
42

Seeing (Infra)Red
by Tom Cantrell

A new Vishay smart IR proximity sensor eases

integration into a wide range of designs. The

low-cost evaluation kit makes it even easier.

Thanks to Moore’s Law, electronic gadgets continue to boost their

IQs. With ever more MIPS and megabytes of software under the hood,

designers have unprecedented processing power on tap. But that’s

only part of the answer when it comes to adding compelling new

product features. The ability to crunch data is good, but only if we can

capture interesting data to crunch in the fi rst place.

For instance, these days touch sensing is all the rage. So what do

designers do for an encore? One obvious embellishment is to give

devices the ability to sense proximity. Enter the Vishay VCNL4000 IR

(infrared) proximity sensor (see Photo 1).

The idea of using IR to sense proximity isn’t new and the concept

is easy to understand. Just use an IR LED to illuminate the area of

interest and then measure the amount of refl ected light with an IR

photodiode. The higher the refl ection, the closer (and/or larger, and/or

more refl ective) an object is.

Going one step further, the VCNL4000 also integrates a visible

wavelength photodiode for ambient light sensing (see Figure 1). The

combination of IR proximity detection and visible light sensing makes

the module a natural for handheld gadgets. For example, in a cell

phone, the visible light detector could be used to automatically adjust

the display’s backlight level. Meanwhile, the IR proximity feature could

be used to detect that the phone is being held to the user’s ear, at which

point the display could be completely turned off to conserve power.

Roll your own?

Sure you can. All it takes is an MCU, an IR LED, an IR photodiode, a

visible light photodiode and a bit of software, right? It sounds easy, but

as usual, the devil is in the details. In fact, the embellishments required

to achieve a truly accurate and robust implementation are non-trivial

and can easily nickel and dime a seemingly simple solution to death.

An easy way to see this is to take a look at the VCNL4000’s features

and consider what it would take for a back-of-the-napkin design to

match them.

For instance, you need a couple of A/D channels to measure the

photodiode outputs, right? No biggie, since even the bluest of blue-

collar MCUs comes with an ADC these days. The only problem is

that the ADC on a typical MCU can’t match the 16-bit resolution of

the Vishay part. Oh well, I guess you need to add a high-resolution

ADC chip. Don’t forget some op-amps to get the most out of the

photodiodes. While you’re at it, throw in a transistor to drive the IR LED

at up to 200 mA, far beyond the drive capability of an MCU GPIO pin.

But that’s just the start. A key feature of the VCNL4000 is that it

modulates the IR LED at high frequency, up to 3.125 MHz, and

bandpass fi lters the raw IR return. Focusing purely on the refl ection

helps cancel the infl uence of ambient and interfering IR sources, such

as fl uorescent light ballasts. Now your roll-your-own design needs

some real help, maybe a PLD and a fi lter chip? Or step on up to a

much bigger-ticket MCU/DSP.

Photo 1: VCNL4000 module.

IR Anode 1

12 GND

IR Cathode 2

IR Cathode 3

SDA 4

SCL 5

MUX

IRED

LED Driver

Oscillator

Data Register

Command Register

I2C

Amp.

Integrating
ADC

Signal
Processing

6 GND

7 VDD

8 nc

9 nc

10 nc

11 nc

Ambi PD

Proxi PD

Figure 1: VCNL4000 block diagram.

43www.digikey.com/sensors

While the IR proximity feature gets the headlines, the VCNL4000 visible

light sensor is no slouch. Notably, it includes the ability to automatically

take an average of up to 128 light readings. This helps filter out external

and internal interference—such as 60/120 Hz interference and converter

noise floor interference, respectively—to deliver a more sensitive and

accurate measurement both night and day from 0.2 to 13,000 lux.

