

ZOG: GNU C/C++ for the Propeller

January 28, 2011

Manual by:

David Betz
Michael Rychlik

Software by:

Michael Rychlik

David Betz
Steve Denson

ZOG: GNU C/C++ for the Propeller 1	
1	 Introduction 4	

1.1	 What is Zog?	

1.2	 Supported Boards	

1.3	 Installing ZOG	

1.4	 Installing the Serial Download Helper	

1.5	 hello	

1.6	 filetest	

1.7	 xbasic	

2	 Building Programs 9	

2.1	 Board Configurations	

2.2	 Make Files	

3	 ZOGLOAD 11	

3.1	 Description	

3.2	 Selecting the Port (-p)	

3.3	 Selecting the Board Configuration (-b)	

3.4	 Writing a File to Flash or RAM (-wm)	

3.5	 Writing a File to the SD Card (-wf)	

3.6	 Load the helper program to Propeller RAM (-h)	

3.7	 Setting the Program Name (-n)	

3.8	 Writing a Bootloader to the EEPROM (-we)	

3.9	 Setting the File to be Loaded by the Bootloader (-wb)	

3.10	 Running a Program (-r)	

ZOG: GNU C/C++ for the Propeller

3

3.11	 Terminal Emulation (-t)	

4	 C Runtime Library 15	

4.1	 Initialization	

4.2	 Serial I/O	

4.3	 Keyboard Input	

4.4	 TV Output	

4.5	 File I/O	

5	 Drivers 17	

5.1	 FdSerial	

5.2	 TvText	

5.3	 Tv2Text	

5.4	 Keyboard	

6	 Propeller Interface 22	

6.1	 Hub Memory Variables	

6.2	 Memory Map	

6.3	 Propeller Registers	

6.4	 Propeller Functions	

ZOG: GNU C/C++ for the Propeller

4

1 Introduction

1.1 What is Zog?

Zog enables running C and C++ programs compiled with GCC, the GNU Compiler
Collection, on the Propeller multi-core micro-controller from Parallax Inc.

There is no Propeller architecture target for GCC. To overcome this Zog provides a
virtual machine implementing the instruction set of a CPU architecture for which there is
a GCC target, namely the Zylin CPU (ZPU) from Zylin Consulting. The ZPU architecture
provides a 32-bit processor with a very minimal instruction set, each ZPU instruction is a
single byte, it is therefore a perfect candidate for emulation on the Propeller as the
entire bytecode interpreter can be implemented in PASM within a single COG. Hence
the name ZOG, ZPU in a Cog. Further, as each instruction is a single byte the ZPU is a
good match for Propeller systems having external RAM or ROM that is connected over
an 8 bit data bus.

Zog can be used to run compiled C, C++ binaries on a bare Propeller where the binaries
are located within the Propellers HUB RAM space. This limits the binary size to a little
less than 32KBytes. Fortunately there are Propeller systems available that provide
memory external to the Propeller chip and Zog can also make use of such memory
expansion from which it can execute much larger binaries and deal with much larger
data sets. Up to 32MBytes currently!

This document describes how get C and C++ programs running on some of those
Propeller platforms with the Zog virtual machine.

If you are interested in the details of the ZPU architecture and instruction set you will
find it on the Zylin Consultants WEB site:

http://opensource.zylin.com/zpu.htm

1.2 Supported Boards

This version of ZOG supports the following boards:

1) Parallax Propeller C3 board
2) Gadget Gangster Propeller Platform board with the SDRAM module. To use TV

output and PS2 keyboard input requires the SDRAM/TV module.

1.3 Installing ZOG

This release only runs under Windows. Since you are reading this file you must have
unzipped the zog-cygwin.zip file successfully. This should have created a directory

ZOG: GNU C/C++ for the Propeller

5

called zog-cygwin. Open up a Windows Command prompt and cd to the zog-cygwin
directory.

