

CFP5102 Data Sheet

Document No.:CFP5102 DataSheet v0.1Issue Date:2007-12-3

High Performance 8-bit RISC MCU

- DC-24MHz operation
- Compatible with 8051
- 160ns internal interrupt response at 24 MHz
- Single cycle per byte fetch
- All instructions are single-cycled except branching instructions

Program Memory and Data Memory

- 16K Bytes OTP program memory 384 Bytes internal SRAM for data/stack memory
- External 64K Bytes external memory interface compatibles to true 8051
- Two data pointers for indirect addressing

Interrupt Features

- 14 vectored interrupts
- 2-level interrupt priority
- External wakeup/interrupt capabilities on 3 GPIO pins and USB PHY

Flexible I/O

- 32 GPIO pins organized in 4 ports.
- Support open-drain or push-pull driving
- CMOS/TTL-level Schmitt triggered inputs
- Optional internal 20Kohm pull-up resistor
- 6mA sink/source current driving capability

Digital Peripheral Features

 Two 16-bit timers compatible with 8051's timer0 timer1
 Enhanced 8052's timer 2. Support
 Capture/Reload, PWM mode and clock generation

- Real-time wake up for software clock implementation.
- Watchdog Timer with on-chip 16KHz RC oscillator
- High-speed full-duplex 8051-compatible serial port
 Enhanced SPI with double-buffer for read
 - and write. Operates up to 12Mb/s
- GPSI with 16-bit/32-bit packet header, for interfacing RF module, Ethernet PHY and for inter-chip communication
- Full-speed USB 2.0 Device controller module with 3 endpoints (including endpoint 0) and 208 bytes FIFO Endpoint 0: 16 bytes
 Endpoint 1: IN 64 bytes / OUT 64 bytes
 Endpoint 2: IN 32 bytes / OUT 32 bytes

Analog Peripheral Features

- 4~24MHz Crystal Oscillator
- 32,768 Hz Real-time Crystal Oscillator
- 16KHz RC oscillator
- Full-speed USB 2.0 Device PHY
- Digital PLL for 48MHz clock generation
- 8 channels 8-bit ADC
- Power-on reset
- On-chip regulator for 5V to 3.3V conversion

Programming and Debugging Support

- In-System Programming (ISP) support
- In-System Debugging (ISD) support

Packages

- 48-pin LQFP
- DIE form

V0.1

1 PRODUCT OVERVIEW	1
1.1 DESCRIPTION	1
1.2 SYSTEM ARCHITECTURE	2
1.2 SISTEMARCHITECTURE	2
2 PIN INFORMATION	3
2.1 PIN ASSIGNMENT	3
2.2 PIN DESCRIPTION	4
<u>3</u> PROGRAMMING MODEL	7
3.1 MEMORY ORGANIZATION	7
3.2 PROGRAM MEMORY (CODE)	7
3.3 DATA MEMORY (DATA)	10
3.4 GENERAL PURPOSE REGISTERS (REGISTER)	10
3.5 EXTENDED DATA MEMORY (XDATA)	11
3.6 PROGRAM STACK MEMORY (STACK)	12
3.7 CPU TIMING	13
3.8 INSTRUCTION SET SUMMARY	13
3.9 DUAL DATA POINTERS	16
3.10 CPU REGISTERS	18
3.11 SPECIAL FUNCTION REGISTERS (SFR)	20
3.11.1 SFR TABLE LISTED IN ALPHABETICAL ORDER	20
3.11.2 SFR TABLE LISTED ACCORDING TO ADDRESS	23
4 EXTERNAL MEMORY INTERFACE (EMI)	26
4.1 MULTIPLEXED ADDRESS MODE	27
4.2 NON-MULTIPLEXED ADDRESS MODE	29
4.3 8-BIT ADDRESS MODE	32
4.4 FIFO MODE	33
5 INTERRUPT PROCESSING	35
5.1 INTERRUPT SOURCES AND VECTORS	36
5.2 INTERRUPT PRIORITIES	36
5.3 INTERRUPT LATENCY	37
6 CLOCKS AND RESETS AND POWER MANAGEM	ENT 39
6.1 CLOCK SYSTEM	39
6.1.1 CLOCK SYSTEM 6.1.1 CLOCK CONTROL	39 39
6.1.2 CLOCK GATING	59 40
6.1.3 CRYSTAL OSCILLATORS	40
U.I.J CRISIAL OSCILLATORS	41

Preliminary

6.1.4	USING EXTERNAL CLOCK GENERATORS	45
6.1.5	RC OSCILLATOR	46
6.1.6	DIGITAL PHASE LOCK LOOP	46
6.1.7	REAL-TIME WAKEUP CLOCK	46
6.1.8	SUPPLY CLOCK TO OFF-CHIP PERIPHERALS	47
6.2	RESETS	48
6.2.1	Reset Sequence	48
6.2.2	MASTER RESET	48
6.2.3	POWER ON RESET	48
6.2.4	WATCHDOG TIMEOUT RESET	49
6.3	POWER MANAGEMENT	50
6.3.1	OPERATING IN 3.3V OR 5V SYSTEMS	50
6.3.2	ON-CHIP REGULATOR	51
6.3.3	IDLE MODE	52
6.3.4	HALT MODE	52
6.3.5	Power Down Mode	53
6.3.6	ADDITIONAL LOW POWER OPTIONS	54

7 PORTS AND PERIPHERALS

<u>55</u>

7.1 PORTS	55
7.1.1 PUSH-PULL MODE AND OPEN-DRAIN MODE	55
7.1.2 SETTING PORT DIRECTION	57
7.1.3 READING FROM AND WRITING TO PORT	58
7.1.4 USING PULL-UPS	59
7.1.5 CONFIGURING FOR ANALOG INPUT	60
7.1.6 IO SHARED WITH PERIPHERALS	61
7.1.7 INTERRUPT AND WAKEUP	62
7.2 TIMER 0/1	66
7.2.1 MODE 0: 13-BIT COUNTER/TIMER	66
7.2.2 MODE 1: 16-BIT COUNTER/TIMER	66
7.2.3 MODE 2: 8-BIT COUNTER/TIMER WITH AUTO-RELOAD	67
7.2.4 MODE 3: TWO 8-BIT COUNTER/TIMERS (TIMER0 ONLY)	67
7.3 TIMER 2	71
7.3.1 CAPTURE MODE	71
7.3.2 AUTO-RELOAD MODE (UP OR DOWN COUNTER)	71
7.3.3 PULSE WIDTH MODULATION (PWM)	73
7.3.4 OPERATION FLOW	77
7.4 REAL TIME WAKEUP	78
7.4.1 OPERATION FLOW	79
7.5 SERIAL PORT (UART)	80
7.5.1 MODE 0	80
7.5.2 MODE 1	80
7.5.3 MODE 2	81
7.5.4 MODE 3	81
7.5.5 BAUDRATE SETTING	83
7.5.6 INTERRUPT	83
7.5.7 OPERATION FLOW	84
7.6 SERIAL PROTOCOL INTERFACE (SPI)	86
7.6.1 MASTER MODE	87
7.6.2 SLAVE MODE	87
Preliminary	V0.1

<u>Preliminary</u>

7.6.3 TWO-WIRE MODE	87
7.6.4 RECEIVE-ONLY MODE	88
7.6.5 BAUDRATE SETTING	89
7.6.6 INTERRUPT	90
7.6.7 OPERATION FLOW	90
7.7 GENERAL PURPOSE SERIAL INTERFACE (GPSI)	92
7.7.1 HEADER	93
7.7.2 TRANSMIT PROTOCOL	94
7.7.3 RECEIVE PROTOCOL	95
7.7.4 INTERRUPTS	98
7.7.5 BAUDRATE SETTING	100
7.7.6 OPERATION FLOW	101
7.8 ANALOG-TO-DIGITAL CONVERTER (ADC)	102
7.8.1 REFERENCE VOLTAGE	102
7.8.2 INPUT UNITY-GAIN BUFFER	102
7.8.3 CONVERSION AND INTERRUPT	102
7.8.4 COMPARISON MODE	104
7.8.5 CONVERSION TIME AND SAMPLING CLOCK	105
7.9 UNIVERSAL SERIAL PORT (USB)	106
7.9.1 USB DEVICE	106
7.9.2 USB INTERFACE UNIT	107
7.9.3 ACCESS USB CONTROLLER	108
7.9.4 WAKEUP OPERATIONS	112
7.10 FIFO INTERFACE	113
7.10.1 OPERATION FLOW	114
7.11 WATCHDOG TIMER	115
7.11.1 TIMER FUNCTION	116
7.11.2 CLEAR WATCHDOG TIMER	116
7.11.3 WAKEUP, RESET AND INTERRUPT	117
8 CODE PROTECTION	118
9 ELECTRICAL CHARACTERISTICS	119
9.1.1 ABSOLUTE MAXIMUM RATING	119
9.1.2 DC CHARACTERISTICS	119
9.1.3 AC PARAMETERS	117
,	121

<u>10</u>	PACKAGE OUTLINE	123
11	REVISION HISTORY	124

1 Product Overview

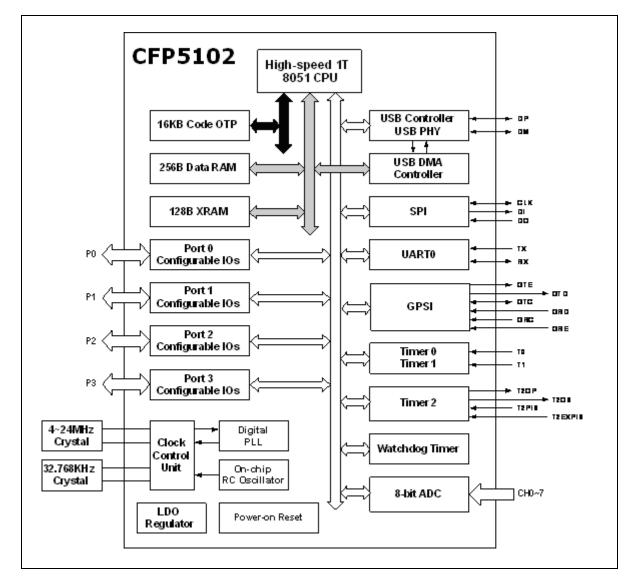
1.1 Description

CFP5102 is an 8051 compatible mixed-signal 8-bit microcontroller. It integrates advanced digital and analog peripherals to accommodate different applications. For digital peripherals, it supports digital interfaces including UART, SPI, GPSI, three timers, watchdog timer, and an USB 2.0 full-speed device controller. For analog peripherals, it integrates an 8-bit ADC, a low dropout voltage regulator.

The microcontroller has an advanced RISC-based architecture and compatible with standard 8051 core running at 24 MIPS. All instructions take single clock cycle, except for program branching and accessing external memory.

CFP5102 has 16K byte OTP program memory and 384 bytes data memory. It also supports external memory interface (EMI), which allows program code running from external memory.

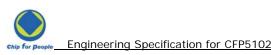
CFP5102 I/O pins have flexible programmable capabilities. It supports external port wakeup, open-drain and push-pull modes with internal pull-up resistor option.


CFP5102 has built-in In-System Programming (ISP) and In-System Debugging (ISD) capabilities, which supports third party tools to provide an integrated development environment including editor, macro assembler, debugger, programming and software peripherals.

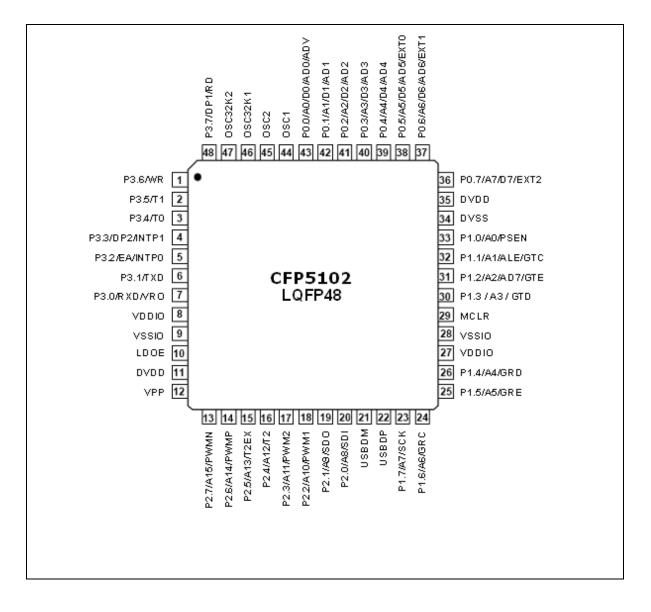
In order to support portable applications with low power consumption, CFP5102 has three power-saving modes: IDLE, HALT and Power Down. It also has a sophisticated clock control system that can enable clock sources only for the peripherals that are running to further reduce power consumption.

