
Windmill: A Large Code Development System

for the Parallax Propeller

Interpreter Byte Code Specification

The Windmill byte code is meant to normally be executed from very slow media, so a certain amount
of processing per code is acceptable compared to, for example, Large Memory Model PASM (LMM)

where very fast interpretation tends to be a priority.  In Windmill, small code will be faster code just
because instruction fetches normally take much longer than execution.

It was decided early on to make Windmill a stack based language like Forth because even with pushing
and popping and Hub RAM access, stack access in RAM is much faster than instruction fetching from
the external media and it reduces the need for operation tokens to be accompanied by argument tokens
locating the data they are to operate on.  

It was also a priority to fit as much helper functionality into the interpreter as possible for things like
string manipulation, since these functions would be very slow if implemented with looping Windmill
token code.  Priority was given to functions which are extremely common, such as basic Forth stack
manipulation, and functions which involve a lot of looping.

Windmill byte code has two types of token, Native and Helper.  Native tokens are converted directly
into synthetic PASM instructions and executed; they are very similar in principle to LMM instructions.

Helper tokens trigger more complex functions to be performed by the interpreter, like PASM CALLs in

LMM.

There is a shared Cog RAM datra structure called the Instruction Vector which indexes byte codes to
their ultimate functions.  For Helper tokens, the S and D fields index setup and execution helper
routines; for Native tokens, the I field provides flags which modify how the synthetic PASM
instructions are set up.  

Note: Arguments following tokens are big-endian since the 3 bit data in an extended token is always
the most significant bits of the data.  Longs written with store and fetch are little endian like the aligned
longs in the stack, though they don't have to be long aligned.

Native Tokens

Native byte codes are always of the form %00xx_xxxx, so there are 64 of them.  The 6 least significant
bits of the byte code are inserted into the INSTR field of a standardized instruction via MOVI, and that

instruction is then executed.  This provides access to most PASM instruction functions with 8 bit instead

of 32 bit codes and a very modest amount of Cog RAM wrapper code, leaving plenty of room for
Helper code.

What Windmill normally does when it detects a Native token is:



1. Place the token in the INSTR field of the execute instruction.  Since MOVI transfers 9 bits
including the Z, C, and R bits, which are not included in the token, these three bits are set.

2. Pop the stack into a reserved S long
3. Pop the stack into a reserved D long
4. Clear the C and Z flags and make sure the R bit is set
5. Execute the INSTR D,S WC WZ
6. Save the flags for later inspection
7. Push the contents of the reserved D long, which now contains the instruction result,

This scheme provides all the support necessary to profitably use about 35 PASM opcodes.  Some of the

problems that arise with other opcodes are:

• Some only take one argument, making the second pop to D redundant
• Some produce no result, making the push of D redundant
• Some serve no purpose unless flags are preserved from a previous instruction
• The R bit is essentially part of the opcode of the Hub RAM access operators, meaning that if R is

always set there is no way to set up the Hub RAM WR* commands which require R=0

• While the S field for HUBOP could be supplied by pushing an appropriate value, individual HUBOPs

vary as to whether they need two arguments or produce a result, and the HUBOP S would have to be

awkwardly pushed before any actual data argument in D.

This brings us to the Instruction Vector.  For Native byte codes this list indexes the appropriate setup
modification bits.  These are in the I field, positioned to be rotated out of the vector entry as they are
needed.

The meaning of the bits in the I-field of a Native token's IV entry are:

• Bit 31: Rotate this bit into the instruction R field
• Bit 30: 1 = Pop D before execution
• Bit 29: 1 = automatically restore flags

Whether D is pushed after execution would finally depend on how R was set in the instruction. This
allows us to accommodate just about everything except hub RAM writes and HUBOP, and while those

could be supported with a more complex bit scheme the number of useful instructions recovered would
not justify the extra inner interpreter overhead; the most important ones become helper functions.

With this system an interpreter consisting of about 30 longs of code and a vector that is shared with the
helper token interpreter gives us direct access to nearly all PASM functions. The few exceptions are:

• Codes $04, $05, $06, and $07 (%100, %101, %110, and %111) are nonfunctional because they are
reserved for nonexistent PASM operators

• JMP/ JMPRET, DJNZ, TJNZ, and TJZ serve no function since, as in LMM, Windmill execution

branches have to be done by a Helper code which changes the Windmill instruction pointer
• WAITVID might be implementable but as with Spin not likely to be useful

• The CMPs are left out in the cold. 



• MOV is prepped for two pops / push result; since MOV pops S, D, then copies S to D before pushing

D, this has the effect of removing the original second element from the stack.  This is a Forth

function called NIP.