Then, edit the setenv.bat file in this directory so that the ZOGPATH environment
variable points to the directory where this README.txt file is located and set the PORT
variable to the COM port that talks to your Propeller board. The ZOGPATH variable
must be set using the Cygwin path syntax.

In other words, if you've unzipped the zog-cygwin.zip file in the directory

C:\Users\myname

then you should set the ZOGPATH environment variable like this:

set ZOGPATH=/cygdrive/c/Users/myname/zog-cygwin

In other words,

C:\

becomes

/cygdrive/c/

and the rest of the path stays the same with the exception of converting all backslashes
to forward slashes. If you've installed on a different drive the procedure is similar.

For instance,

D:\

becomes

/cygdrive/d/

You should also change the BOARD environment variable to reflect the Propeller board
you will be using. Select c3 for the Parallax Propeller C3 board and sdram for the
Gadget Gangster Propeller Platform with SDRAM board. There is an additional c3ram
board type that you can use if you want to run code from the C3 SPI SRAM rather than
the C3 SPI flash.

Once youʼve completed editing your setenv.bat file type setenv at the Windows
command prompt to run the setenv batch file.

This should setup your environment to work with your Propeller board.

ZOG: GNU C/C++ for the Propeller

6

1.4 Installing the Serial Download Helper

In order to download a ZOG image to either Propeller external memory or to the SD
card zogload needs a helper program running on the Propeller. Normally you should
write the helper program to EEPROM before downloading any ZOG images. You can do
this with the following command:

zogload –we helper

This only needs to be done once. After that, each time zogload wants to start a
download it will reset the Propeller chip and the helper will run to assist in the download.
If the Propeller is reset by some other means like power up or the reset button, the
helper program will timeout after one second and will look for an SD card file named
zogload.run and will run the ZOG image whose name is in that file.

If you donʼt want to write the helper program to EEPROM you can specify the –h option
on the zogload command line before the file to download and zogload will download the
helper program before downloading the ZOG image. This allows you to use zogload
without disturbing what is programmed into your EEPROM but is also slower since it
has to download the helper each time.

ZOG: GNU C/C++ for the Propeller

7

Sample Programs

You can get a feel for writing ZOG C programs by looking at the examples in the tests
directory.

The hello test program requires a TV and PS2 keyboard to be connected to your
Propeller board. The filetest, setjmp, and xbasic test programs only require the USB
serial connection that you use to download programs to your board.

1.5 hello

To build the hello test program, cd to the tests\hello directory and type make. This
should run the ZPU C compiler to compile and link the hello test program. You will find
the resulting program in tests\hello\bin\hello.zbn. Files with the extension .zbn are ZOG
binary images that are ready to load into your Propeller board. To load the hello test
program, type make run. This should load the hello test program into your board and
start it running. You should see semi-interesting stuff on the TV you have plugged into
the video output. Once you see the “Hello, world!” banner line and the display of the
CLKFREQ and CNT registers, you can use your PS2 keyboard to type characters that
should be echoed to the TV.

1.6 filetest

To build the filetest test program, cd to the tests\filetest directory and type make. This
should run the ZPU C compiler to compile and link the filetest test program. You will find
the resulting program in tests\filetest\bin\filetest.zbn. Files with the extension .zbn are
ZOG binary images that are ready to load into your Propeller board. To load the filetest
test program, type make run. This should load the filetest test program into your board
and start it running. To run the filetest program you will need to insert a formatted SD
card into your board. The filetest program just writes two files, test.dat and test2.dat to
the SD card and reads them back to verify that they were written correctly. It currently
only works on the Propeller C3 board.