TEL: +886-2-22231558 FAX: +886-2-22233988

E-mai : sales@cfpt.com.tw



1.2 System Architecture


Figure 1-1: Block Diagram

2 Pin Information

2.1 Pin Assignment

2.2 Pin Description

Symbol	Pin	Type ^{note1}	Description	
P0.0 / A0 / D0 / AD0 /	43	I/O	P0.0 – port 0 bit 0	
ADV		0	A0 – external memory address bus bit 0 ^{note2}	
		0	D0 – external memory data bus bit 0	
		I	AD0 – analog-to-digital converter channel 0	
		I	ADV – analog-to-digital converter voltage reference	
P0.1 / A1 / D1 / AD1	42	I/O	P0.1 – port 0 bit 1	
		0	A1 – external memory address bus bit 1 ^{note2}	
		0	D1 – external memory data bus bit 1	
		I	AD1 – analog-to-digital converter channel 1	
P0.2 / A2 / D2 / AD2	41	I/O	P0.2 – port 0 bit 2	
		0	A2 – external memory address bus bit 2 ^{note2}	
		0	D2 – external memory data bus bit 2	
		l	AD2 – analog-to-digital converter channel 2	
P0.3 / A3 / D3 / AD3	40	I/O	P0.3 – port 0 bit 3	
		0	A3 – external memory address bus bit 3 ^{note2}	
		Õ	D3 – external memory data bus bit 3	
		U I	AD3 – analog-to-digital converter channel 3	
P0.4 / A4 / D4 / AD4	39	I/O	P0.4 – port 0 bit 4	
	55	0	A4 – external memory address bus bit 4 ^{note2}	
		0	D4 – external memory data bus bit 4	
		0	AD4 – analog-to-digital converter channel 4	
P0.5 / A5 / D5 / AD5 /	38	I/O	P0.5 – port 0 bit 5	
EXT0	30		PU.5 – poil 0 bil 5	
EXIU		0	A5 – external memory address bus bit 5 ^{note2}	
		0	D5 – external memory data bus bit 5	
		l	AD5 – analog-to-digital converter channel 5	
		I	EXT0 – external interrupt 0	
P0.6 / A6 / D6 / AD6 /	37	I/O	P0.6 – port 0 bit 6	
EXT1		0	A6 – external memory address bus bit 6 ^{note2}	
		0	D6 – external memory data bus bit 6	
		I	AD6 – analog-to-digital converter channel 6	
			EXT1 – external interrupt 1	
P0.7 / A7 / D7 / EXT2	36	I/O	P0.7 – port 0 bit 7	
		0	A7 – external memory address bus bit 7 ^{note2}	
		0	D7 – external memory data bus bit 7	
		I	EXT2 – external interrupt 2	
P1.0 / A0 / PSEN	33	I/O	P1.0 – port 1 bit 0	
		0	A0 – external memory address bus bit 0 ^{note3}	
		0	PSEN – external memory program select enable	
P1.1 / A1 / ALE / GTC	32	I/O	P1.1 – port 1 bit 1	
		0	A1 – external memory address bus bit 1 ^{note3}	
		0	ALE – external memory address latch enable	
		0	GTC – GPSI transmit clock	
P1.2 / A2 / AD7 / GTE	31	I/O	P1.2 – port 1 bit 2	
		0	A2 – external memory address bus bit 2 note3	
		I	AD7 – analog-to-digital converter channel 7	
		Ö	GTE – GPSI transmit enable	
P1.3 / A3 / GTD	30	1/0	P1.3 – port 1 bit 3	
		0	A3 – external memory address bus bit 3 ^{note3}	
		0	GTD – GPSI transmit data	
P1.4 / A4 / GRD	26	1/0	P1.4 – port 1 bit 4	
	20		pote3	
		0		
	25	I I/O	GRD – GPSI receive data	
P1.5 / A5 / GRE	25	I/O	P1.5 – port 1 bit 5	
		0	A5 – external memory address bus bit 5 ^{note3}	
Preliminary			4 / 124 V0.1	

			GRE – GPSI receive enable
P1.6 / A6 / GRC	24	I/O	P1.6 – port 1 bit 6
		0	A6 – external memory address bus bit 6 ^{note3}
			GRC – GPSI receive clock
P1.7 / A7 / SCK	23	I/O	P1.7 – port 1 bit 7
		0	A7 – external memory address bus bit 7 ^{note3}
		I/O	SCK – SPI clock
P2.0 / A8 / SDI	20	I/O	P2.0 – port 2 bit 0
		0	A8 – external memory address bus bit 8
D0 4 / 40 / 0D 0	40	I/O	SDI – SPI data input ^{nóte4}
P2.1 / A9 / SDO	19	I/O	P2.1 – port 2 bit 1
		0	A9 – external memory address bus bit 9 SDO – SPI data output ^{note4}
P2.2 / A10 / PWM1	18	1/0	P2.2 – port 2 bit 2
12.27 81071 991911	10	0	A10 – external memory address bus bit 10
		0	PWM1 – 8-bit PWM channel 1
P2.3 / A11 / PWM2	17	1/0	P2.3 – port 2 bit 3
1 2.077(1171 00002		0	A11 – external memory address bus bit 11
		ŏ	PWM2 – 8-bit PWM channel 2
P2.4 / A12 / T2	16	I/O	P2.4 – port 2 bit 4
_		0	A12 – external memory address bus bit 12
			T2 –timer/counter 2 external count input
P2.5 / A13 / T2EX	15	I/O	P2.5 – port 2 bit 5
		0	A13 – external memory address bus bit 13
		1	T2EXtimer/counter 2 reload/capture/direction
		I	control
P2.6 / A14 / PWMP	14	I/O	P2.6 – port 2 bit 6
		0	A14 – external memory address bus bit 14
		0	PWMP – 16-bit PWM positive channel
P2.7 / A15 / PWMN	13	I/O	P2.7 – port 2 bit 7
		0	A15 – external memory address bus bit 15
		0	PWMN – 16-bit PWM negative channel
P3.0 / RXD / VRO	7	I/O	P3.0 – port 3 bit 0
			RXD – serial port input
P3.1 / TXD	6	0 I/O	VRO – voltage reference out (1.25V) P3.1 – port 3 bit 1
FJ.T/TAD	0	0	TXD – serial port output
P3.2 / EA / INTP0	5	I/O	P3.2 – port 3 bit 2 (pull-up enable by default)
10.27 E/(/ INTE	Ŭ	"C	INTPO – port interrupt 0
			EA – external access enable (active LOW)
			EA must be externally held LOW to enable the
			device to fetch code from external program
			memory locations. If EA is held HIGH, the device
			executes from internal program memory. The
			value on the EA pin is latched when MCLR is
			released and any subsequent changes have no
	4	1/0	effect.
P3.3 / DP2 / INTP1	4	I/O	P3.3 – port 3 bit 3 (pull-up enable by default) INTP1 – port interrupt 1
			DP2 – in-system programming pin 2 (active LOW)
			DP2 must be externally held LOW to enable
			in-system programming. The value on the DP2 pin
			is latched when MCLR is released and any
			subsequent changes have no effect.
P3.4 / T0	3	I/O	P3.4 – port 3 bit 4
		I	T0 – timer/counter 0 capture/compare/count input
P3.5 / T1	2	I/O	P3.5 – port 3 bit 5
		1	T1 – timer/counter 1 capture/compare/count input
P3.6 / WR	1	I/O	P3.6 – port 3 bit 6
		I	WR – external data memory write strobe
	40		(active LOW)
P3.7 / DP1 / RD	48	I/O	P3.7 – port 3 bit 7
Preliminary			5 / 124 V0.1
<u> </u>			

		I	DP1 – in-system programming pin 1	
			Cooperate with DP2 to operate in-system	
			programming	
		I	RD – external data memory read strobe	
USBDP	22	I/O	(active LOW) USBDP – USB data (positive)	
USBDM	22	I/O	USBDP – USB data (positive)	
LDOE	10	0	LDOE – on-chip regulator (LDO) enable	
LDOL	10	0	(active LOW)	
			When LDOE is tied to HIGH, the LDO will be	
			disabled. It is recommended to supply power to	
			chip through external power source into DVDD	
			pad. When LDOE is tied to LOW, the LDO will be	
			enabled and will regulate the voltage to 3.3V after	
			a short start-up time.	
OSC1	44	Ι	OSC1 – high speed crystal pin 1	
			Input to the inverting oscillator amplifier and input	
			to the internal clock generator circuits.	
OSC2	45	0	OSC2 – high speed crystal pin 2	
000001/4	40		Output from the inverting oscillator amplifier.	
OSC32K1	46	I	OSC32K1 – 32,768 Hz crystal pin 1	
			Input to the inverting oscillator amplifier and input to the internal clock generator circuits.	
OSC32K2	47	0	OSC32K2 –32,768 Hz crystal pin 1	
00002112	47	0	Output from the inverting oscillator amplifier.	
MCLR	29	1	MCLR – master reset (active LOW)	
MOLI	20	•	A LOW on this pin for 8 ms resets the device.	
VPP	12	Р	VPP – OTP programming voltage supply	
DVDD	11,35	Р	DVDD – voltage supply for core	
			When LDO is enabled, this pad is served for	
			compensation for LDO output. Please refer to	
			Section 6.3.1 for external circuitry.	
DVSS	34	Р	DVSS – supply ground for core	
VDDIO	8,27	Р	VDDIO – voltage supply for IO and LDO	
VSSIO	9,28	Р	VSSIO – supply ground for IO and LDO	

Note1: O means output pin I means input pin I/O means input and output pin P means power pin Note2: For external memory interface in multiplexed address mode

Note3: For external memory interface in non-multiplexed address mode

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

3 Programming Model

3.1 Memory Organization

CFP5102, like 8052 contains several separated memory spaces, namely CODE, DATA, XDATA, STACK and REGISTER. These memory spaces are accessed by different addressing and by different instructions. OTP, SRAM and peripheral-control registers are mapped to these spaces. To suit for the memory requirement of different programs, CFP5102 provides enhanced configurable memory architecture. Users can select suitable memory mapping by programming the control register. The memory models are discussed in the following sections.

3.2 Program Memory (CODE)

The memory space CODE is a 64K-byte space dedicated for programs and constants. The whole space is addressed by program counter (PC) and also by two 16-bit data pointers (DPTR0 and DPTR1) using MOVC instruction. In CFP5102, the program can be implemented on-chip (in 16K-byte OTP memory), off-chip or as a combination. For applications with program excesses 16K bytes, CFP5102 provides an external memory interface (EMI) to expand the program memory through external storage, such as NOR Flash, ROM, EEPROM and etc.

The memory mapping in CODE is illustrated in Figure 3-1. In the default setting, the on-chip 16K bytes OTP memory is mapped to 0x0000 to 0x3FFF of CODE. The rest of the addressable area is not defined. Users should restrict the program within the mapped area to get rid of unpredictable operations.

CFP5102 supports two ways to enable external memory interface: (1) setting register by the program in OTP; (2) pull down the pin EA externally. In the former case, the program in OTP is working like a boot-loader, the setup program, reset program, interrupt subroutines, libraries and frequently called functions are stored in the internal OTP. As the CPU is able to work at full speed when accessing OTP, this arrangement is tuned for these frequently used parts of the program. The EMI is enabled by writing a '1' to bit 2 of DPCON (EMIEN). The details of the interconnection, timing and operation of EMI are discussed in Section 4

When users intend to execute program in external storage without programming the on-chip OTP memory, the only way is to configure CFP5102 by pulling down the pin EA during system reset until the execution of the first instruction. To stop hacking of OTP through this configuration, OTP is disabled and unmapped to any memory space. No any instruction allows accessing OTP in this mode. Further security measurements are discussed in Section 8.

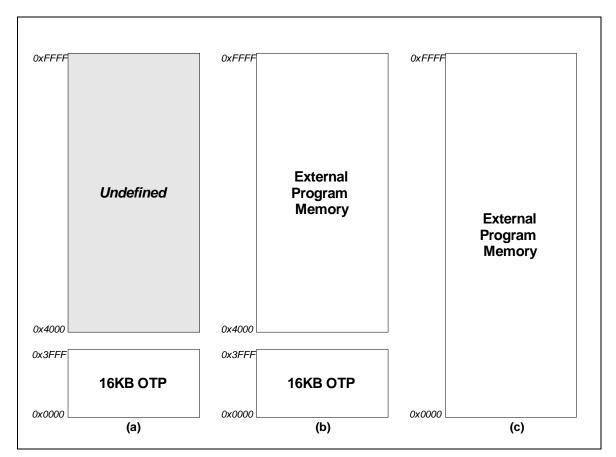


Figure 3-1: (a) Default mapping of CODE. Access undefined area causes unpredictable result. (b) Mapping of CODE when external memory interface is enabled. (c) Special mapping of CODE when enabling external memory interface by forcing EA to low during system reset.

Table 3-1: Summary of CODE	memory settings
----------------------------	-----------------

EA	EMIEN	Memory Mapping
1	0	0x0000 – 0x3FFF: OTP
		0x4000 – 0xFFFF: Undefined
1	1	0x0000 – 0x3FFF: OTP
		0x4000 – 0xFFFF: EMI
0	Х	0x0000 – 0xFFFF: EMI

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

In standard 8051/8052 architecture, the reset program is located at 0x0000 of CODE. The interrupt subroutines starts from 0x0003, allocated 8 bytes for each interrupt subroutine. CFP5102 provide a remapping option to relocate the reset and interrupt entries to upper 32K-byte area of CODE. Programmers are freed from the limitation of 8051/8052 to do flexible memory planning, in addition to do fast switching between two different reset and interrupt handling schemes. To remap the reset and interrupt entries, programmers have to write '1' to bit 4 of CCON (ISRM). These setting cannot be cancelled by watchdog reset and wakeup reset. Only power-on reset clears this bit to default value, logic '0'.

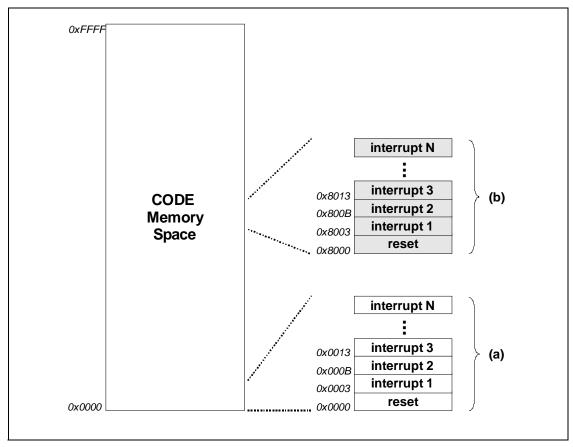


Figure 3-2: (a) The location of reset and interrupt entries by default. (b) The location of reset and interrupt entries when remapping is enabled

TEL: +886-2-22231558 FAX: +886-2-22233988

E-mai : sales@cfpt.com.tw

Web-site : www.cfpt.com.tw

3.3 Data Memory (DATA)

Data memory space (DATA) contains 256K bytes sketchpad memory, special function registers for controlling peripherals. It is also a super set of REGISTER space. To access this complex space, several addressing modes (direct, indirect, register and bit addressing) are provided. For details, please refer to the 8052 standard.