Power tripping

Early on in your roll-your-own musings, it might have seemed that a

mini-me MCU could not only easily handle the job, but would have

plenty of time to kick back and take a nap between readings. By now,

you can see that you need beefier silicon, and it’s going to be pretty

busy with all the high-frequency stuff going on, such as modulation,

filtering, averaging and bit-banging. For instance, matching the

VCNL4000 ambient light averaging capability calls for up to 128

A/D conversions, or in the case of a digital light sensor, like an I2C,

thousands of clock edges. Not to mention all the associated CPU

cycles. That means power consumption is going up, so toss in some

spare change for a bigger battery.

You might think that, when talking about driving the LED with up to

200 mA, any solution is going to be a power hog. But, in fact, the

VCNL4000’s power consumption is surprisingly low due to the sparse

duty cycle of LED illumination and optimized signal processing.

Let’s say you want to take ten proximity readings per second with 100

mA LED drive current. As you can see in Figure 2, during each 100 ms

sample time, the LED is only illuminated for some 70 μs. As a result, the

total average power consumption of the LED and VCNL4000 is under

100 μA. The ambient light sensor is similarly green. For example, at ten

samples per second with each sample comprising an average of eight

readings, average power consumption is once again under 100 μA.

I’m a big fan of the latest and greatest MCUs and fully respect the
ability of clever designers to wring the most out of them. Without
actually going through a design, I can’t completely rule out the
possibility that a multi-part lash-up might come close to matching
the capabilities of the VCNL4000. But don’t forget the optical aspects.
With a roll-your-own design, you’ll need to come up with an optically
isolated packaging scheme that avoids internal crosstalk, such as
reflections inside the box. No matter how clever a discrete design is,
it will surely consume more board space than the super-tiny and thin
Vishay module at 3.95 mm x 3.95 mm x 0.75 mm.

Vishay makes it easy to kick the tires with a low-cost evaluation kit
(see Photo 2) comprising a VCNL4000 carrier board, a USB interface,
and Windows-based dashboard software. The carrier board has a 10-
pin header that plugs into the USB adapter, which plugs into your PC.

The dashboard software (see Photo 3) features real-time, strip-chart
plotting of the sensor output with the ability to point-and-click
configure various options such as LED current, sample frequency,

offset compensation, and filtering, as well as read and write the

VCNL4000 registers directly.

Light show

The Vishay approach of splitting the VCNL4000 carrier board and the

USB interface is handy because it allows you to use the carrier board

by itself for prototyping and experiments.

Connecting your favorite MCU to the VCNL4000 requires just five

connections: the two-wire I2C interface (SCL, SDA), ground, power for

the logic (V
DD

), and a separate power supply for the LED (IR Anode).

While the power supplies are specified as 2.5 V to 3.6 V, the I2C bus

can handle 1.7 V to 5.5 V for connection with virtually any MCU.

Note that the evaluation kit powers both the logic and the LED from

a single power supply. In your own application, make sure the high

LED current pulses (up to 200 mA) don’t glitch the power for the rest

of your logic. If it’s an issue you could, for example, power the LED

directly from a battery and your digital logic from a regulated supply.

I was anxious to wire the gadget up, but the module’s fine-pitch,

0.05-in. connector had me scratching my head. I didn’t want to solder

wires directly to the module, so I did the right thing and ordered a

matching socket. Being no brain surgeon, I was pretty proud of myself

when I was able to tack wires to the socket. But the applause didn’t

last long. As soon as I tried to plug in the Vishay module, the pins on

the socket fell right out.

Eventually I was able, barely, to get four clip leads—SDA, SCL, GND,

and combined LED and logic power—connected to the VCNL4000

module, making for a bit of a cumbersome lash-up (see Photo 4). The

folks at Vishay might consider tossing in an adapter or a breakout

board with more room for connections.

Once I got the clip leads to stay put, it was easy enough to bring the

connections over to a Parallax Inc. SBC (single-board computer) based

on that company’s novel Propeller multicore MCU. It’s a setup that’s

especially useful for experimenting and prototyping, since the edit-

compile-download cycle takes just seconds and the company hosts a

large and ever-growing library of user-contributed software objects.