1.7 xbasic

To build the xbasic test program, cd to the tests\xbasic directory and type make. This
should run the ZPU C compiler to compile and link the xbasic test program. You will find
the resulting program in tests\xbasic\bin\xbasic.zbn. Files with the extension .zbn are
ZOG binary images that are ready to load into your Propeller board. To load the xbasic
test program, type make run. This should load the xbasic test program into your board
and start it running. The xbasic program is a simple line-oriented Basic interpreter that
uses the serial port for input/output. You can try it by typing this simple program:

10 for x=1 to 10
20 printf(“%d %d\n”, x, x*x)

ZOG: GNU C/C++ for the Propeller

8

30 next x

You can use the list command to list the program and the run command to run the
program. When you run it you will see it print the numbers for 1 to 10 and their squares.

ZOG: GNU C/C++ for the Propeller

9

2 Building Programs

2.1 Board Configurations

1) c3 – this should be used with the Parallax Propeller C3 board when you want to
compile code that loads into the 1mb SPI flash. This allows up to 1mb of code
and 64k of data using both the SPI flash and SPI SRAM chips on the C3.

2) c3ram – this should be used with the Parallax Propeller C3 board when you want
to compile and run code that loads into the SPI SRAM chips. This allows up to
64k of code and data and leaves the SPI flash chip alone for other uses.

3) sdram – this should be used with the Gadget Gangster Propeller Platform board
with the SDRAM module.

2.2 Make Files

common.mk

The test programs are built using the make utility and the include\common.mk makefile
fragments. You should be able to look at the makefiles in the tests/hello and
tests/filetest directories for an example of how to write your own makefiles to build
simple C programs for ZOG. For example, here is the makefile for hello:

TARGET=hello
SOURCES=hello.c initio.c
include $(ZOGPATH)/include/common.mk

The TARGET variable specifies the name of the program to build. The resulting ZOG
compile image will have this name with .zbn appended.

The SOURCES variable is a list of source files separated by spaces. If you have more
source files than will fit on a line, you can continue them on multiple lines by ending
each line with a space followed by a backslash. There should be no space or any other
characters after the backslash. For example:

SOURCES=hello.c \
source2.c \
source3.c \
initio.c

The last line should not end in a backslash.

The final line of the hello makefile includes the common.mk makefile fragments that
define how ZOG programs should be built.

For a more complex example with multiple source files look at tests/xbasic/makefile.

ZOG: GNU C/C++ for the Propeller

10

You can also invoke the ZPU tools directly without using make. Look at common.mk to
see which options are needed for the ZPU tools and be sure to include the correct linker
script for the board configuration you are targeting. The linker scripts have the same
names as the board configurations with .ld appended.

ZOG: GNU C/C++ for the Propeller

11

3 ZOGLOAD

3.1 Description

ZOGLOAD is a program that runs on the PC under either Windows or Linux and
provides a way to download files to any of the supported boards. It can write compiled C
programs (in the form of .zbn files) either to memory or an SD card. Programs compiled
for the c3 board configuration can be downloaded to flash. Programs compiled for the
c3ram or sdram board configurations can be downloaded into RAM.

3.2 Selecting the Port (-p)

You select which communications port is used to talk to your Parallax C3 board using
the -p option. You should follow the -p with the communications port identifier. On
Windows this can be either COMn or just n. If you donʼt specify a port on the zogload
command line the default is taken from the PORT environment variable. This is usually
setup by the setenv.bat file described in the section on Installing ZOG.

Example

 zogload -p COM3
or
 zogload -p3

3.3 Selecting the Board Configuration (-b)

You select your board configuration by using the -b option. The two choices for board
configuration are c3 for programs intended to run from SPI flash on the C3 and c3ram
for programs intended to run from SPI SRAM. The sdram board configuration is for the
Propeller Platform board with SDRAM module. If you donʼt specify a board configuration
on the zogload command line the default is taken from the BOARD environment
variable. This is usually setup by the setenv.bat file described in the section on Installing
ZOG.