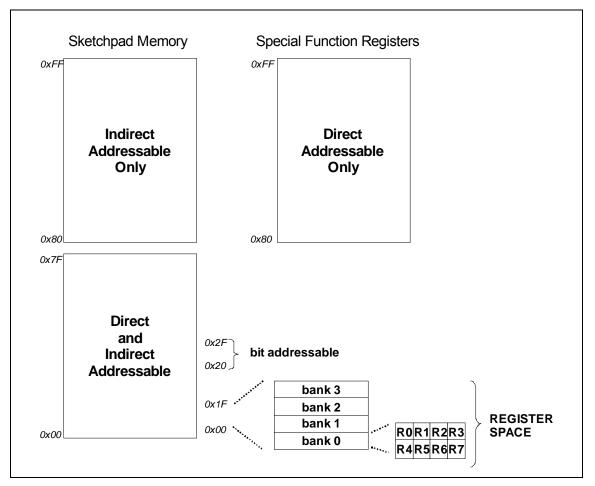


Figure 3-3: The mapping of DATA and REGISTER

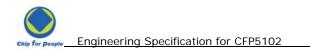
3.4 General Purpose Registers (REGISTER)

General purpose registers R0 through R7 link to 32 bytes of internal data memory in the way that allows quick, efficient access. For example, the instruction *MOV A,00h* using two bytes of code can be replaced by shorthand notation instruction MOV A,R0 that uses one byte of code only.

These 32 bytes of memory are put into 4 banks. Any one of them within a bank is selected by R0 through R7. Desired register bank is selected using bits RS1 and RS0 in PSW, bit 4 and bit 3 respectively (please refer to Table 3-2 for setting description). This feature eliminates the effort required to backup the registers to stack memory during context switching, in addition provides more registers for complicated algorithms.

Preliminary	10 / 124	V0.1
TEL : +886-2-22231558 FAX : +886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw

RS0	RS1	Bank	Mapping Address to DATA
0	0	0	0x00 – 0x07
0	1	1	0x08 – 0x0F
1	0	2	0x10 – 0x17
1	1	3	0x18 – 0x1F


3.5 Extended Data Memory (XDATA)

To provide a unified linear memory model, CFP5102 organizes internal data memory and external data memory that out of the scope of DATA into extended data memory space (XDATA). Total 64K bytes of XDATA are addressed through instruction *MOVX* using two 16-bit data pointers, DPTR0 and DPTR1. XDATA contains 128 bytes on-chip SRAM, 64K bytes off-chip SRAM and also 16K bytes OTP. Constant data structures stored in OTP can be manipulated uniformly as data structures in data memory through instruction MOVX.

EA	EMIEN	XMAP	Memory Mapping
1	0	0	0x0000 – 0x007F: On-chip SRAM (XRAM)
			0x0080 – 0xFFFF: Undefined
1	0	1	0x0000 – 0x007F: XRAM
			0x0080 – 0x7FFF: Undefined
			0x8000 – 0x9FFF: OTP
			0xA000 – 0xFFFF: Undefined
1	1	0	0x0000 – 0x007F: XRAM
			0x0080 – 0xFFFF: EMI
1	1	1	0x0000 – 0x007F: XRAM
			0x0080 – 0x7FFF: EMI
			0x8000 – 0x9FFF: OTP
			0xA000 – 0xFFFF: EMI
0	0	Х	0x0000 – 0x007F: XRAM
			0x0080 – 0xFFFF: Undefined
0	1	Х	0x0000 – 0x007F: XRAM
			0x0080 – 0xFFFF: EMI

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

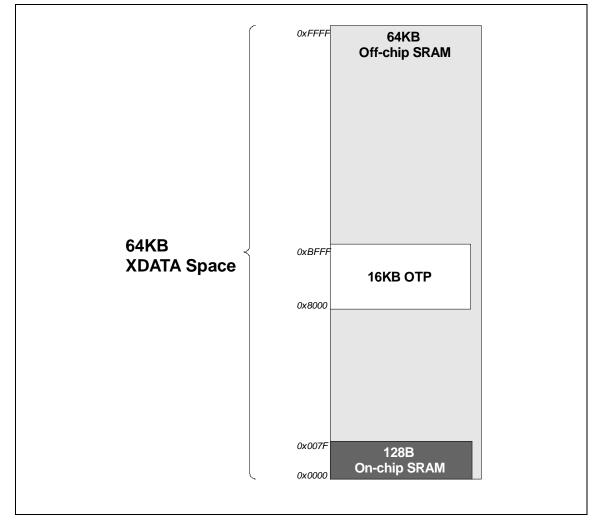


Figure 3-4: The mapping of XDATA

3.6 Program Stack Memory (STACK)

The classic 8051/8052 provides a stack for program counter storage during interrupts, subroutine calls and also for temporary data. The stack is implemented in DATA memory, therefore limited to 128 bytes in 8051 or 256 bytes in 8052. The limitation thus hampers developing large scale systems on 8051.

To breakthrough the burden to support nowadays complex systems, CFP5102 extends the program stack memory to XDATA, which means the size of the STACK can be up to 64K bytes when using external memory. The 16-bit STACK pointer is formed by combining register SPH and SP. (refer to Section 3.10)

SPXSEL	EMIEN	Memory Mapping
0	0	0x0000 – 0x00FF: Sketchpad memory (DRAM)
1	0	0x0000 – 0x007F: On-chip SRAM (XRAM)
1	1	0x0000 – 0x007F: XRAM
		0x0080 – 0xFFFF: EMI

<u>Preliminary</u>	12 / 124	V0.1
TEL : +886-2-22231558 FAX : +886-2-22233988	E-mai : sales@cfpt.com.tw	Web-site : www.cfpt.com.tw

3.7 CPU Timing

CFP5102 is a high performance MCU. It executes most instruction in 1 cycle, in contrast to 12 cycles in classic 8051/8052. To fetch instructions, CFP5102 reads 1 byte at each cycle. To take all into account, the cycle required to complete an instruction can be calculated as follows:

Cycle required = number of bytes + execution cycle -1

For example, the instruction ADDC A, Rn takes 1 cycle; the instruction MOVC A, @A+PC takes 3 cycles

				Number of Bytes	Execution Cycle				
#	Mnemo	onics	Description	2					
			Arithmetic Instructions	1	1				
1	ADD	A, Rn	Add register to A	2	1				
2	ADD	A, direct	Add direct byte to A	2 1	1				
3		A, @Ri	Add indirect RAM to A	2	1				
4	ADD	A, #data	Add immediate to A	2 1	1				
5	ADDC		Add register to A with carry	2	1				
6		A, direct	Add direct byte to A with carry	2 1	1				
7		A, @Ri	Add indirect RAM to A with carry	2	1				
8		A, #data	Add immediate to A with carry	2 1	1				
9	SUBB		Subtract register from A with borrow	2	1				
10		A, direct	Subtract direct byte from A with borrow		-				
11		A, @Ri	Subtract indirect RAM from A with borrow	1	1				
12		A, #data	Subtract immediate from A with borrow		1				
13	INC	<u>A</u>	Increment A	1	1				
14	INC	Rn	Increment register	1	1				
15	INC	direct	Increment direct byte	2	1				
16	INC	@Ri	Increment indirect RAM	1	1				
17	DEC	A	Decrement A	1	1				
18	DEC	Rn	Decrement register	1	1				
19	DEC	direct	Decrement direct byte	2	1				
20	DEC	@Ri	Decrement indirect RAM	1	1				
21	INC	DPTR	Increment Data Pointer	1	1				
22	MUL	AB	Multiply A and B	1	1				
23	DIV	AB	Divide A by B	1	1				
24	DA	Α	Decimal adjust A	1	1				
	Logical Instructions								
25	ANL	A, Rn	AND register to A	1	1				
26	ANL	A, direct	AND direct byte to A	2	1				
27	ANL	A, @Ri	AND indirect RAM to A	1	1				

3.8 Instruction Set Summary

Preliminary

13 / 124

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

<u></u>	A N ''	A #1-1-1		2	1
	ANL	A, #data	AND immediate to A		
	ANL	direct, A	AND A to direct byte	2	1
	ANL	direct, #data	AND immediate to direct byte	3	1
31	ORL	A, Rn	OR register to A	1	1
32	ORL	A, direct	OR direct byte to A	2	1
33	ORL	A, @Ri	OR indirect RAM to A	1	1
34	ORL	A, #data	OR immediate to A	2	1
35	ORL	direct, A	OR A to direct byte	2	1
36	ORL	direct, #data	OR immediate to direct byte	3	1
37	XRL	A, Rn	XOR register to A	1	1
38	XRL	A, direct	XOR direct byte to A	2	1
39	XRL	A, @Ri	XOR indirect RAM to A	1	1
40	XRL	A, #data	XOR immediate to A	2	1
41	XRL	direct, A	XOR A to direct byte	2	1
42	XRL	direct, #data	XOR immediate to direct byte	3	1
	CLR	A	Clear A	1	1
44	CPL	A	Complement A	1	1
45	RL	A	Rotate A left	1	1
	RLC	A	Rotate A left through carry	1	1
	RR	A	Rotate A right	1	1
	RRC	A	Rotate A right through carry	1	1
	SWAP		Swap nibbles of A	1	1
			Data Transfer Instructions		
50	MOV	A, Rn	Move register to A	1	1
		A, direct	Move direct byte to A	2	1
		A, @Ri	Move indirect RAM to A	1	1
		A, #data	Move immediate to A	2	1
	MOV	Rn, A	Move A to register	1	1
-	MOV	Rn, direct	Move direct byte to register	2	1
	MOV	Rn. #data	Move immediate to register	2	1
		direct, A	Move A to direct byte	2	1
		direct, Rn	Move register to direct byte	2	1
	MOV	direct, direct	Move direct byte to direct byte	3	1
	MOV	direct, @Ri	Move indirect Byte to direct byte	2	1
	MOV	direct, #data	Move immediate to direct byte	3	1
-	MOV	@Ri, A	Move A to indirect RAM	1	1
	MOV	@Ri, direct	Move direct byte to indirect RAM	2	1
	MOV		Move immediate to indirect RAM	2	1
	MOV	@Ri, #data	Load DPTR with 16-bit constant	3	1
		DPTR, #data		1	3
		A, @A+DPTR	Move code byte relative DPTR to A	1	3
		A, @A+PC	Move code byte relative PC to A	1	1
		A, @Ri	Move external data (8-bit address) to A	1	1
		@Ri, A	Move A to external data (8-bit address)	י 1	1
		A, @DPTR	Move external data (16-bit address) to A	1	1
		@DPTR, A	Move A to external data (16-bit address)	2	1
	PUSH		Push direct byte onto stack	2	1
73	POP	direct	Pop direct byte from stack	2	I

Preliminary

V0.1

74	ХСН	A, Rn	Exchange register with A	1	1
	ХСН	A, direct	Exchange direct byte with A	2	1
76		A, @Ri	Exchange indirect RAM with A	1	1
		A, @Ri	Exchange low nibble of indirect RAM with A	1	1
11	лопр		Bit Manipulation Instructions		
70	CLR	С	·	1	1
78 70			Clear carry	2	1
79 80		bit	Clear direct bit	1	1
80	SETB	C	Set carry	2	1
81 80	SETB	bit	Set direct bit	1	1
82	CPL	C	Complement carry	2	1
83	CPL	bit	Complement direct bit		
84	ANL	C, bit	AND direct bit to carry	2	1
85	ANL	C, /bit	AND complement of direct bit to carry	2	1
86	ORL	C, bit	OR direct bit to carry	2	1
87	ORL	C, /bit	OR complement of direct bit to carry	2	1
	MOV	C, bit	Move direct bit to Carry	2	1
89	MOV	bit, C	Move Carry to direct bit	2	1
90	JC	rel code	Jump if carry is set	2	1 3*
91	JNC	rel code	Jump if carry is not set	2	1 3*
92	JB	bit, rel code	Jump if direct bit is set	3	1 3*
93	JNB	bit, rel code	Jump if direct bit is not set	3	1 3*
94	JBC	bit, rel code	Jump if direct bit is set and clear bit	3	1 3*
	1		Program Branching Instructions	1	-
95	ACALL	page code	Absolute subroutine call	2	3
96	LCALL	long code	Long subroutine call	3	3
97	RET		Return from subroutine	1	3
98	RETI		Return from interrupt	1	3
99	AJMP	page code	Absolute jump	2	3
100	LJMP	long code	Long jump	3	3
101	SJMP	rel addr	Short jump (relative address)	2	3
102	JMP	@A+DPTR	Jump indirect relative to DPTR	1	3
103	JZ	rel code	Jump if A equals zero	2	1 3*
104	JNZ	rel code	Jump if A does not equal zero	2	1 3*
105	CJNE	A, direct, rel code	Compare direct byte to A and jump if not equal	3	1 3*
106	CJNE	A, #data, rel code	Compare immediate to A and jump if not equal	3	1 3*
	CJNE	Rn, #data, rel code	Compare immediate to Register and jump if not equal	3	1 3*
108	CJNE	@Ri, #data, rel code	Compare immediate to indirect and jump if not equal	3	1 3*
109	DJNZ	Rn, rel code	Decrement Register and jump if not zero	2	1 3*
	DJNZ	direct, rel code	Decrement direct byte and jump if not zero	3	1 3*
	NOP		No operation	1	1
		cates a branch occurs		1	

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through R0 or R1.

rel - 8-bit, signed (2s complement) offset relative to the first byte of the following instruction.

Preliminary

Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00-0x7F) or an SFR (0x80-0xFF).

#data - 8-bit constant

#data16 - 16-bit constant

bit - Direct-accessed bit in Data RAM or SFR

page code - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2K-byte page of program memory as the first byte of the following instruction. **long code** - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 64K-byte program memory space.

3.9 **Dual Data Pointers**

To facilitate data movement in XDATA, CFP5102 provides dual data pointers. Two independent data pointers are especially useful when moving, copying and manipulating large data types, such arrays, structures and unions. Based on this feature, CFP5102 saves many operations in manipulating pointer, comparing to single data pointer classic 8051/8052. The additional data pointer can be selected through register DPCON. No additional instruction is introduced to distinguish these 2 pointers.