For example, instead of having to write an I2C driver, I just downloaded

a “Basic_I2C_Driver” from the Parallax website.

140 μs

100 ms
Figure 2: Proximity measurement timing.

Photo 2: VCNL4000 evaluation kit.

Photo 3: VCNL4000 evaluation kit software screen shot.

44

Thanks to the module’s built-in averaging and offset compensation,

taking an ambient light reading is trivially easy. First, you confi gure

the part with your chosen options, including the number and timing of

samples to average and whether or not to perform automatic offset

compensation. After that it’s a simple matter of issuing the command

and then spinning on a busy bit, or inserting a software delay, until the

operation completes some 1 to 100 ms later, depending on the number

and timing of samples being averaged. Now you can read the result

where each count, or LSB (least signifi cant byte), corresponds to 0.2 lux

(to get an absolute lux reading, divide the offset-compensated 16-bit

result by 5). Just remember that the level of illumination perceived by

the human eye for a given lux level varies a bit depending on the nature

of the light source, such as incandescent, fl uorescent, or sunlight.

The IR proximity feature takes a little more work, since MCU software

has to perform the averaging and offset compensation. Let’s walk

through the program shown in Photo 5.

After initializing the module, the baseline offset is established by

taking the average of 16 proximity readings. Obviously, this calibration

phase depends on nothing being in proximity in order to establish an

accurate baseline.

Subsequently, the program performs checks for proximity by taking

the average of eight readings, subtracting the baseline offset, and

comparing the result against an application-specifi c threshold. In

general, you can reduce the threshold for proximity detection, i.e.

increase the range, by increasing the number of samples averaged

to reduce noise. Finally, the result, or distance, is scaled for bar graph

display on the SBC’s eight LEDs.

When contemplating the specifi cs of your application, keep in mind

that sensitivity, or threshold, and calibration strategy are intertwined.

For instance, in the coarsest “yes/no” proximity applications with

a large swing, where a high threshold is okay, factory or manual

calibration may suffi ce. But for the highest-sensitivity, low-threshold

applications, more frequent calibration may be called for, ideally just

prior to each reading.

For instance, with my demo setup I noticed what appeared to be a bit

of temperature drift, with the offset slowly increasing from power-up.

The VCNL4000 datasheet isn’t explicit in this regard, but there is a

graph that indicates temperature drift varies across the full -40 to

+85°C range, depending on the confi gured LED current. Though only

on the order of one percent or so, it is enough to require periodic

recalibration in the highest-sensitivity applications.

Software embellishments might include dynamically calibrating the

baseline offset by adjusting it based on history. The exact nature of

the algorithm used depends on application specifi cs, such as the

relationship between the sampling rate and the proximity rate of

change. Be careful to confi rm that your algorithm is robust and avoids

bugs such as “baseline creep” and “stuck key.”

Since an individual IR proximity reading only takes 170 microseconds,

faster than the I2C transaction required to read the busy bit, I just

included a delay for command completion in the software. The

only “gotcha” is that an extra 400 microsecond delay is required

for the fi rst reading after initialization. Rather than slowing down

every reading, I dealt with this special case by performing a dummy

proximity reading at the beginning of the program.

The bottom line is that the VCNL4000 worked as advertised. For

example, my demo setup could reliably detect the presence of my

hand from a distance of almost 8 in., or 200 mm. Within range, the

high resolution of the device, supplemented with software signal

processing such as noise fi ltering, calibration and linearization makes

possible very precise distance measurements. At the same time, the

16-bit dynamic range has enough headroom to deal with real-world

vagaries, such as a scratched or dirty window.

Sources

Parallax Propeller multicore 32-bit MCU and Demo Board –

www.parallax.com

Vishay VCNL4000 IR proximity and ambient light sensor –

www.vishay.com

Photo 4: VCNL4000 connected to Parallax SBC.

Photo 5: IR proximity sensing program screenshot.