Example

 zogload -b c3
or
 zogload -b c3ram
or
 zogload –b sdram

3.4 Writing a File to Flash or RAM (-wm)

ZOG: GNU C/C++ for the Propeller

12

You write a program into memory by using the -wm option. This option should be
followed by the name of the compiled ZOG program to write. Programs compiled using
the c3 board configuration will be loaded into flash, programs compiled with the c3ram
or sdram board configurations will be loaded into RAM. The -wm option is the default if
no option is specified before a filename so it can be left out if you want to load a
program into memory.

Example

 zogload –wm hello.zbn
or
 zogload hello.zbn

3.5 Writing a File to the SD Card (-wf)

Example

 zogload -wf hello.zbn

3.6 Load the helper program to Propeller RAM (-h)

The –h option is used if the helper bootloader has not been loaded into EEPROM.
When –h is specified before a download option like –wf or –wm, the helper program is
downloaded to Propeller hub RAM before the ZOG image is downloaded.

Example

 zogload –h -wm hello.zbn -r

3.7 Setting the Program Name (-n)

The –n option is used to specify a name to be used by a subsequent option. It is usually
used with the –wb to write the zogload.run file or with the –r option to run a program
from the SD card.

Example

 zogload -n hello.zbn -r

3.8 Writing a Bootloader to the EEPROM (-we)

There are three bootloaders that zogload can write to the EEPROM.

The helper bootloader waits for a second after reset for a packet from the PC to initiate
a download to either Propeller memory or the SD flash card. If no packet is received, it

ZOG: GNU C/C++ for the Propeller

13

mounts the SD card and looks for a file named zogload.run in the root directory. It reads
that file and uses its contents as the name of the file to load. For example, if zogload.run
contains the string “hello.zbn” that file will be loaded and started. The helper bootloader
should be programmed into EEPROM on boards that will be used for ZOG development
since it avoids having to download the helper program every time you want to download
a ZOG image.

Example

 zogload -we helper

The sd bootloader works the same as the helper bootloader except that it doesnʼt wait
for a packet from the PC but instead immediately starts the program whose name is
found in the SD card file zogload.run.

Example

 zogload -we sd

The other bootloader is flash. It loads and starts whatever program is programmed in
the flash memory. This is the last program written to flash using the –wm command with
a program compiled for a flash board configuration, currently only c3.
Example

 zogload -we flash

3.9 Setting the File to be Loaded by the Bootloader (-wb)

If youʼve programmed the sd bootloader into EEPROM you will need to write the
zogload.run file to the SD card so the bootloader knows which ZOG program to run on
reset. You do this with the –wb option. The –wb option writes the name of the most
recently mentioned file to zogload.run on the SD card.

Example

 zogload –wf hello.zbn –wb
or
 zogload –n hello.zbn -wb

3.10 Running a Program (-r)

The –r option runs a previously loaded program. On a board that supports flash
memory, it can run the program that is in the flash using just the –r option itself.

Example

ZOG: GNU C/C++ for the Propeller

14

 zogload –r

In all other cases, there must be a file to run specified on the command line. This can be
done in several ways. The file could have just been loaded into memory with the –wm
option.

Example

 zogload -wm hello.zbn –r

Or, the file could have just been written to the SD card with the –wf option.

Example

 zogload –wf hello.zbn –r

Or lastly, the file could already be on the SD card. In that case the –n option can be
used.

Example

 zogload –n hello.zbn –r

3.11 Terminal Emulation (-t)

Any of the commands can be followed by –t to enter terminal mode after the load is
complete. This is a simple terminal emulator that sends the characters typed on the PC
keyboard to the Propellerʼs serial port on pins 30/31 and displays characters transmitted
by the Propeller on the terminal.

Example

 zogload -wm hello.zbn -r -t

ZOG: GNU C/C++ for the Propeller

15

4 C Runtime Library

4.1 Initialization

Many C programs interact with the user by reading text from stdin and writing output to
stdout and stderr. The ZOG runtime library (based on newlib) supports this simple
terminal I//O in a number of different ways. By default, because embedded programs
often donʼt have a text interface, the stdin/stdout/stderr files are connected to /dev/null.
In other words, reads from stdin will always return EOF and writes to stdout or stderr will
just be ignored.