DPCON: TYPE:	R/\	N.	ointer Cor	trol Regis	ter				
ADDRESS: Position	Ox8	56	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	DPID	1		DPTSE	DPAID	-	EMIEN	SPXSEL	DPS
Default	0		0	0	0	-			0
Derduit	0		0	0	0	0	U	0	0
Name	Mode	D	escription				Se	etting	
DPID1	RW	R	eplace inst	ruction INC	DPTR1 by I	DEC DPTR		INC	
			-1		- 5	-		DEC	
DPID0	RW	R	eplace inst	ruction INC	DPTR0 by I	DEC DPTR		INC	
					,			DEC	
DPTSE	RW	Α	utomatic DI	PTR select	toggle enab	le.		disable	
21.101					omatically a		•••	enable	
			10VC instru		,,	,			
DPTAID	RW				ent/decrem	ent enable b	oit. O:	disable	
					TR automa			enable	
			10VX or MC				ung n	0110.010	
EMIEN	RW				ce enable b	it	0.	disable	
								enable	
SPXSEL	RW	S	tack point X	RAM mapr	oing select b	it		map to DRA	M
OI XOLL					RAM space			map to XRA	
DPS	RW		ata pointer					DPTR0	
DIO	1	0		301001			••	DPTR1	
DPH: TYPE: ADDRESS: Position	R/\	N	r 0 High B	yte Regist	er Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic			2.10	2.00	DPTR			2.01	2
Default					0000				
	·								
DPL:			ointer 0 H	igh Byte R	egister				
TYPE:	R/\								
ADDRESS:		32							
Position	Bit7		Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic					DPTR				
Default					0000	0000			
Prelimina	nv				16 / 124				V0.1
					- · · - ·				

TEL : +886-2-22231558 FAX : +886-2-22233988 E-mai : <u>sales@cfpt.com.tw</u>

Data Pointer 1 High Byte Register							
R/W							
0x85							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
			DPTR1	[15:8]			
			0000	0000			
			0000	0000			
	R/W 0x85	R/W 0x85	R/W 0x85	R/W 0x85 Bit7 Bit6 Bit5 Bit4 DPTR1	R/W 0x85	R/W 0x85 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 DPTR1[15:8]	R/W 0x85 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 DPTR1[15:8]

DPL1:	Data Pointer 1 High Byte Register								
TYPE:	R/W								
ADDRESS:	0x84								
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO	
Mnemonic		DPTR1[7:0]							
Default		0000000							

3.10 CPU Registers

CPU Co	CPU Control Register											
R/W	_											
OxAB												
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO					
PROT	-	LPM	ISRM	XMAP	-	-	-					
0	0	0	0	0	0	0	0					
	R/W OxAB Bit7	R/W OxAB Bit7 Bit6 PROT -	R/W 0xAB Bit7 Bit6 Bit5 PROT - LPM	R/W OxAB Bit7 Bit6 Bit5 Bit4 PROT - LPM ISRM	R/W OxAB Bit7 Bit6 Bit5 Bit4 Bit3 PROT - LPM ISRM XMAP	R/W OxAB Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 PROT - LPM ISRM XMAP -	R/W OxAB Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 PROT - LPM ISRM XMAP					

Name	Mode	Description	Setting
PROT	RW	OTP code protection enable bit.	0: disable
		When set to '1', MOVC to OTP memory is disabled.	1: enable
		This bit can clear by reset sources only	
LPM	RW	Low power mode enable bit.	0: disable
		Reduce the power consumption by OTP memory.	1: enable
		Caution: this mode can only be enabled when system	
		clock is under 10MHz	
ISRM	RW	Interrupt subroutine mapping bit.	0: no offset
		0x8000 offset is added to the address of the interrupt	1: add 0x8000 offset
		subroutine when this bit is set	
XMAP	RW	OTP mapping to XRAM enable bit.	0: disable
		Map OTP memory to XRAM space when set to '1'.	1: enable
		User can use MOVX instruction to access	

PSW: TYPE: ADDRESS	R/V		d					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	CY	AC	FO	RS1	RS0	ov	F1	Р
Default	0	0	0	0	0	0	0	0
News	Maria	Description				0		
Name	Mode	Description				Se	etting	
Р	R	Odd parity cl	neck of ACC	;				
OV	RW	Overflow flag	3					
F1, F0	RW	User-defined	l bits					
RS1, RS0	RW	Register bar	k select					
AC	RW	Auxiliary car	ry flag					
CY	RW	Carry flag						

V0.1

November 2007

SP: **Stack Pointer Register** TYPE: R/W ADDRESS: 0x81 Bit0 Position Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Mnemonic SP Default 00000111 SPH: Stack Pointer High Byte Register TYPE: R/W ADDRESS: 0x9B Position Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Mnemonic SPH Default 0000000 Description Setting SPH and SP registers are combined to form a 16-bit stack pointer when SPXSEL in DPCON is '1' ACC: Accumulator Register TYPE: R/W ADDRESS: **OxEO** Position Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Mnemonic ACC Default 0000000 B: **B** Register TYPE: R/W ADDRESS: 0xF0 Position Bit7 Bit6 Bit5 Bit2 Bit1 Bit0 Bit4 Bit3 Mnemonic В Default 0000000

November 2007

3.11 Special Function Registers (SFR)

3.11.1 SFR table listed in alphabetical order

The unimplemented bits are labelled '-', never write value other than its reset value to it, otherwise unpredictable effects will be resulted. Some registers have undetermined reset value, it is labelled 'X'.

November 2007

Register			Bit Functions									
Name	Description	Address	MSB							LSB	Reset	
ACC	Accumulator	0xE0									0000 0000	
ADCB	ADC buffer	0xEE										
ADCCON0	ADC control 0	0xF4	ADCPND	INBUF	REFS	TM	TC[1]	TC[0]	GO	ADCEN	0000 0000	
ADCCON1	ADC control 1	0xF5	CM	GT	-	REFBE	-	AS[2]	AS[1]	AS[0]	0000 0000	
ADCSC	ADC sampling clock control	0xF3						-	-		0000 0000	
ADCT	ADC threshold	0xF1									XXXX XXXX	
В	B register	0xF0									0000 0000	
CCON	CPU control	0xAB	PROT	-	LPM	ISRM	XMAP	-	-	-	0000 0000	
CKCON0	Clock control 0	0x91	-	-	LPOSC	PLLEN	-	SCPLL	SCS	SCKD	0000 0000	
CKCON1	Clock control 1	0x92	FFCKE	32CKE	RTCKE	MCKE	PCKE	-	TCKE	UCKE	0001 1110	
CKCON2	Clock control2	0x93	-	-	-	-	-	CKS	32CE	HSCE	0000 1101	
CLKDIV	Clock divider	0x94									0000 0000	
DP1H	Data pointer 1 high byte	0x85									0000 0000	
DP1L	Data pointer 1 low byte	0x84									0000 0000	
DPCON	Data pointer control	0x86	DPID1	DPID0	DPTSE	DPAID	-	EMIEN	SPXSEL	DPS	0000 0000	
DPH	Data pointer high byte	0x83						-	-		0000 0000	
DPL	Data pointer low byte	0x82									0000 0000	
EMICON1	EMI control 1	0x8E	RW[3]	RW[2]	RW[1]	RW[0]	HD[1]	HD[0]	SET[1]	SET[0]	1111 1111	
EMICON2	EMI control 2	0x8F	-	SZ[1]	SZ[0]	-	PSON	MUX	WRON	AL	0100 1111	
FIFOCON	FIFO interface control	0x9C	FEN	ONLY	-	-	-	-	WR	RD	0000 0000	
FIFODATA	FIFO data	0x9F					-	-	-		0000 0000	
FIFOPTR	FIFO pointer	0x9D									0000 0000	
FSET	Special function setting	0xBF	-*	T0DD	OCSEL[1]	OCSEL[0]	-*	T1DD	EWDT	WDTRST	0100 1110	
GPSIBAUD	GPSI baud rate divider	0xC5									0000 0000	
GPSIBUF	GPSI data buffer	0xC4									0000 0000	

Preliminary

20 / 124

V0.1

GPSICON0	GPSI control 0	0xC0	-	-	GPSIRXIE	GPSITXIE	TXCLKSEL	RXEDSEL	TXEDSEL	GPSIEN	0000	0000
GPSICON1	GPSI control 1	0xC1	RXBUF FULL	TXBUF EPTY	RXHDREN	TXHDREN	EOP	RXENOFF	TXMODE[1]	TXMODE[0]	0000	0000
GPSICON2	GPSI control 2	0xC2	HDRRXCLR	HDRTXCLR	GPSIEOPIE	GPSIRXHIE	GPSITXHIE	HEAD32	HDRRX MATCH	HDRTX LOAD	0000	0000
GPSIHDR	GPSI header	0xC3									0000	
IEN0	Interrupt enable 0	0xA8	EA	ERT	ET2	ES	ET1	EX1	ET0	EX0	0000	0000
IEN1	Interrupt enable 1	0xA9	-	-	EGPSI	EADC	EUD	EUI	ESI	EPW	0000	
IP0	Interrupt priority 0	0xB8	-	PRT	PT2	PS	PT1	PX1	PT0	PX0	0000	
IP1	Interrupt priority 1	0xB9	-	-	PGPSI	PADC	PUD	PUI	PSI	PPW	0000	
P0	Port 0	0x80									XXXX	
P0AIE	Port 0 analog input enable	0xE1									0000	0000
P0DIR	Port 0 direction control	0xAC									1111	1111
P0OD	Port 0 open-drain mode	0xA4									0000	0000
P0PUP	Port 0 pull-up control	0xB1									0000	0000
P1	Port 1	0x90									XXXX	XXXX
P1AIE	Port 1 analog input enable	0xE2									0000	0000
P1DIR	Port 1 direction control	0xAD									1111	1111
P10D	Port 1 open-drain mode	0xA5									0000	0000
P1PUP	Port 1 pull-up control	0xB2									0000	0000
P2	Port 2	0xA0									XXXX	XXXX
P2DIR	Port 2 direction control	0xAE									1111	1111
P2OD	Port 2 open-drain mode	0xA6									0000	0000
P2PUP	Port 2 pull-up control	0xB3									0000	0000
P3	Port 3	0xB0									XXXX	XXXX
P3AIE	Port 3 analog input enable	0xE4									0000	0000
P3DIR	Port 3 direction control	0xAF									1111	1111
P3OD	Port 3 open-drain mode	0xA7									0000	0000
P3PUP	Port 3 pull-up control	0xB4									0000	1100
PCON	Power control	0x87	SMOD	EA	HLT	POF	-	-	PD	IDL	0X01	0000
PSW	Program status word	0xD0	CY	AX	F0	RS1	RS0	OV	F1	Р	0000	0000
PSYN	Port synchronizer enable	0xB6	-	-	-	-	P3SYN	P2SYN	P1SYN	P0SYN	0000	0000
RCAP2H	Timer 2 Capture/Reload/PWM duty cycle high byte	0xCB										0000
RCAP2L	Timer 2 Capture/Reload/PWM duty cycle low byte	0xCA									0000	
RTCON	Real time control	0xD8	-	RTWK	-	-	RTWE	-	-	-	0000	0000

Preliminary

21 / 124

V0.1

SBUF Serial port buffer 0x99 SCON Serial port control 0x98 SM0 SM1 SM2 REN TB8 RB8 TI RI SP Stack pointer 0x81	0000 0000
SP Stack pointer 0x81 SPH Stack pointer high byte 0x9B SPIBAUD SPI baud control 0x96 SPIBUF SPI data buffer 0x97	0000 0000
SPH Stack pointer high byte 0x9B SPIBAUD SPI baud control 0x96 SPIBUF SPI data buffer 0x97	0000 0000
SPIBAUD SPI baud control 0x96 SPIBUF SPI data buffer 0x97	0000 0111
SPIBUF SPI data buffer 0x97	0000 0000
	0000 0000
	0000 0000
SPICON SPI control 0x95 SPIPND SM RTS WS RXO SMP IDS SPIEN	0000 0000
T2CON Timer 2 control 0xC8 TF2 EXF2 EXEN2 TR2 C/T2 CP/RL2	0000 0000
T2MOD Timer 2 mode 0xC9 - PWM8 T2CLK[1] T2CLK[0] PWM16N PWM16P T2OE DCEN	0000 0000
TCON Timer 0/1 control 0x88 TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0	0000 0000
TH0 Timer 0 high byte 0x8C	0000 0000
TH1 Timer 1 high byte 0x8D	0000 0000
TH2 Timer 2 counter high byte 0xCD	0000 0000
TL0 Timer 0 low byte 0x8A	0000 0000
TL1 Timer 1 low byte 0x8B	0000 0000
TL2 Timer 2 counter low byte 0xCC	0000 0000
TMOD Timer 0/1 mode 0x89 GATE1 C/T1 T1M[1] T1M[0] GATE0 C/T0 T0M[1] T0M[0]	0000 0000
TPR2H Timer 2 PWM period high byte 0xCF	0000 0000
TPR2L Timer 2 PWM period low byte 0xCE	0000 0000
USBADR USB access address 0xFB USBADR[5:0]	00XX XXXX
USBCON0 USB control 0 0xF8 - UCD URST URW UDS UCS	0100 0X00
USBCON1 USB control 1 0xF9 UDMU UDPU UPE USPD	0000 0001
USBDADR USB DMA base address 0xFC	XXXX XXXX
USBDATA USB access data 0xFA	XXXX XXXX
USBDD USB DMA done 0xFF USBDD[3:0]	0000 0000
USBDM USB DMA interrupt mask 0xFD USBDM[3:0]	0000 0000
USBDR USB DMA request 0xFE USBDR[3:0]	0000 0000
WDTCON Watchdog control 0xA1 WDTTO WDTPD WDTPND WDTEN WDTPS[3] WDTPS[2] WDTPS[1] WDTPS[0]	
WKEDG Port wakeup edge select 0xBD WKEDG[3] WKEDG[2] WKEDG[1] WKEDG[0]	0000 XXXX
WKEN Port wakeup control 0xBC WKEN[3] WKEN[2] WKEN[1] WKEN[0]	0000 0000
WKPND Port wakeup pending 0xBB WKPND[3] WKPND[2] WKPND[1] WKPND[0]	0000 XXXX

Preliminary

22 / 124

V0.1

3.11.2 SFR table listed according to address

The unimplemented bits are labelled '-', never write value other than its reset value to it, otherwise unpredictable effects will be resulted. Some registers have undetermined reset value, it is labelled 'X'.