Indexing all of the possible Native tokens would normally require 64 IV elements.  On coding the
interpreter it became clear that there would only be about 38 normal Helper tokens and 15 extended,
leaving a surplus of 12 longs devoted to Native mod bits only.  By adding only 2 longs to the inner
interpreter it was possible to fold the index into two parallel 32-entry ranges, so that:

• Bits 31, 30, 29: modify opcodes %000000 - %011111
• Bits 27, 26, 25: modify opcodes %100000 - %111111

...for a net saving of 10 longs of interpreter code.

Helper Tokens

There are two types of Helper token.  Tokens of the form %01xx_xxxx are Normal Helper tokens.
There can be 64 of these.  Tokens of the form %1abc_xxxx are Extended Helper tokens which contain
3 bytes of argument data; there can be up to 16 of these.

Like Native tokens, Helper tokens index into the IV but instead of flag bits they find two code pointers.
The S field points to an appropriate Prep Handler which collects any arguments needed by the
instruction; this can be one, two, or three pops or a code argument consisting of one, two, or four
additional byte tokens.  The three abc bits of an extended helper are treated as the most significant bits
of any additional code argument data.  There are also special Prep functions for relative jumps, all of
which take a single argument added to the instruction pointer and some of which pop a condition flag.

All Prep Handlers finish by branching to the D field of the IV entry, which points to the actual function
code for the helper.  Helper functions always finish by branching to an appropriate Finish Point to push
any results as appropriate before executing the next token.

Having both prep and finish code shared among helper functions allows the actual individual functions
to be quite compact, so we can have more of them.

Extended Helper Token Functions

Nearly all Windmill tokens work with data on the stack, but there obviously needs to be a way to get
data onto the stack in the first place.  

N3    (1 byte, 3 data bits) – Push sign extended 3 bit literal (for 0, 1, -1, etc.)

N11   (2 bytes, 11 bits) – Push a sign extended 11 bit literal onto the math stack.

N19   (3 bytes, 19 bits) – Push an unsigned 19 bit positive literal 

(generally an address) onto the math stack.
-- N

AJMP (3 bytes, 19 bit target) Absolute jump.



ACALL (3 bytes, 19 bit target) Absolute call.  The standard way to call a Windmill word.

BCALL (3 bytes, 19 bit target) Buffered Absolute call.  As ACALL but commands the

memory server to buffer the word in Hub RAM if this is possible.

SJMP (2 bytes, 11 bit target) Short Relative jump.

SJMPZ (2 bytes, 11 bit target) Pop the stack and take the SJMP if the result is zero 

SJMPNZ (2 bytes, 11 bit target) Pop the stack and take the SJMP if the result is not zero 
FLAG --

CASE   (2 bytes, 11 bit target) – Pop a compare value from the stack, and if it is not

equal to the (unpopped) reference value left on the stack take the relative jump.
REF VAL -- REF

CMP Construct a compare instruction, pop two arguments off the stack, perform 

the comparison based on the synthetic CON field built from the abc bits, and 

push the result .  Although we have only three bits of data and CON is four, by 

inverting bit a to create the an unprovided high d bit we can produce the 

most useful test conditions:

cond. flags       d=!a  cba    operator

if_a if_nc_and_nz 0   001 >
if_b if_c 1   100 <
if_ae if_nc 0   011 =>

if_be if_c_or_z 1   110 =<
if_eq if_z 1   010 ==
if_ne if_nz 0   101 <>

N1 N2 -- FLAG

@COG (2 bytes, 9+2 bit target) Read a long of interpreter Cog RAM and push it

-– N1

!COG (2 bytes, 9+2 bit target) Pop a value and write it to a long of interpreter Cog RAM

N1 -–

A fair number of seemingly more complex functions are just @COG or !COG
with an appropriate argument, including rp!, rp@, sp!, sp@, rflag, and sflag,

and of course all Windmill access to the Special Function Registers INA, DIRA, etc.

RET (1 byte, 3 bit target) pop the R-stack and returns from a CALL, releasing 0 to 7 Longs

of local stack frame variable space.  Larger stack frames must be cleared with 
RSTKA.

STKA (1 byte, 3 bit target) Adjust the M-stack pointer by the sign extended number of

Longs (-4 to +3).  This implements DROP 4 (negative argument) through

RECOVER 3 (positive arguments.)



Normal Helper Token Functions

The only Normal Helper which takes a direct argument is:

N32   (5 bytes) – Push a 32-bit literal onto the math stack.

-- N

All other Normal Helpers are one byte.

Stack-based flow control (note that simple M-stack based JMP is a !COG):

CALL pops a destination from the math stack, pushes the return point onto the R-stack, 

and jumps.

Addr --

Some primitives lifted directly from Forth:

! @ c! c@ Read & write longs and bytes to memory

MOVE MOVE> FILL Block move and fill (character only)

>r r> r@ R-stack manipulation

DROP DUP OVER PICK M-stack manipulation

ROT ROLL SWAP

Unlike Forth, and more like Spin, Windmill uses byte addressing exclusively.  All memory operations
work in EEPROM, but note that some – especially MOVE> which must work down – might be very

slow.