However, it is sometimes useful to be able to use terminal I/O, especially when porting
generic C programs to the Propeller. You can arrange to use terminal I/O by including in
your program the function _initIO. This function is called by the C startup code before
your main function is called. This allows you to setup terminal I/O. One advantage of
using _initIO is that you donʼt have to modify generic C code to make it work on the
Propeller. You just have to add an additional module containing your definition of the
_initIO function and link it with the generic C source files.

Here is an example of a simple _initIO function that sets up serial terminal I/O:

#include "propeller.h"

void _initIO(void)
{
 InitSerialTerm(
 conRxPin,
 conTxPin,
 conMode,
 conBaud,
 TERM_IO);
}

The conRxPin, conTxPin, conMode, and conBaud values are defined in the
include/board_xxx.h file associated with the board configuration you have chosen. For
instance, for the c3 board configuration, they are in the file include/board_c3.h. The
TERM_IO parameter says that both input and output will be directed to the serial port.

Here is another example to setup TV output and PS2 keyboard input

#include "propeller.h"

void _initIO(void)
{
 InitKeyboardTerm(keybdPinD, keybdPinC);

ZOG: GNU C/C++ for the Propeller

16

 InitTvTerm(tvPin);
}

Again, keybdPinD, keybdPinC, and tvPin are defined in the relevant board_xxx.h file.

4.2 Serial I/O

int InitSerialTerm(
 int rxpin,
 int txpin,
 int mode,
 int baudrate,
 int flags);

You can use this function to setup terminal I/O on a serial port. You can setup either
input or output or both. It loads the FdSerial driver into a COG and directs stdin, stdout,
and stderr to the serial port. The rxpin, txpin, mode, and baud parameters are the same
as the corresponding parameters to FdSerial_start.

Example

InitSerialTerm(31, 30, 0, 115200, TERM_IO);

Use TERM_IO to setup both serial input and serial output for stdin, stdout, and stderr.
Use TERM_IN to setup just serial input from stdin and TERM_OUT to setup just serial
output to stdout and stderr.

4.3 Keyboard Input

int InitKeyboardTerm(
 int dpin,
 int cpin);

You can use this function to setup terminal input from a PS2 keyboard for stdin. It loads
the Keyboard driver into a COG and directs stdin to the keyboard. The dpin and cpin
parameters are the same as the corresponding parameters to keybd_start.

Example

InitKeyboardTerm(26, 27);

4.4 TV Output

int InitTvTerm(
 int tvpin);

ZOG: GNU C/C++ for the Propeller

17

int InitTv2Term(
 int tvpin);

You can use these functions to setup terminal output to the TV for stdout and stderr.
The InitTvTerm function uses the Parallax TV driver that supports 42 columns by 14
rows. The InitTv2Term function uses the TV_Half_Height driver that supports 44
columns by 54 rows. The tvpin parameter is the same as the corresponding parameter
to tvText_start and tv2Text_start.

Example

InitTvTerm(12);

4.5 File I/O

int InitC3FileIO(
 int retries);

You can use this function to enable SD card file I/O when using the c3 or c3ram board
configurations. The InitC3FileIO function mounts the SD card and redirects all file I/O to
the SD card. The retries parameter determines how many times to attempt to mount the
SD card. Specify zero for retries to try indefinitely. The C3 file I/O driver uses the same
COG that is used by ZOG to manage the SPI flash and SRAM memories. No additional
COG is loaded by this function.

Example

InitC3FileIO(10);

5 Drivers

The following drivers have been ported to ZOG. Check the header files for them in the
include directory for more information on the functions that are available.