	Register		Bit Functions								
Address	Name	Description	MSB							LSB	Reset
0x80	P0	Port 0									XXXX XXXX
0x81	SP	Stack pointer									0000 0111
0x82	DPL	Data pointer low byte									0000 0000
0x83	DPH	Data pointer high byte									0000 0000
0x84	DP1L	Data pointer 1 low byte									0000 0000
0x85	DP1H	Data pointer 1 high byte									0000 0000
0x86	DPCON	Data pointer control	DPID1	DPID0	DPTSE	DPAID	-	EMIEN	SPXSEL	DPS	0000 0000
0x87	PCON	Power control	SMOD	EA	HLT	POF	-	-	PD	IDL	0X01 0000
0x88	TCON	Timer 0/1 control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	0000 0000
0x89	TMOD	Timer 0/1 mode	GATE1	C/T1	T1M[1]	T1M[0]	GATE0	C/T0	T0M[1]	T0M[0]	0000 0000
0x8A	TL0	Timer 0 low byte									0000 0000
0x8B	TL1	Timer 1 low byte									0000 0000
0x8C	TH0	Timer 0 high byte									0000 0000
0x8D	TH1	Timer 1 high byte		_		-			-		0000 0000
0x8E	EMICON1	EMI control 1	RW[3]	RW[2]	RW[1]	RW[0]	HD[1]	HD[0]	SET[1]	SET[0]	1111 1111
0x8F	EMICON2	EMI control 2	-	SZ[1]	SZ[0]	-	PSON	MUX	WRON	AL	0100 1111
0x90	P1	Port 1									XXXX XXXX
0x91	CKCON0	Clock control 0	-	-	LPOSC	PLLEN	-	SCPLL	SCS	SCKD	0000 0000
0x92	CKCON1	Clock control 1	FFCKE	32CKE	RTCKE	MCKE	PCKE	-	TCKE	UCKE	0001 1110
0x93	CKCON2	Clock control2	-	-	-	-	-	CKS	32CE	HSCE	0000 1101
0x94	CLKDIV	Clock divider		_		-			-		0000 0000
0x95	SPICON	SPI control	SPIPND	SM	RTS	WS	RXO	SMP	IDS	SPIEN	0000 0000
0x96	SPIBAUD	SPI baud control									0000 0000
0x97	SPIBUF	SPI data buffer									0000 0000
0x98	SCON	Serial port control	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	0000 0000
0x99	SBUF	Serial port buffer									0000 0000
0x9B	SPH	Stack pointer high byte									0000 0000

Preliminary

23 / 124

V0.1

0x9C	FIFOCON	FIFO interface control	FEN	ONLY	-	-	-	-	WR	RD	0000	0000
0x9D	FIFOPTR	FIFO pointer									0000	0000
0x9F	FIFODATA	FIFO data									0000	0000
0xA0	P2	Port 2									XXXX	XXXX
0xA1	WDTCON	Watchdog control	WDTTO	WDTPD	WDTPND	WDTEN	WDTPS[3]	WDTPS[2]	WDTPS[1]	WDTPS[0]	0000	0000
0xA4	P0OD	Port 0 open-drain mode									0000	0000
0xA5	P10D	Port 1 open-drain mode									0000	0000
0xA6	P2OD	Port 2 open-drain mode									0000	0000
0xA7	P3OD	Port 3 open-drain mode									0000	0000
0xA8	IEN0	Interrupt enable 0	EA	ERT	ET2	ES	ET1	EX1	ET0	EX0	0000	0000
0xA9	IEN1	Interrupt enable 1	-	-	EGPSI	EADC	EUD	EUI	ESI	EPW	0000	0000
0xAB	CCON	CPU control	PROT	-	LPM	ISRM	XMAP	-	-	-	0000	0000
0xAC	P0DIR	Port 0 direction control									1111	1111
0xAD	P1DIR	Port 1 direction control									1111	1111
0xAE	P2DIR	Port 2 direction control									1111	1111
0xAF	P3DIR	Port 3 direction control									1111	1111
0xB0	P3	Port 3									XXXX	XXXX
0xB1	P0PUP	Port 0 pull-up control									0000	0000
0xB2	P1PUP	Port 1 pull-up control									0000	0000
0xB3	P2PUP	Port 2 pull-up control									0000	0000
0xB4	P3PUP	Port 3 pull-up control									0000	1100
0xB6	PSYN	Port synchronizer enable	-	-	-	-	P3SYN	P2SYN	P1SYN	P0SYN	0000	0000
0xB8	IP0	Interrupt priority 0	-	PRT	PT2	PS	PT1	PX1	PT0	PX0	0000	0000
0xB9	IP1	Interrupt priority 1	-	-	PGPSI	PADC	PUD	PUI	PSI	PPW	0000	0000
0xBB	WKPND	Port wakeup pending	-	-	-	-	WKPND[3]	WKPND[2]	WKPND[1]	WKPND[0]	0000	XXXX
0xBC	WKEN	Port wakeup control	-	-	-	-	WKEN[3]	WKEN[2]	WKEN[1]	WKEN[0]	0000	0000
0xBD	WKEDG	Port wakeup edge select	-	-	-	-	WKEDG[3]	WKEDG[2]	WKEDG[1]	WKEDG[0]	0000	XXXX
0xBF	FSET	Special function setting	-	T0DD	OCSEL[1]	OCSEL[0]	-	T1DD	EWDT	WDTRST	0100	1110
0xC0	GPSICON0	GPSI control 0	-	-	GPSIRXIE	GPSITXIE	TXCLKSEL	RXEDSEL	TXEDSEL	GPSIEN	0000	0000
0xC1	GPSICON1	GPSI control 1	RXBUF FULL	TXBUF EPTY	RXHDREN	TXHDREN	EOP	RXENOFF	TXMODE[1]		0000	0000
0xC2	GPSICON2	GPSI control 2	HDRRXCLR	HDRTXCLR	GPSIEOPIE	GPSIRXHIE	GPSITXHIE	HEAD32	HDRRX MATCH	HDRTX LOAD	0000	
0xC3	GPSIHDR	GPSI header									0000	
0xC4	GPSIBUF	GPSI data buffer									0000	0000
0xC5	GPSIBAUD	GPSI baud rate divider									0000	0000
0xC8	T2CON	Timer 2 control	TF2	EXF2	-	-	EXEN2	TR2	C/T2	CP/RL2	0000	0000

November 2007

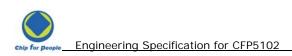
Preliminary

24 / 124

V0.1

TEL: +886-2-22231558 FAX: +886-2-22233988 E-mai: sales@cfpt.com.tw We

Web-site : www.cfpt.com.tw


0xC9	T2MOD	Timer 2 mode	-	PWM8	T2CLK[1]	T2CLK[0]	PWM16N	PWM16P	T2OE	DCEN	0000	0000
0xCA	RCAP2L	Timer 2 Capture/Reload/PWM duty cycle low byte									0000	0000
0xCB	RCAP2H	Timer 2 Capture/Reload/PWM duty cycle high byte									0000	0000
0xCC	TL2	Timer 2 counter low byte									0000	0000
0xCD	TH2	Timer 2 counter high byte									0000	0000
0xCE	TPR2L	Timer 2 PWM period low byte									0000	
0xCF	TPR2H	Timer 2 PWM period high byte									0000	0000
0xD0	PSW	Program status word	CY	AX	F0	RS1	RS0	OV	F1	Р	0000	0000
0xD4	RTDIV	Real time clock divider control									0000	0000
0xD8	RTCON	Real time control	-	RTWK	-	-	RTWE	-	-	-	0000	0000
0xE0	ACC	Accumulator									0000	0000
0xE1	P0AIE	Port 0 analog input enable									0000	0000
0xE2	P1AIE	Port 1 analog input enable									0000	0000
0xE4	P3AIE	Port 3 analog input enable									0000	0000
0xEE	ADCB	ADC buffer									XXXX	XXXX
0xF0	В	B register									0000	0000
0xF1	ADCT	ADC threshold									XXXX	XXXX
0xF3	ADCSC	ADC sampling clock control									0000	0000
0xF4	ADCCON0	ADC control 0	ADCPND	INBUF	REFS	TM	TC[1]	TC[0]	GO	ADCEN	0000	0000
0xF5	ADCCON1	ADC control 1	CM	GT	-	REFBE	-	AS[2]	AS[1]	AS[0]	0000	0000
0xF8	USBCON0	USB control 0	-	UCD	URST	-	-	URW	UDS	UCS	0100	00X0
0xF9	USBCON1	USB control 1	-	-	-	-	UDMU	UDPU	UPE	USPD	0000	0001
0xFA	USBDATA	USB access data									XXXX	XXXX
0xFB	USBADR	USB access address	USBADR[5:0]							00XX	XXXX	
0xFC	USBDADR	USB DMA base address									XXXX	XXXX
0xFD	USBDM	USB DMA interrupt mask	-	-	-	-		USBD	M[3:0]		0000	0000
0xFE	USBDR	USB DMA request	-	-	-	-		USBD	R[3:0]		0000	0000
0xFF	USBDD	USB DMA done	USBDD[3:0]								0000	0000

November 2007

Preliminary

25 / 124

V0.1

4 External Memory Interface (EMI)

External memory interface of CFP5102 is compatible to the external bus of classic 8051/8052, supporting 16-bit addressing space, multiplexed address control, separated program and data memory selection. CFP5102 makes improvement to further support different memories and different connection topologies.

CFP5102 supports the following mode to fit in different IO budgets and to connect to different memories.

- 1. multiplexed address mode (original in 8051/8052)
- 2. non-multiplexed address mode (high performance)
- 3. 8-bit addressing mode (for small sketchpad memory and lookup tables)
- 4. FIFO mode (push to and pop from external FIFO memory)

In addition, the setup time, the hold time and the duration of the read and write operation can be fine tuned to suit for memories with different speed grading.

Register EMICON1 and EMICON2 are used to configure the EMI. Their contents are listed below and self-explained. In the following sections, the topology of the operation mode, corresponding IO used and the timing of read and write operations are shown.

EMICON1: TYPE: ADDRESS:	R/W 0x8E	ontrol Regi										
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO				
Mnemonic	RW[3]	RW[2]										
Default	1	1										
Name	Mode	Description				Sotti	na					
Name	woue	Description Setting 0000: 1 cycle										
RW	RW	Read or wri	te signal wi	dth configur	ation bit (T _{rd}	000 ² 0010 0100 0100 0110 0110 0111 1000 1001 1010 1011 1100 1101 1110	 1 cycle 2 cycles 3 cycles 4 cycles 5 cycles 6 cycles 7 cycles 8 cycles 9 cycles 10 cycles 11 cycles 12 cycles 12 cycles 13 cycles 14 cycles 15 cycles 15 cycles 16 cycles 16 cycles 					

HD	RW	Hold time configuration bit (T_{hold})	01: 1 cycle 10: 2 cycles 11: 3 cycles
SET	RW	Setup time configuration bit (T_{setup})	00: 0 cycle 01: 1 cycle 10: 2 cycles

Preliminary

26 / 124

November 2007

11: 3 cycles

EMICON2: TYPE: ADDRESS:	EMI C R/W 0x8F	ontrol Reg	ister 2									
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO				
Mnemonic	-	SZ[1]	SZ[0]	MUX	WRON	AL						
Default	0	1	0	0	1	1	1					
Name	Mode	Description	cription Setting									
SZ	RW	EMI addres	EMI address space select 00: No address (FIFO mode) 01: 8-bit address other: 16-bit address									
PSON	RW	Program sp This option bus mode.			tiplexed add	ress	sable nable					
MUX	RW	Address da	Address data multiplex enable bit 0: disable 1: enable									
WRON	RW	Write signa	Write signal enable bit 0: disable 1: enable									
AL	RW	Address latch enable signal width configuration bit0: 1 cycle(T_{ALE})1: 2 cycles										

4.1 Multiplexed Address Mode

Table	4-1:	Required IO resource	ces
10010		ite quille i e i e e e e e e e e e e e e e e e	

EMI	Port
A[15:8]	P2
A[7:0]/D[7:0]	P0
ALE	P1.1
PSEN	P1.0
/WR	P3.6
/RD	P3.7

TEL : +886-2-22231558 FAX : +886-2-22233988 E-mai : <u>sales@cfpt.com.tw</u>

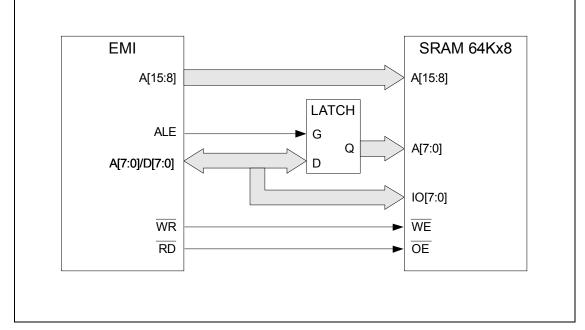


Figure 4-1: Connection topology

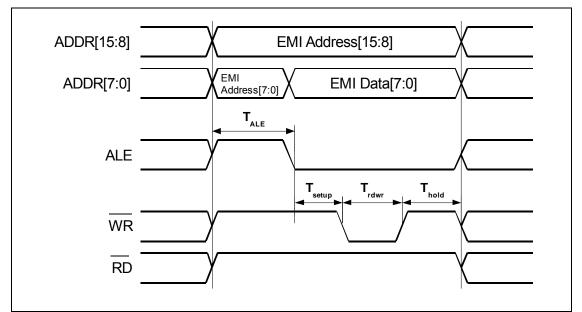


Figure 4-2: Timing of write operation

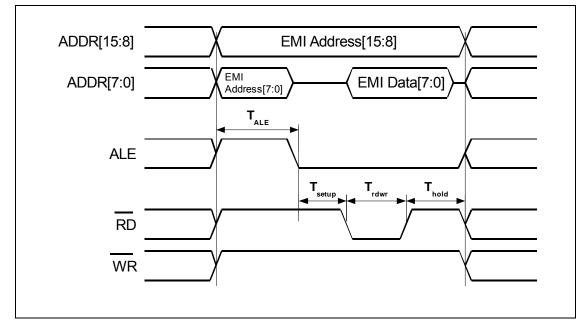


Figure 4-3: Timing of read operation when PSON = 0

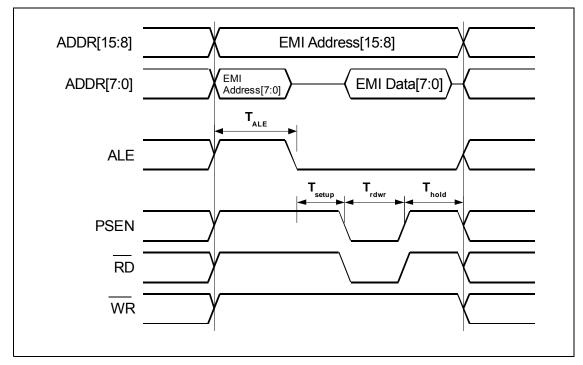


Figure 4-4: Timing of read operation when PSON = 1

4.2 Non-Multiplexed Address Mode

Table 4-2	Required IO	resources
-----------	--------------------	-----------

EMI	Port
A[15:8]	P2
A[7:0]	P1
D[7:0]	P0

<u>Preliminary</u>	29 / 124	V0.1
TEL: +886-2-22231558 FAX: +886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw

November 2007

/WR	P3.6
/RD	P3.7

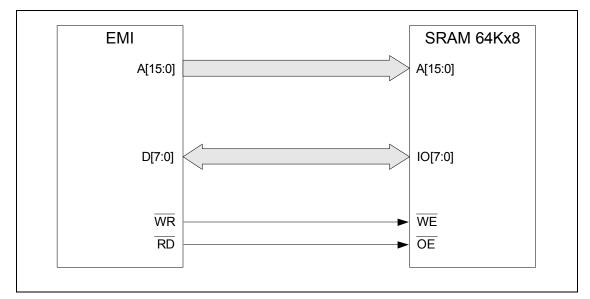


Figure 4-5: Connection topology

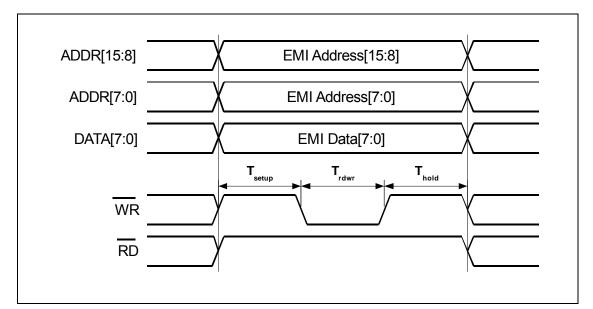
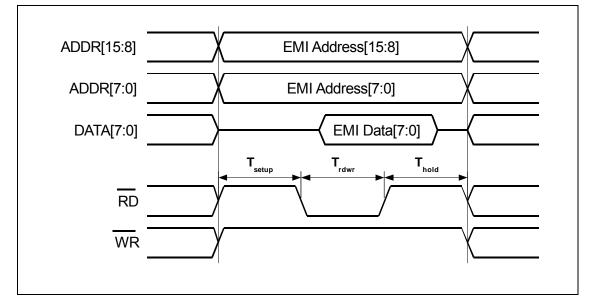
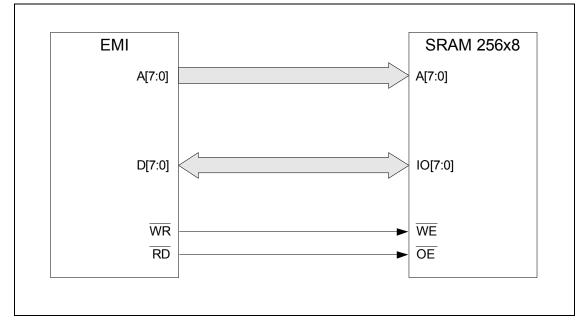


Figure 4-6: Timing of write operation




Figure 4-7: Timing of read operation

4.3 8-bit Address Mode

Table 4-3: Required IO resources

EMI	Port
A[7:0]	P1
D[7:0]	P0
/WR	P3.6
/RD	P3.7

Figure 4-8: Connection topology

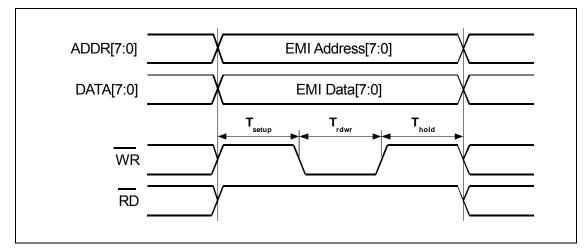


Figure 4-9: Timing of write operation

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

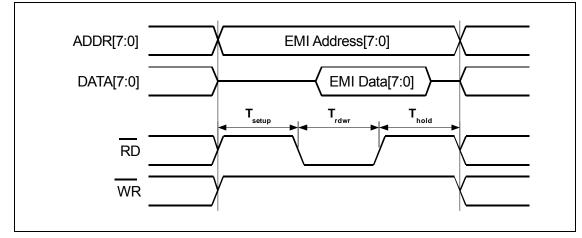


Figure 4-10: Timing of read operation

4.4 FIFO Mode

EMI	Port
D[7:0]	P0
/WR	P3.6
/RD	P3.7

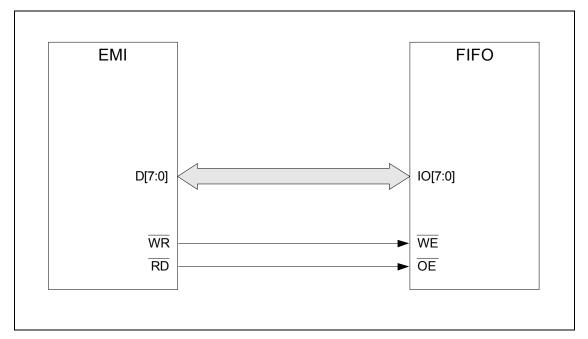


Figure 4-11: Connection topology

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

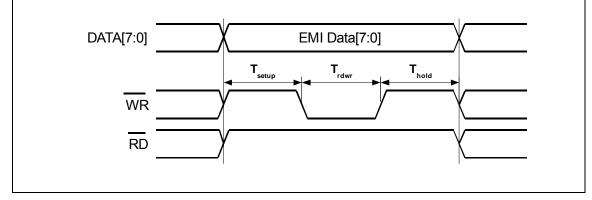


Figure 4-12: Timing of write operation

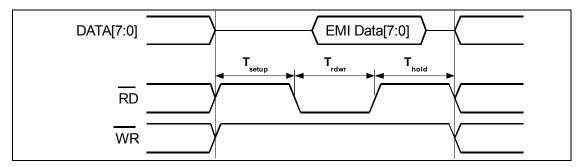
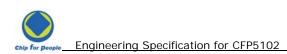



Figure 4-13: Timing of read operation

5 Interrupt Processing

CFP5102 extends the interrupt system to support totally 14 interrupt sources with two priority levels. Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU backs up the location of the next instruction to STACK and then begins execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in the Interrupt Enable SFRs. However, interrupts must first be globally enabled by setting the EA bit (IEN0.7) to logic 1 before the individual interrupt enables are recognized.

Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings. Note that interrupts which occur when the EA bit is set to logic 0 will be held in a pending state, and will not be serviced until the EA bit is set back to logic 1.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

	terrupt Enak	ole Register	0					
R/	W							
S: Ox	(A8							
Bit	7 Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
EA	ERT	ET2	ES	ET1	EX1	ETO	EXO	
0	0	0	0	0	0	0	0	
Mada	Description	2			6	tting		
RW	Global inte	errupt enable t	DIt					
RW	Real-time	wakeup interr	upt enable b	bit	0:	disable		
					1: enable			
RW	Timer 2 int	terrupt enable		0: disable				
				1: enable				
RW	Serial port	interrupt enal	ble bit		0: disable			
	·				1:	enable		
RW	External ir	terrupt 1 enat	ole bit		0: disable			
					1:	enable		
RW	Timer 1 in	terrupt enable	bit		0:	disable		
RW	External interrunt 0 enable bit							
RW	Timer 0 int	terrupt enable	bit					
	S: OX Bit EA C C Mode RW RW RW RW RW	Bit7 Bit6 EA ERT 0 0 Mode Description RW Global inte RW Real-time RW Timer 2 int RW Serial port RW External in RW Timer 1 int RW External in	Bit7 Bit6 Bit5 EA ERT ET2 0 0 0 Mode Description RW Global interrupt enable I RW Real-time wakeup interr RW Timer 2 interrupt enable RW Serial port interrupt enable RW External interrupt 1 enable RW Timer 1 interrupt 0 enable	Bit7 Bit6 Bit5 Bit4 EA ERT ET2 ES 0 0 0 0 Mode Description RW Global interrupt enable bit RW Real-time wakeup interrupt enable bit RW Timer 2 interrupt enable bit RW Serial port interrupt enable bit RW External interrupt 1 enable bit RW Timer 1 interrupt 0 enable bit	Bit7 Bit6 Bit5 Bit4 Bit3 EA ERT ET2 ES ET1 0 0 0 0 0 Mode Description RW Global interrupt enable bit RW Real-time wakeup interrupt enable bit RW Timer 2 interrupt enable bit RW Serial port interrupt enable bit RW External interrupt 1 enable bit RW Timer 1 interrupt enable bit	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 EA ERT ET2 ES ET1 EX1 0 0 0 0 0 0 Mode Description Set Set 1: RW Global interrupt enable bit 0: 1: RW Real-time wakeup interrupt enable bit 0: 1: RW Timer 2 interrupt enable bit 0: 1: RW Serial port interrupt enable bit 0: 1: RW External interrupt 1 enable bit 0: 1: RW Timer 1 interrupt 0 enable bit 0: 1: RW External interrupt 0 enable bit 0: 1:	S: OxA8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 EA ERT ET2 ES ET1 EX1 ET0 0 0 0 0 0 0 0 0 Mode Description Setting RW Global interrupt enable bit 0: disable 1: enable 0: disable 1: enable RW Real-time wakeup interrupt enable bit 0: disable 1: enable 0: disable 1: enable RW Timer 2 interrupt enable bit 0: disable 1: enable 0: disable 1: enable RW Serial port interrupt enable bit 0: disable 1: enable 1: enable 1: enable RW External interrupt 1 enable bit 0: disable 1: enable 1: enable 1: enable RW Timer 1 interrupt enable bit 0: disable 1: enable 0: disable 1: enable RW External interrupt 0 enable bit 0: disable 1: enable 0: disable 1: enable	

Preliminary

.

. .

.

35 / 124

TEL: +886-2-22231558 FAX: +886-2-22233988 E-m

November 2007

1	•	enable
	٠	Chabic

IEN1: TYPE: ADDRESS:	Interr R/W 0xA9	upt Enable	Register '	1					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO	
Mnemonic	-	-	EGPSI	EADC	EUD	EUI	ESI	EPW	
Default	0	0	0	0	0	0	0	0	
Name Mo	ode D	Description				Se	etting		
EGPSI R\	N G	SPSI interru	ot enable bi	t		0:	disable		
						1: enable			
EADC R\	N A	DC interrup	t enable bit			0: disable			
						1:	enable		
EUD R\	ΝL	JSB DMA int	terrupt enab	ole bit		0: disable			
						1:	enable		
EUI R\	ΝL	JSB interfac	e interrupt e	enable bit		0:	disable		
						1:	enable		
ESI R\	N S	Serial protoc	ol interface	interrupt en	0:	disable			
							enable		
EPW R\	N F	Port wakeup interrupt enable bit					disable		
		-	-			1:	enable		

5.1 Interrupt Sources and Vectors

The CPU supports 14 interrupt sources. Software can simulate an interrupt by setting some interrupt-pending flags to '1'. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order, and control bits are summarized in Table 5-1. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behaviour of its interrupt-pending flag(s).

5.2 Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be pre-empted by a high priority interrupt. A high priority interrupt cannot be pre-empted. Each interrupt has an associated interrupt priority bit in an SFR (IPO or IP1) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 5-1.

