
### Solenoid Valve Circuit Diagram



#### Liaison's suggestion

For example, get a TIP142. Connect the valve between the TIP142 collector and supply +24V. Connect supply ground to the emitter of the TIP142. Connect your micro's GPIO pin to the TIP142 base with 1K ohms in series to limit current to 5 mA. Ground microcontroller to the 24V ground. Then when micro puts 5 mA into the TIP142, the TIP142 will multiply it by 1000 and sink 5 A from the valve

#### <u>Components</u>

#### Solenoid Valve – TIP142

- Power supply from 24 VDC wall-wart
- Resistance (measured) 78Ω
- Current 0.29 A (doesn't specify if min or max)

**Transistor TIP142** – Darlington pair power transistor

- $H_{FE}$  = 1000 for I<sub>c</sub> = 5A and V<sub>CE</sub> = 4 V
- Collector Peak Current 20 A
- **Protection Diode 1N4007** 
  - V<sub>RRM</sub> = 1000
  - I<sub>F(AV)</sub> average rectified forward current = 1.0 A
  - I<sub>SFM</sub> non-repetitive peak forward surge current = 30 A

Example calculations for choosing NPN Transistor

Reference: http://www.kpsec.freeuk.com/trancirc.htm

1. Choose resistor that meets these requirements: Ic(max) and  $h_{FE}(min)$ .

2. The transistor's maximum collector current Ic(max) must be greater than the load current Ic.

load current Ic =  $\frac{\text{supply voltage Vs}}{\text{load resistance } R_L}$ 

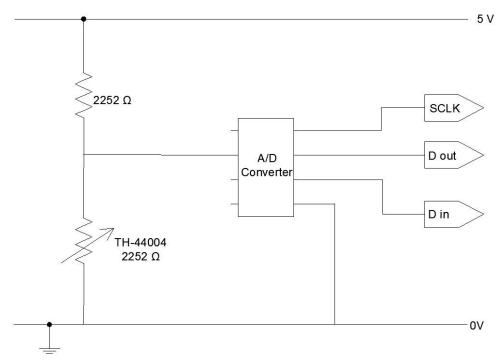
3. The transistor's minimum current gain  $h_{FE}(min)$  must be at least **five** times the load current Ic divided by the maximum output current from the IC (chip)

h<sub>FE</sub>(min) > 5 × load current Ic max. IC current

4. Calculate an approximate value for the base resistor:

 $R_{B} = \frac{Vc \times h_{FE}}{5 \times Ic}$  where Vc = IC supply voltage (in a simple circuit with one supply this is Vs)

Example Calculations:  $I_c = 24V / 78 \Omega = 0.307 A$ 


h<sub>FE</sub> = 5 x (0.307 A / 5 A) = 0.307

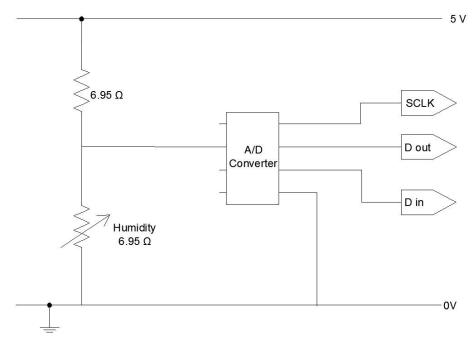
 $R_{B} = \frac{(24) \times (1000)}{5 \times (5)} = 960 \Omega$ \* Suggested to use h<sub>FE</sub> of 1000

**Questions** 

- Were incorrect methods or values used for calculating  $I_c$  (max) and  $h_{FE}$  (min)?
- Does the size of the diode only depend on peak current of the solenoid valve?

# Temperature Sensor Circuit Diagram




#### **Temperature Sensor** TH-44004

- Resistance = 2252  $\Omega$ 

#### A/D Converter

- 12-bit resolution
- +/- 1 LSB max DNL
- Serial interface (modes 0,0 and 1,1)
- 4 input channels
- Power requirements: 2.7V to +5.5 VDC

## Humidity Sensor Circuit Diagram



**Temperature Sensor** TH-44004

- Resistance = 2252 Ω

#### A/D Converter

- 12-bit resolution
- +/- 1 LSB max DNL
- Serial interface (modes 0,0 and 1,1)
- 4 input channels
- Power requirements: 2.7V to +5.5 VDC

#### Wall-wart

Output- 24V , 2.5A