5.1 FdSerial

#include “FdSerial.h”

5.1.1 FdSerial_start	 	

int FdSerial_start(
 FdSerial_t *data,
 int rxpin,
 int txpin,
 int mode,

ZOG: GNU C/C++ for the Propeller

18

 int baudrate);

Initializes and starts a serial driver in a COG.

5.1.2 FdSerial_stop	 	

void FdSerial_stop(
 FdSerial_t *data);

Stops a serial driver.

5.1.3 FdSerial_rxflush	 	

void FdSerial_rxflush(
 FdSerial_t *data);

Empties the receive queue.

5.1.4 FdSerial_rxcheck	 	

int FdSerial_rxcheck(
 FdSerial_t *data);

Gets a byte from the receive queue if one is available. Otherwise, it returns -1.

5.1.5 FdSerial_rxtime	 	

int FdSerial_rxtime(
 FdSerial_t *data,
 int ms);

Gets a byte from the receive queue if one is available before the specified timeout in
milliseconds. Otherwise, it returns -1 to indicate timeout.

5.1.6 FdSerial_rx	 	

int FdSerial_rx(
 FdSerial_t *data);

Waits for a byte from the receive queue.

5.1.7 FdSerial_tx	 	

int FdSerial_tx(
 FdSerial_t *data,
 int txbyte);

ZOG: GNU C/C++ for the Propeller

19

Puts a byte into the transmit queue.

5.2 TvText

The following functions are provided in the TvText driver. For more information, see
include/TvText.h.

#include “TvText.h”

int tvText_start(int basepin);
void tvText_stop(void);
void tvText_str(char* sptr);
void tvText_dec(int value);
void tvText_hex(int value, int digits);
void tvText_bin(int value, int digits);
void tvText_out(int c);
void tvText_setColorPalette(char* palette);
uint16_t tvText_getTile(int x, int y);
void tvText_setTile(int x, int y, uint16_t tile);
uint16_t tvText_getTileColor(int x, int y);
void tvText_setTileColor(int x, int y, uint16_t color);
void tvText_setCurPosition(int x, int y);
void tvText_setCoordPosition(int x, int y);
void tvText_setXY(int x, int y);
void tvText_setX(int value);
void tvText_setY(int value);
int tvText_getX(void);
int tvText_getY(void);
void tvText_setColors(int value);
int tvText_getColors(void);
int tvText_getColumns(void);
int tvText_getRows(void);

5.3 Tv2Text

The following functions are provided in the Tv2Text driver. For more information, see
include/Tv2Text.h.

#include “Tv2Text.h”

int tv2Text_start(int basepin);
void tv2Text_stop(void);
void tv2Text_str(char* sptr);
void tv2Text_dec(int value);
void tv2Text_hex(int value, int digits);
void tv2Text_bin(int value, int digits);

ZOG: GNU C/C++ for the Propeller

20

void tv2Text_out(int c);
void tv2Text_setColorPalette(char* palette);
uint16_t tv2Text_getTile(int x, int y);
void tv2Text_setTile(int x, int y, uint16_t tile);
uint16_t tv2Text_getTileColor(int x, int y);
void tv2Text_setTileColor(int x, int y, uint16_t color);
void tv2Text_setCurPosition(int x, int y);
void tv2Text_setCoordPosition(int x, int y);
void tv2Text_setXY(int x, int y);
void tv2Text_setX(int value);
void tv2Text_setY(int value);
void tv2Text_setYhalf(int value);
int tv2Text_getX(void);
int tv2Text_getY(void);
void tv2Text_setColors(int value);
int tv2Text_getColors(void);
int tv2Text_getColumns(void);
int tv2Text_getRows(void);
void tv2Text_button(
 int left,
 int top,
 int width,
 int height,
 int color,
 char* text);
void tv2Text_box(
 int left,
 int top,
 int width,
 int height,
 int color);
void tv2Text_rectangle(
 int left,
 int top,
 int width,
 int height,
 int color,
 int fill);

5.4 Keyboard

#include “Keyboard.h”

5.4.1 keybd_start	

int keybd_start(
 int dpin,
 int cpin);

ZOG: GNU C/C++ for the Propeller

21

Initializes and starts the keyboard driver in a COG.