Caution:

(1) Watchdog interrupt is in 'SUPER' which has higher priority than any interrupt source having priority bit = '1'

Engineering Specification for CFP5102

IPO: TYPE: ADDRESS	R∕V	-	ister 0							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic	-	PRT	PT2	PS	PT1	PX1	PT0	PX0		
Default	0	0	0	0	0	0	0	0		
Name	Mode	Description				Se	etting			
PRT	RW	Real-time wa	keup interr	upt priority s	select	0:	disable			
						1:	enable			
PT2	RW	Timer 2 inter	rupt priority	select		0: disable				
			,			1: enable				
PS	RW	Serial port in	Serial port interrupt priority select					0: disable		
				5		1:	enable			
PX1	RW	External inte	rrupt 1 prior	ity select		0: disable				
			• •	,		1:	enable			
PT1	RW	Timer 1 inter	rupt priority	select		0:	disable			
			,			1:	enable			
PX0	RW	External interrupt 0 priority select 0: disable								
			1: enable							
PT0	RW Timer 0 interrupt priority select 0: disable									
			,			1:	enable			

November 2007

IP1: **Interrupt Priority Register 1** TYPE: R/W

ADDRESS:	0xB9							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	-	-	PGPSI	PADC	PUD	PUI	PSI	PPW
Default	0	0	0	0	0	0	0	0

Name	Mode	Description	Setting
PGPSI	RW	GPSI interrupt priority select	0: disable
			1: enable
PADC	RW	ADC interrupt priority select	0: disable
			1: enable
PUD	RW	USB DMA interrupt priority select	0: disable
			1: enable
PUI	RW	USB interface interrupt priority select	0: disable
			1: enable
PSI	RW	Serial protocol interface interrupt priority select	0: disable
			1: enable
PPW	RW	Port wakeup interrupt priority select	0: disable
			1: enable

5.3 Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the response time is 4 – 6 system clock cycles: 1 clock cycle to detect the interrupt, 2 clock cycles to back up the location of next instruction, and 1 – 3 clock cycles to complete the fetch and to execute the first instruction of ISR, depending on the instruction length. If an interrupt is pending when a RETI is executed, a single instruction is executed before serving the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a 3-byte instruction as the next instruction. In this case, the response time is 10 - 12 system clock cycles: 1 clock cycle to detect the interrupt, 3 clock cycles to execute the RETI, 3 clock cycles to

Pre	liminary	ninary			37 / 124						V0.1	
				-								

TEL: +886-2-22231558 FAX: +886-2-22233988 E-mai : <u>sales@cfpt.com.tw</u> Web-site : www.cfpt.com.tw

fetch and complete the following 3-byte instruction, 2 clock cycles to back up the location of next instruction and 1 - 3 clock cycles to complete the fetch the first instruction of ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Table 5-1: Summary of interrupts

Interrupt Source	Interrupt Vector	Intrinsic Priority	Pending Flag	Bit-addressable	Cleared Automatically	Enable Bit	Priority Select
External Interrupt 0	0x03	1 (lowest)	TCON.1	Y	Y	IEN0.0	IP0.0
Timer 0 Overflow	0x0B	2	TCON.5	Y	Y	IEN0.1	IP0.1
External Interrupt 1	0x13	3	TCON.3	Υ	Y	IEN0.2	IP0.2
Timer 1 Overflow	0x1B	4	TCON.7	Υ	Y	IEN0.3	IP0.3
Serial Port	0x23	5	SCON.0 SCON.1	Y	Ν	IEN0.4	IP0.4
Timer 2 Overflow	0x2B	6	T2CON.6 T2CON.7	Y	Ν	IEN0.5	IP0.5
Real-timer Wakeup	0x33	7	RTCON.6	Υ	Ν	IEN0.6	IP0.6
Port Wakeup	0x3B	8	WKPND.0 WKPND.1 WKPND.2 WKPND.3	N	N	IEN1.0	IP1.0
SPI	0x43	9	SPICON.7	Ν	Ν	IEN1.1	IP1.1
USB Interface	0x4B	10	USBCON0.6	Υ	Ν	IEN1.2	IP1.2
USB DMA	0x53	11	USBDR USBDM	Ν	Ν	IEN1.3	IP1.3
ADC	0x5B	12	ADCCON0.7	Ν	Ν	IEN1.4	IP1.4
GPSI	0x63	13	GPSICON1.3 GPSICON1.6 GPSICON1.7 GPSICON2.0 GPSICON2.1	N	N	IEN1.5	IP1.5
WDT	0x6B	Super	WDTCON.5	Ν	Ν	FSET.1	-
Reset	0x00	Top (highest)	-	-	-	-	-

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

6 Clocks and Resets and Power Management

6.1 Clock System

CFP5102 possesses a configurable clock system aiming to provide balance between performance and power consumption in different applications. It provides programmable clock divider to allow dynamic selecting clock frequency depending on the workload to eliminate unnecessary power consumption in clock. It also provides fine-grain clock gating to shutdown unused part completely. The organization of clock system is illustrated in Figure 6-1.

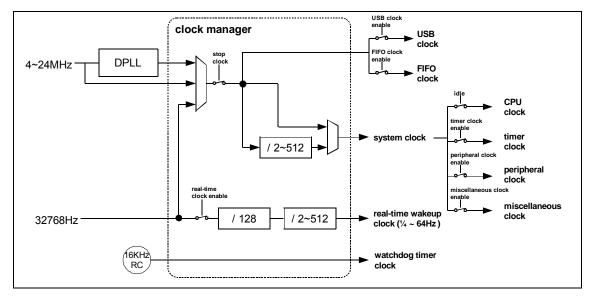


Figure 6-1: Block diagram of clock system

6.1.1 Clock Control

The major clock source is a high speed crystal oscillator that suits for 4MHz to 24MHz crystals. This clock is used directly or is divided down to generate system clock for CPU and peripherals. There is another optional clock source, a 32,768 Hz crystal oscillator primarily for real-time clock, user can also choose this low speed clock source for power saving. Other than that, a digital PLL dedicated for USB module is provided. It doubles 24MHz clock to 48MHz which is necessary to operate USB.

The selection of clock sources is controlled by setting register CKCON0. During clock switching the system clock suspends for 2 periods of the slower clock source. User must make sure the desired clock source is running before switching, otherwise the system stops which can be recovered by reset only. (Please refer to Section 6.1.3)

To activate system clock divider, SCKD the bit 0 of CKCONO has to be set. Similarly, the activation takes 2 periods of the divided clock, and system clock suspends, meanwhile. With regard of this, it is recommended to activate system clock divider before choosing high divide ratio. The clock divide ratio is defined by system clock divider control register CKDIV. The frequency of the system clock is

<u>Preliminary</u>	39 / 124	V0.1
TEL : +886-2-22231558 FAX : +886-2-22233988	E-mai : sales@cfpt.com.tw	Web-site : www.cfpt.com.tw

 $F_{system_clock} = F_{clock_in}/2^*(n+1)$, where n is the value of CKDIV

CKCONO: TYPE: ADDRESS:	Clock R/W 0x91	Control Re	egister 0					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic	-	-	LPOSC	PLLEN	-	SCPLL	SCS	SCKD
Default	0	0	0	0	0	0	0	0
Name	Mode	Description	l			Setting		
LPOSC	RW	22 769 11-	on atal law	a nuar mada	onabla bit	0: disable	;	
LPUSC	RW	32,700 HZ	crystal low p	Jower mode	1: enable			
PLLEN	RW	DPLL enab	alo bit			0: disable		
FLLEIN		DFLL enal				1: enable		
SCPLL	RW	Select DPI	L output as	high-speed	clock	0: disable	;	
SOI LL	1.1.1	source				1: enable		
SCS	RW	Svetom clo	ock solact			0: select high-speed clock		
505	1744	System Cit	System clock select 1: sel					clock
SCKD	RW	System clo	System clock divider enable					
GOILD	1.1.1	1: enable						
CKDIV:	Syster	m Clock Di	vider Cont	rol Registe	r			

Jysten	I CIUCK DI		or Registe	1			
w							
0x94							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
CKDIV[7:0]							
0x00							
	W 0x94	W 0x94	Ŵ 0x94	W Ox94 Bit7 Bit6 Bit5 Bit4 CKDIN	0x94 Bit7 Bit6 Bit5 Bit4 Bit3 CKDIV[7:0]	W Ox94 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 CKDIV[7:0]	W Ox94 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 CKDIV[7:0]

6.1.2 Clock Gating

CFP5102 provides comprehensive clock gating options for eliminating power-wasting activities. As shown in Figure 6-1, the clock system is basically organized into 6 clocks with individual gating. The 6 clocks are CPU clock, timer clock, peripheral clock, USB clock, FIFO clock and miscellaneous clock. Real-time wakeup clock is used for event triggering only, will be discussed in the following section.

The influence of each clock is summarised in Table 6-1.

Table	6-1:	Scope	e of c	locks
10010	• • •	0000		

Clock	Influence
CPU clock	1. CPU
	2. USB DMA
Timer clock	1. timer 0
	2. timer 1
	3. timer 2
Peripheral clock	1. serial port
	2. SPI
	3. GPSI
	4. ADC
Miscellaneous clock	1. port synchronizers
	2. serial port data input
	3. SPI data input
	4. GPSI data input
	5. USB interface unit
	6. timer 0 / 1 / 2 clock input
	timer 0 / 1 / 2 external pin edge detection
Real-time clock	1. real-time wakeup

Preliminary

for people Engineering Specification for CFP5102

USB clock	1.	USB controller
FIFO clock	1.	USB FIFO
	2.	FIFO interface
Watchdog timer clock	1.	watchdog timer

Some modules require more than 1 clock to operate as described below:

- 1. For timer 0, timer 1 and timer 2, timer clock is needed for counting. Miscellaneous clock is needed for capturing external clock and detecting external pin edge.
- 2. For serial port, SPI and GPSI, both peripheral clock and miscellaneous clock are needed.
- 3. For ADC, only peripheral clock is needed.

.

- 4. For USB, USB clock, FIFO clock and miscellaneous clock are needed. To operate USB DMA, CPU clock is also needed.
- 5. All port synchronizers are clocked by miscellaneous clock.

The clock gating is controlled by register CKCON1. The setting takes effect immediately at the coming rising edge of the corresponding clocks. CPU clock is controlled by register PCON. It can be stopped in idle mode only.

CKCON1:	Clock	ock Control Register 1						
TYPE:	R/W							
ADDRESS:	0x92							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic	FFCKE	32CKE	RTCKE	MCKE	PCKE	-	TCKE	UCKE
Default	0	0	0	1	1	1	1	0
	-							
Name	Mode	Description				Se	etting	
FFCKE	RW	FIFO clock	onabla			0:	disable	
FFGRE	RW	FIFU CIOCK	enable			1:	enable	
		32,768 Hz	clock enable	Э		0:	disable	
32CKE	RW	Enable only	/ when the	32,768 Hz c	rystal is sta	ble. 1:	enable	
		Disable bei	ore turn off	the 32,768	Hz crystal			
RTCKE	RW	Pool time o	lock enable			0:	disable	
RICKE		Real-une C				1:	enable	
MCKE	RW	Miscollano	ous clock er	ablo		0:	disable	
WORE		Miscellarie		lable		1:	enable	
PCKE	RW	Derive and a lock and lo						
FUNE		Peripheral clock enable 1: enable						
TCKE	RW	Timer clock enable 0: disable						
TORE	1700	1: enable						
UCKE	RW	USB clock enable 0: disable						
UCINE	1.141		enable			1:	enable	

6.1.3 Crystal Oscillators

. . .

Register CKCON2 is used to control the oscillator. It has different meaning for reading from and writing to this register. Reading CKCON2 reports the current status of the oscillators. There are 3 active bits: CKS reports the condition of the resuming oscillator. When the stopped oscillator is re-activated, this flag is cleared. It is set again when the oscillator is stable and ready to use. Stopping an oscillator take no effect to this flag. 32CE shows the status of the 32,768 Hz oscillator, it is set when this oscillator is in active state and is cleared in stop state. As 32,768 Hz oscillator is rather slow comparing to high speed oscillator, there is a certain latency to actual

Preliminary	41 / 124	V0.1
TEL +886-2-22231558 FAX +886-2-22233988	E-mai : sales@cfpt.com.tw	Web-site · www.cfpt.com.tw

state switching from a stop or resume command. HSCE, similar to 32CE, shows the status of the high speed oscillator.

Writing keywords to CKCON2 issues command to stop or resume the oscillators. Special keywords are assigned to each operation as tabulated in Table 6-2. To avoid accidental operation to the oscillators, keywords must be entered in bit-bang way (first enter the keyword and then enter the bit inverted keyword). For example, write 0xAA to CKCON2 and then write 0x55 immediately to stop the high speed oscillator.

CKCON2: TYPE: ADDRESS:	Clock R/W 0x93	Control Re	gister 2						
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO	
Mnemonic	-	-	-	-	-	CKS	32CE	HSCE	
Default	0	0	0	0	1	1	0	1	
News									
Name	Mode	Descriptior				Se	etting		
CKS	R	Clock stability flag. When a stopped clock is re-activated, this flag is cleared until the resumed clock becomes stable 0: unstable 1: stable							
32CE	R	32,768 Hz oscillator status flag					disable enable		
HSCE	R	High speed oscillator status flag					disable enable		

Table 6-2: Keywords for operating oscillators

	Stop	Resume
High-speed oscillator	0xAA	0x3C
32,768 Hz oscillator	0xF0	0x66

There is another guard bit for restricting the stop oscillator operation. PD, the power down mode enable bit, is used to protect the system clock from unintended suspension. When this bit is cleared, it is unable to stop the oscillator that is using as the clock source of the system. This bit takes no effect to the oscillator that is not selected for system clock source.

PCON:		ssor Contro	ol Register	r				
TYPE:	R/W							
ADDRESS:	0x87							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic							PD	
Default							0	
		-			-	•		
Name	Mode	Description				Se	etting	
		Power dow	n mode en	able bit		0:	disable	
PD	RW		Vhen this bit is cleared, it is unable to stop the scillator that is using as the clock source of the1: enable					

TEL: +886-2-22231558 FAX: +886-2-22233988

E-mai : sales@cfpt.com.tw

V0.1

To summarised, the procedures to operate the oscillators are described below:

Turn on 32,768 Hz oscillator when using high speed oscillator for system clock source

- 1. Configure LPOSC in CKCON0 to enable low power mode if necessary (please refer to Section 6.3.6)
- 2. Write 0x66 to CKCON2
- 3. Write 0x99 to CKCON2
- 4. Poll CKS until it is set
- 5. Write '1' to 32CKE of CKCON1
- 6. When 32CE is set, 32,768 Hz oscillator is ready to use

<u>Turn off 32,768 Hz oscillator when using high speed oscillator for system clock</u> source

- 1. Write '0' to 32CKE of CKCON1
- 2. Write 0xF0 to CKCON2
- 3. Write 0x0F to CKCON2
- 4. 32,768 Hz oscillator is stopped when 32CE is cleared

<u>Turn on high speed oscillator when using 32,768 Hz oscillator for system clock</u> <u>source</u>

- 1. Write 0x3C to CKCON2
- 2. Write 0xC3 to CKCON2
- 3. Poll CKS until it is set
- 4. When HSCE is set, high speed oscillator is ready to use

<u>Turn off high speed oscillator when using 32,768 Hz oscillator for system clock</u> <u>source</u>

- 1. Write 0xAA to CKCON2
- 2. Write 0x55 to CKCON2
- 3. High speed oscillator is stopped when HSCE is cleared

CKCON1:	Clock	Control Re	gister 1					
TYPE:	R/W							
ADDRESS:	0x92							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic		32CKE						
Default		0						
Name	Mode	Description				Se	tting	
		32,768 Hz clock enable 0: disable						
32CKE	RW	Enable only	when the	32,768 Hz o	crystal is sta	ble. 1:	enable	
		Disable bef	ore turn off	the 32,768	Hz crystal			

V0.1

Oscillator configurations

Table 6-3 illustrates recommended configuration of crystal/resonator oscillator at different operating frequency. R_M is the motional resistance of the crystal/resonator and can be found in crystal/resonator vendor's datasheet.C1 and C2 represents the two external loading parallel capacitors C_1 and C_2 .