A few basic Hub RAM instructions must be supported which can't be constructed by the Native code
engine:

WRBYTE WRLONG Differentiated from RD* by different R

COGINIT COGID COGSTOP Need special S value, different setups

Windmill offers unsigned multiplication and division implemented in PASM. The high long of the last

multiply can be retrieved via cog@ Math_Hi, and the remainder of the last division via Div_Rem..

U* U/

RSTKA (2 bytes) Adjust the R-stack pointer

This can be used to reserve and release a local storage stack frame.  

RSTKI (2 bytes) Push to the M-stack the location (suitable for ! and @) of the R-stack frame

 local variable at R-stack position 0-127.  Note that position 0 is overwritten by further 
R-stack pushes, including word call returns.



Windmill also offers flexible block and string handlers written in PASM.  Windmill block functions
specifically target three types of buffer:

• Stacked Strings which consist of all the bytes of the string pushed from end to start followed by the
length.  Stacked strings can be longer than 255 bytes.

• Pascal Strings which are accessed by memory pointers which point to a byte length, followed by
the byte data.  They are limited to 255 bytes.

• Buffers which are accessed by memory pointers to the first byte of data and for which lengths are
specified by other arguments.  Buffers can be longer than 255 bytes.

SJSTR (2 bytes plus string) Pushes the address of the instruction argument, 

which is the length of a following string literal and the Pascal-style length 
descriptor for that literal, and execute a jump around the string literal.

-- addr

PJSTR (2 bytes plus string) Like SJSTR, but creates a stacked string by pushing all of 

the bytes of the string individually from right to left, then pushing the number
of bytes in the string, then jumping around the string

-- bn ... b3 b2 b1 n

PUSHSTR Pop the address of a Pascal String and create a stacked string from it.

addr -- bn ... b3 b2 b1 n

PUSHBUF Pop the length and address of a buffer and create a stacked string from it.  PUSHBUF

does push the length, but it is not limited to 255 bytes.

addr len -- bn ... b3 b2 b1 n

POPSTR Pop an address, and then unstack a stacked Pascal string at that address.

bn .. b3 b2 b1 n addr -- 

POPBUF Pop an address, then a length, then that many bytes and write the bytes at

the address.  Unlike POPSTR, POPBUF does not write the length byte, and

the length is not limited to 255 bytes.

bn .. b3 b2 b1 n addr -- 

INBUF Take a character, the address of a buffer, and the length of the buffer and return the

byte position within the buffer where the character is found, or -1 if it does not
occur, leaving the buffer parameters on the stack.
n addr char – n addr pos

INSTR Take a character the address of a Pascal string and return the byte position within 

the string where the character is found, or -1 if it does not occur, leaving the
string address on the stack.
addr char – addr pos

CMPSTR takes the same parameters as POPSTR but pushes true or false according to whether 



the stacked string is the same as the existing Pascal string.  Leaves both the
stacked string and string address on the stack.

bn .. b3 b2 b1 n addr  -- bn .. b3 b2 b1 n addr FLAG

CMPBUF takes the same parameters as POPBUF but pushes true or false according to whether 

the stacked string is the same as the existing memory buffer.  Leaves both the
stacked string and buffer address on the stack.  (The difference between CMPSTR

and CMPBUF is that CMPSTR includes the Pascal string length byte in the 

comparison.)

bn .. b3 b2 b1 n addr  -- bn .. b3 b2 b1 n addr FLAG

STRRANGE Process a stacked string to perform an action or adjustment on each byte that is inside

or outside of a specified range.

The action argument has adjustment in bits 0..7 and the following bit fields:

bit 10: 0=act inside range 1=act outside range
bit 9: 0=add adjustment 1=replace with adjustment
bit 8: 0=act writes byte 1=act suppresses byte

STRRANGE is meant to automate functions like UCASE / LCASE and 

ASCII / numeric conversion.

bn .. b3 b2 b1 n min max act – bn .. b3 b2 b1 n

RSTKA (2 bytes, sign extended 8 bit target) Adjust the R-stack pointer by adding the

signed byte argument number of longs -128 to +127 to it, generally to create 
or release a stack frame).

 
RSTKI (2 bytes, unsigned 8 bit target) Push onto the M-stack a relative pointer via

the R-stack pointer by 1 to 255 Longs (generally to index into a stack frame).
Note that the argument is subtracted from the R-stack pointer, so that if a stack
frame was created via RSTKA with a positive argument N, RSTKI arguments

1 thru N will access the reserved Longs.  Further pushes to the R-stack
(including word call return addresses) will overwrite the Long at index 0.