5.4.2 keybd_startx	

int keybd_startx(
 int dpin,
 int cpin,
 int locks,
 int autorep);

Like start, but allows you to specify lock settings and auto-repeat.

5.4.3 keybd_stop	 	

void keybd_stop(void);

Stops the keyboard driver.

5.4.4 keybd_present	 	

int keybd_present(void);

Checks to see if a key is present.

5.4.5 keybd_key	 	

int keybd_key(void);

Gets a key from the buffer and returns zero if the buffer is empty.

5.4.6 keybd_getkey	 	

int keybd_getkey(void);

Gets a key and waits if none is currently available.

5.4.7 keybd_newkey	 	

int keybd_newkey(void);

Clears the buffer and waits for a new key to arrive.

5.4.8 keybd_gotkey	 	

ZOG: GNU C/C++ for the Propeller

22

int keybd_gotkey(void);

Checks to see if there are any keys in the buffer. (How is this different from
keybd_present?)

5.4.9 keybd_clearkeys	 	

void keybd_clearkeys(void);

Clears the key buffer.

5.4.10 keybd_keystate	 	

int keybd_keystate(
 int key);

Get the state of a key.

6 Propeller Interface

6.1 Hub Memory Variables

Sometimes it is necessary to place variables in hub memory so that they can be
accessed by another COG. You can do this by using the special HUB memory attribute
that is defined in propeller.h.

Example

#include “propeller.h”
HUB uint32_t params[2];

This will place the params variable in hub RAM.

6.2 Memory Map

6.2.1 C3	 Memory	 Map	

0x00000000 - 0x0000ffff Cached external RAM
0x00100000 - 0x001fffff Cached external ROM
0x10000000 - 0x10007fff Hub RAM
0x10008000 – 0x1000ffff Hub ROM
0x18000000 – 0x100081ff COG memory

6.2.2 Propeller	 Platform	 SDRAM	 Memory	 Map	

ZOG: GNU C/C++ for the Propeller

23

0x00000000 - 0x0fffffff Cached external memory
0x10000000 - 0x10007fff Hub RAM
0x10008000 – 0x1000ffff Hub ROM
0x18000000 – 0x100081ff COG memory

6.3 Propeller Registers

There are a number of the Propeller registers that are available from C code.

6.3.1 Hub	 Variables	

CLKFREQ

CLKFREQ isnʼt a register. It is a location in hub memory that is initialized with the
current clock frequency.

6.3.2 COG	 Registers	

The following registers are available from C code. Keep in mind that these are the registers of
the COG that is running the ZOG virtual machine. For a description of each register see the
Propeller Manual.

PAR
CNT
INA
INB
OUTA
OUTB
DIRA
DIRB
FRQA
FRQB
PHSA
PHSB
VCFG
VSCL

6.4 Propeller Functions

6.4.1 cogid	

int cogid(void);

Return the ID of the current COG.

ZOG: GNU C/C++ for the Propeller

24

6.4.2 cognew	

int cognew(
 int *code,
 int size,
 int *par);

Allocate a COG, load code into it and start it running passing it par as a parameter. The
size parameter gives the size of the code in longs. If par is a pointer it must point to hub
memory. The code need not be in hub memory.

6.4.3 coginit	

int coginit(
 int cog,
 int *code,
 int size,
 int *par);

Load code into cog and start it running passing it par as a parameter. The size
parameter gives the size of the code in longs. If par is a pointer it must point to hub
memory. The code need not be in hub memory.

6.4.4 cogstop	

void cogstop(
 int cog);

Stop cog from running and make it available again for allocation by cognew.

