DH +2.4V to +5V -2.4V to -5V
DL -2.4V to -5V +2.4V to +5V
Zero -0.8V to +0.8V
Power +4.5V to +5.5V DC 1A max.

The basic SSB circuit will use a 4-pin connector with pin
assignments for VCC, DL, DH, and GND. The fourth pin can be
considered optional as it is used only to transfer electrical power (VCC)
between devices. This would work well for configurations where only
one device on the network has an internal power supply, but if more
than one device on the network has a power supply, or to shut down
power transfer when there is excessive current being drawn, a power
distribution circuit should be used as discussed in the next section.

Therefore, the connector would be either 3-pin or 4-pin,
depending on the voltage supply configuration. The connector should
be designed such that it mechanically prevents itself from being
plugged in a reversed state. If possible, a connector should be found
which would be able to drive both the data lines to ground directly or
through a small value resistive load in the disconnected state.

Also, the recommended connector should be able to connect the
GND pin before the data line pins. If the VCC pin is used, it should be
connected before the data line pins also.

34

11. SSB Power Distribution

There are times when devices hooked up to a SSB circuit don’t
have their own internal power supply, and it becomes necessary to rely
on the power supply in another connected device for operation. In this
case a fourth pin on the connector is needed which will allow power to
be transferred between devices.

This creates a variety of problems with a common bus line
configuration, however. The first problem is when there is more than
one device hooked up which have internal power supplies. This
question would be how to determine which of these devices would
supply power to the non-powered devices on the network (if any). The
next consideration would be how to design the power transfer circuit
so that each of the devices with internal power can operate normally
with no interference from other powered devices in the network.

The second main problem is on how to handle a situation when
there is excess power being drawn by one of the devices in the
network. In this case, the fourth (power transfer) pin should not be
used at all, and effectively removed from the circuit, so that a 3-pin
configuration is used. This condition also shuts down all non-powered
devices in the network, so that only the self-powered devices remain in
operation. As soon as the defective device is disconnected from the
network, each of the connected devices would sense this, and power
themselves up back to normal operation.

A standard USB network uses the “tiered star topology” to solve
these problems on how to distribute power between devices. This
arrangement uses a hub system where each hub on a device can
supply power to one and only one device in the downstream direction.
A downstream device cannot transfer power to an upstream device
(host). The enumeration process informs the upstream device what the
power requirements are in the connected downstream device. In this
way, there is no confusion about which devices will be transferring
power to another, and each of the self-powered devices can use their
own power as designated through the enumeration process.

The problem of current overload is easily solved with this
method, since each downstream device connects to only one upstream
device. The upstream device can just shut down power transfer to the
one device below it that has is drawing excess current. And each or the
remaining devices can continue with normal operation, whether it’s
self-powered or not.

The SSB network will not use many of these advanced features,

35

so its power transfer capability will have to be somewhat limited. With
a common bus line approach, there can only be one device that can be
selected that will transfer power to the non-powered devices
connected to the bus. This device will be selected according to the
voltage level of its internal power supply. In normal operation, there
are slight differences in these voltage levels between devices, and the
one that is found to have the highest voltage level automatically
selected as the main network power source. Since there is some
hysteresis using this method, any self-powered device on the network
can continue using its own internal power supply without depending on
the main network power. However, any non-powered device will have
to depend on the power received from the device selected as the main
power source.

The device with the highest voltage level on the network is
selected according to the circuit below, where CMP1 compares the bus
line power voltage directly with the voltage of its own internal power
supply. If the bus line voltage is higher, SW1 is turned off, and the bus
power line is used to supply power for the device. If its own internal
supply voltage is higher, SW1 is turned on, and the device will become
the main network power source, unless there is a current overload
somewhere, in which case CMP2 will turn SW1 off, and the device will
again rely on its own internal power supply, if any. If there is a current
overload condition on the network, all devices on the network will
detect this, and this effectively disconnects the bus line power pin on
the connector for each device. The self-powered devices can still
operate normally on its own power supply through D2. However, each
of the non-powered devices will have to be shut down, which is one
disadvantage over the USB protocol. As I stated before, normal
operation resumes as soon as the device at fault is removed from the
network.

The circuit below describes the concept as discussed so far.
CMP1 compares the bus line voltage with the internal supply voltage,
and CM2 compares the bus line voltage to a lower level based on
current overload conditions. SW2 and SW3 form a “wired AND” circuit,
so that SW1 is on only when the bus line voltage is greater than the
overload voltage and less than the internal supply voltage.

36

CM2 has priority over CMP1, so that if CMP2 shows excess voltage
drop, CMP1 has no effect on circuit operation. The circuit would still
have to apply short pulses to the power line periodically to check if the
device at fault has been removed. If it is, then the network can go back
to normal operation. The diodes are important because they prevent a
higher level voltage source from shorting out to a lower level voltage
source on the bus line. If bus line voltage is greater than the internal
power supply voltage, D2 does the current blocking. If the internal
power supply voltage is greater than the bus line voltage, D1 does the
current blocking.

This circuit also works if there is no internal power supply preset,
as this would register as zero volts on the comparators. SW3 would be
on, and SW2 would be off, so then SW1 is off, which disconnects the
internal power and allows externally supplied power to be used.
Another circuit, which has these it features, but may be a little simpler,
is shown as follows:

37

In this circuit, the output of CMP2 is tied directly to the negative
terminal of CMP1, and eliminates the need for the “wired AND”
transistors. However, this doesn’t provide a reliable reference voltage,
as the bus line voltage should be compared directly with the internal
(+5 volt) supply voltage. There is also a problem when the bus power
line is shorted to ground. This would set the CMP2 output low, but may
not be low enough to set the output of CMP1 to high, which turns SW1
off. In this case SW1 would be on, and the device will attempt to
transfer power to a shorted bus line. This problem is corrected in the
previous circuit, where SW3 is turned off whenever the bus line voltage
is below a certain level.

12. Flowchart

Before I conclude this discussion, I will provide a flowchart here
that will describe the various concepts introduced in this document
about SSB. This is by no means complete and is just preliminary
flowchart. Many topics discussed here have been intentionally
excluded. For example, I have a complete bit-by-bit description of how
data reception takes place, but for transmitting data, there is just one

38

block that indicates “Transmit data”.

The main idea here is just to show how transmission and
reception of data takes place and how the addressing scheme for
networking works. As each device in the network takes its turn on the
bus according to the rotational “taking turns” algorithm, it will go
through the sequence described here for transmitting options. The
receiving devices will each go through the address decoding
mechanism, and if it matches its ID, it will go to the sequence for
receiving data.

Each of the devices in a SSB network will use exactly the same
software and exactly the same hardware. This is unlike protocols such
as USB, where they use different hardware and software combinations
for the host, hubs, peripherals, and now the recent “On-The-Go”
specification.

39

40

13. Conclusion

This concludes the preliminary discussion of the Simple Serial
Bus concept. As you can see, there have been many design phases
experimented with in order to find a solution that will work in a real
world operating environment. As further development continues, many
of the ideas presented here will be modified according to the particular
needs at the moment. Hopefully, this document can provide a basic
foundation for further development that will create a serial
communication protocol that can be easily understood by engineers,
technicians, and hobbyists, and to make it relatively easy to implement
in their projects as compared to other protocols.

May 28, 2011

41

	2. Data Line States
	3. Fault Conditions
	4. Sensing Connection/Disconnection

	5. Data Transmission and Reception
	6. Timing Diagrams
	8. SSB Networking
	9. Disconnect Feature
	10. Connector Specifications
	11. SSB Power Distribution

	12. Flowchart
	13. Conclusion

