

Tokyo Institute of Technology Structural Dynamics Design Laboratory

Space Probe Vehicles

Two kinds of observation areas in ARLISS

Observation in the air

Video recording Sampling air ingredient

Observation on the ground

Video recording Sampling ground ingredient

Aim: Designing a satellite which navigates itself to both targets in air and on ground

Mission Area

Set two kinds of area; Observation area (O), retrieve area (R)

SPACE CRAWLER

> Hybrid Mechanism

< flyback>

- Flight unit (with paraglider, servomotor)

<runback>

- Crawler mechanism

Runback on rough surfaces

- The flexible belts of the caterpillar make it possible to run on rough surfaces

1st flight (Sep. 15)

Mike's rocket for our Cansat !!

Got altitude data, and succeeded to separate but failed to get GPS data

Flight unit 个

Rover (with cover) \rightarrow

2nd flight (Sep. 17)

Richard's "Ameri-Can" for our Cansat !!

Got altitude data, but failed to get GPS data

Rover \uparrow

Cover and small crater \rightarrow

Special Thanks to

Aero Pac Tokyo Tech Matsunaga Lab. Keiou Univ. Takahashi Lab. Wolve'z Tokyo University of Science Kimura Lab. Prof. Okuma Ph.D. Sakamoto

Thanks a lot!!