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Overview:

Mecanum drive is a type of holonomic drive base; meaning that it applies the force of the wheel at 
a 45° angle to the robot instead of on one of its axes. By applying the force at an angle to the robot, you 
can vary the magnitude of the force vectors to gain translational control of the robot; aka, the robot can 
move in any direction while keeping the front of the robot in a constant compass direction. This differs 
from the basic robot drive systems like arcade drive, tank drive, or shopping cart drive require you to 
turn the front of the robot to travel in another direction.

Control Algorithm:

To get the most out of a mecanum drive system you will need to have the following information 
available to control it:

• Desired Angle – What angle the robot needs to translate at
• Desired Magnitude – What speed the robot must move at
• Desired Rotation – How quickly to change the direction the robot faces

Using that information the voltage multipliers for each wheel (numbers shown in Figure 1) can be 
calculated using the formulas found in Equation 1. 

Equation 1: Formulas for  
calculating wheel speed

These equations are composed of 2 main parts:
• Force vector computation

V d sin(θd+
π

4
)

• Modification for rotation
V θ

This value can be modified by a scaler quantity to make the rotation be more sensitive.
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V x=Thevoltage multiplier for the xth wheel
V d=Desired robot speed [−1,1]

θd=Desired robot angle [0,2π ]

V θ=Desired speed for changing direction [−1,1]

Figure 1: Wheel Numbering
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)−V θ

V 3=V d cos(θd+
π
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V 4=V d sin(θd+
π
4
)−V θ



These equations will compute the voltage multiplier for the wheels, but they return a value which 
is between [-2,2]. This range is larger than the desired range of [-1,1]. The best way to fix that is to 
scale the outputs if any of them get above the desired range. This way the motors will travel at full 
speed in translation mode, but when rotation is commanded the outputs will scale to still be in the 
desired range of [-1,1] The process for scaling the motor outputs is shown in Chart 1.

By using this algorithm to scale the motor outputs when they go outside the range [-1,1] the ratio 
between the motor speeds is preserved, maintaining the desired final force vector. This process also has 
the advantage that when full power is demanded in translation mode, the wheels will output full power, 
whereas if any of the values were to be modified using a scaler in the formulas in Equation 1 then full 
power would not be provided when commanded.
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Chart 1: Normalization process for motor outputs



On the other hand, if a simple limiting function (See Equation 2 
for an example of a piece-wise function) is used as the primary scaling 
method the final force vector will be different than the desired force 
vector since the ratio between the wheel speeds is not kept.

Derivation of Algorithm:

The above equations can be derived following the following steps:

1. Assume the following variables:

2. Rotate the axis of the robot 45° from normal. 

Original axis: Rotated axis:

This makes the beginning of the equation:

3. Determine the components for the desired force vector (on the new axis) using the desired force 
vector as the hypotenuse of a triangle
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Equation 2: Piece-wise  
defined function for limiting

V (x )={
−1 if x⩽−1
x if −1<x<1
1 if ⩽1 }

V x=Thevoltage multiplier for the xth wheel
V d=Desired robot speed [−1,1]

xd=X component of desired force vector
yd=Y component of desired force vector
θd=Desired robot angle [0,2π ]

V θ=Desired speed for changing direction [−1,1]



Then, using trigonometric identities you get the following components for the overall force vector

4. These components can then be assigned to specific wheels based upon the direction of the 
rollers on the wheels.
Wheel 1 (Front Left) has rollers going in the y-direction, so it gets assigned the y-component
Wheel 2 (Front Right) has rollers going in the x-direction, so it gets assigned the x-component
Wheel 3 (Rear Left) has rollers going in the x-direction, so it gets assigned the x-component
Wheel 4 (Rear Right) has rollers going in the y-direction, so it gets assigned the y-component

This creates the following 4 equations
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π
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π
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5. These equations will work for just translating the robot, but to be able to change the direction 
faced the rotation value needs to be added to the right wheel values and subtracted from the left 
wheel values. You can then adjust the sensitivity of 
the rotation by scaling V θ appropriately.

This gives the following equations:

V 1=V d sin(θd+
π

4
)+V θ

V 2=V d cos(θd+
π

4
)−V θ

V 3=V d cos(θd+
π

4
)+V θ

V 4=V d sin(θd+
π

4
)−V θ

Implementation:

This paper will not focus on individual implementation 
of the algorithm, it will just provide a high-level overview. 
The high-level block diagram can be found in Chart 2.
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xd=V d cos(θd+
π

4
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yd=V d sin(θd+
π

4
)

Chart 2: High-level Block Diagram for  
control