The desired output frequency of the crystal/resonator can be fine tuned by adjusting loading capacitors C1 and C2. The tuning range is highly dependent on crystal/resonator and users need to consult the crystal/resonator vendor for details.

Crystal	Maximum R _M (ohm)	Loading capacitor C _{1,} C ₂ (pF)
32KHz	50K	30
1MHz – 13MHz	100	10-30
13MHz – 19MHz	40	10-30
20MHz – 24MHz	40	10-30

Table 6-3: Use of R_M and C_{1} , C_2

PCB layout recommendation

Precaution should be taken when drawing printed-circuit board (PCB) layout for crystal. The crystal/resonator and the loading capacitor $C_1//C_2$ should be placed closest to CFP5102 OSC1/OSC2 pins and OSC32K1/OSC32K2 pins. If space is allowed, a grounded-ring surrounding the crystal and loading capacitors are always recommended in order to reduce coupling and noise from the near environment.

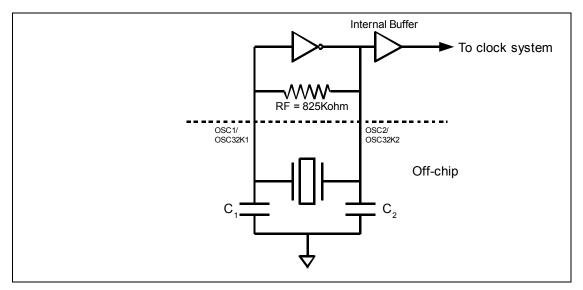


Figure 6-2: Crystal oscillator connection diagram

November 2007

6.1.4

Using External Clock Generators

User has an opportunity to use external clock generator to completely bypass CFP5102 oscillator circuit. In order to do this, user can safely connect the clock source output to the OSC2 pin while floating OSC1 pin. Figure 6-3 illustrates the connection details.

When using external clock sources, the system clock has the same phase with the input clock. Figure 6-4 illustrates the phase relationship between input clock and the system clock.

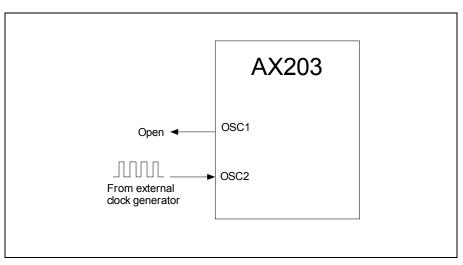


Figure 6-3: Connection diagram when using external clock generator

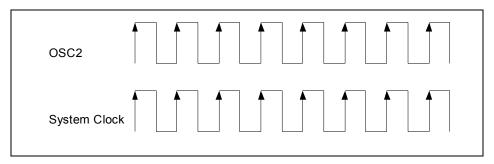


Figure 6-4: The phase relationship between input clock and the system clock

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

V0.1

6.1.5 RC Oscillator

16KHz RC oscillator is an on-chip device to supply clock for watchdog, reset circuit and oscillator stabilization circuit. It is enabled automatically when (1) watchdog is enabled; (2) CPU in reset state and (3) An oscillator is re-activated. However, RC oscillator cannot be clock source for other modules.

6.1.6 Digital Phase Lock Loop

To generate 48MHz clock for USB module, a digital phase lock loop (DPLL) is provided. This DPLL is designed for generating 48MHz clock from 24MHz input clock only. On the other hand, it does not require stability time. It can be used immediately after enable. To enable DPLL, user has to write '1' to PLLEN in CKCONO.

When using USB, the system clock must be 48MHz; however, the recommend clock frequency for CPU is 24MHz. User is recommended to enable clock divider before switch to DPLL.

CKCONO: TYPE: ADDRESS:	Clock R/W 0x91	Control Re	gister 0					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic				PLLEN				
Default				0				
Name	Mode	Description	I			Setting		
PLLEN	RW	DPLL enab	ole bit			0: disable 1: enable		

6.1.7 Real-Time Wakeup Clock

Real-time wakeup clock is a special clock. It does not clock modules as other clocks. The only purpose of this clock is to trigger real-time wakeup module for implementing a software real-time counter. The period of the real-time wakeup clock can be tuned from 1/64 second to 4 seconds using register RTDIV.

RTDIV: TYPE: ADDRESS:	Real-ti W 0xD4	ime Clock	Divider Co	ntrol Regis	ster			
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	RTDIV[7:0]							
Default				Ox	00			
Description						Se	etting	
Real-time clo	ck is contro	lled by RTE	DIV and divi	ided by $2\times$	(n+1), whe	re n is		

the value of RTDIV.

6.1.8 Supply Clock to Off-Chip Peripherals

For single clock on-board system, CFP5102 can share its clock with off-chip peripherals by outputting the clock through pin P1.0. The output clock is controlled by OCSEL, bit 4 and bit 5 of register FSET. In addition, the pin P1.0 has to be configured as output. As the driving of the IO is not designed for outputting clock, supplying clocks to couples of off-chip peripherals may deteriorate the quality of the output clock.

FSET: TYPE:	R∕W	al Functior	n Setting Regis	ster				
ADDRESS:								
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic			OCSEL[1]	OCSEL[0]				
Default			0	0				
Name	Mode	Description			S	Setting		
OCSEL	RW	Output cloc	k selection	00: disable				
					0	1: USB cl	ock	
					1	0: high sp	eed oscil	lator
					1	1: high sp	eed oscill	ator ÷ 2

6.2 Resets

CFP5102 has several different reset sources. They are grouped into 2 classifications: normal resets and induced resets. Normal resets present in typical MCUs. They are:

- 1. Master clear (External reset through pin MCLR)
- 2. Power on reset
- 3. Watchdog timeout reset

The other type of resets is namely induced, because these are not reset source in normal operation. They reset the system due to recovery from power down mode when wakeup. The induced resets are:

- 1. Port wakeup in power down mode
- 2. Real-time wakeup in power down mode

Although the cause and condition of these 2 kinds of resets are different, they force the system to initial state in the same way. However, some registers have different reset value under different reset sources, and this is going to be discussed in the following section.

6.2.1 Reset Sequence

When the reset happens, CFP5102 falls back to initial state and is held. At this moment, the high speed oscillator and the RC oscillator are running. Once the reset is released, the oscillator stabilization counter starts counting. It counts for 16 ms to the oscillator becomes stable. After that, the CPU resumes and executes the first instruction located at program counter 0x0000.

6.2.2 Master Reset

CFP5102 has a noise filter in master reset path. The filter blocks the small pulses (shorter than 8 ms) appearing at pin MCLR.

6.2.3 Power On Reset

CFP5102 provides an on-chip Power-On-Reset (POR) circuit to detect power-on and to reset internal logic before VDD reaches the pre-determined POR threshold voltage. Under DVDD=3.3V, the POR threshold voltage is set to be about 2.2V.

Sometimes, when the VDD is power-off and quickly power-on again, there might be cases that the POR will work improperly and internal reset might not be generated. For this reason, CFP5102 POR circuit incorporates an internal self-reset module to discharge PORB output during power-off to ensure each power cycle will work properly.

However, it is also highly recommended user should have a long time between power-off and next power-on to ensure proper start-up. The time depends on actual system board environment and how much decoupling

capacitors between power and ground. User has to take into account this effect during board level design.

Figure 6-5 illustrates the power-on and reset signals waveform during proper power-on and power-off. Internally, there is T_{POR} and T_{RC} time for both the POR circuit and the internal counter. T_{POR} is the time for the POR circuit to stay at zero voltage until it reaches V_{POR} and the time varies for different VDD rise-up time. It can be assumed to be about 2/3 of the VDD rise-up time. T_{RC} is the time for internal counter to count at least 16ms using internal RC-oscillator when the counter sees a high logic from PORB signal. As a result, the overall internal reset time is the sum of T_{POR} and T_{POR} . Such a long time is required to ensure the crystal oscillator has been started up properly to provide a clean and stable clock source for system use and Phase-Locked Loop (PLL). It also ensures all internal logics are properly reset.

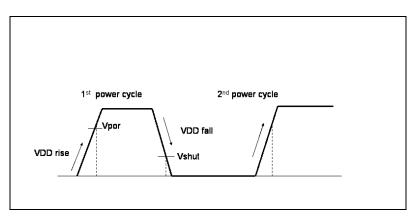


Figure 6-5: Waveform of power on reset

PCON:	Proce	ssor Contro	ol Register	-					
TYPE:	R/W								
ADDRESS:	0x87								
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO	
Mnemonic				POF					
Default				1					
Name	Mode	Descriptior	ı			Se	etting		
		Power on r	eset flag			0:	inactive		
		This bit is u	used to indic	cate the last	reset sourc	ce is 1:	reset by PC	R	
DOF		power on reset. To do that, user clear this bit to '0' in							
POF	RW				ergone pow				
					t sequence.				
		,				NOIC			
		that this bit	cannot be	altered by o	ther resets				

6.2.4 Watchdog Timeout Reset

The watchdog timer (WDT) subsystem protects the microcontroller system from incorrect code execution over a long period of time by causing a system reset when the watchdog timer overflows as a result of a failure of software to feed the timer prior to the timer reaching its terminal count.

For the operation of watchdog timer, please refer to Section 7.11.

V0.1

6.3 **Power Management**

Operating in 3.3V or 5V Systems 6.3.1

CFP5102 is designed to operate in 3.3V or 5V system. It has on-chip regulator and separate supply to IO pin to guarantee seamless interfacing with 3.3V or 5V off-chip peripherals.

Operating in 3.3V System

In 3.3V systems, the on-chip regulator should be turned off by tying LDOE to VDDIO. 3.3V power should be connected to both DVDD and VDDIO.

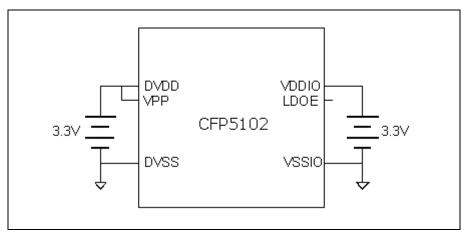


Figure 6-6: Topology of supplying 3.3V to CFP5102

Operating in 5V System

Preliminary

In 5V systems, the on-chip regulator should be turned on by tying LDOE to VSSIO. 5V power should be connected to VDDIO only. A compensation network should be attached to DVDD and DVSS to ensure good quality of on-chip regulator output. For details, please refer to Section 6.3.2.

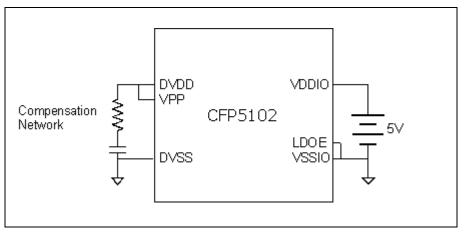


Figure 6-7: Topology of supplying 3.3V to CFP5102

6.3.2 On-chip Regulator

CFP5102 provides an on-chip low drop-out regulator (LDO) to convert from 5.0 V to 3.3 V for internal core power use. To use internal LDO, LDOE pin must be tied to 0V in order to enable the LDO externally. If user wants to use external 3.3 V power supply to DVDD pin, it is necessary to tie LDOE to VDDIO to disable the LDO. The LDO employs pole-zero cancellation frequency compensation technique through external small resistor for the stability of the LDO.

Frequency compensation through external RC components

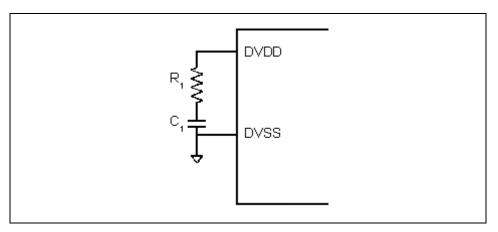


Figure 6-8: Frequency compensation using RC components

R ₁	C ₁
1Ω	1uF
0.5Ω	2uF
0.25Ω	4.7uF
0.1Ω	10uF
0.05Ω	20uF
0.5Ω	1uF

Table 6-4: Recommendation for RC values

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

6.3.3 Idle Mode

Idle mode is the first level of power saving mode. The CPU clock stops but the rest of the clocks remains. Idle mode is activated by setting IDL, bit 0 of PCON to '1'. Any enabled interrupt and reset sources can resume the core clock and deactivate idle mode.

PCON:	Proces	sor Contro	ol Register	-				
TYPE:	R/W							
ADDRESS:	0x87							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic								IDL
Default								0
	1		1	L	L	1	L	

Name	Mode	Description	Setting
IDL	RW	Idle mode enable bit Write '1' to this bit to enter idle mode. This bit is reset to '0' automatically after wakeup	0: disable 1: enable

Wakeup by enabled interrupts

Action of CPU: Resumes and serves the interrupt request.

Wakeup sources:	All enabled interrupts

Wakeup by resets

Action of CPU:Resets and serves the reset routine at program counter
0x0000Wakeup sources:All resets

6.3.4 Halt Mode

Halt mode aggressively shuts down the whole system clock from the "stop clock" switch showing in Figure 6-1. At this moment, there is no activity in any module. Halt mode is activated by setting HLT, bit 5 of PCON to '1'. It is recommended to disable all peripherals and also DPLL. Only selected interrupt and reset sources can resume the clocks and deactivate halt mode.

PCON:	Proces	ssor Contro	ol Register	•				
TYPE:	R/W							
ADDRESS:	0x87							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic			HLT					
Default			0					

Name	Mode	Description	Setting
		Halt mode enable bit	0: disable
HLT	RW	Write '1' to this bit to enter halt mode. This bit is	1: enable
		reset to '0' automatically after wakeup	

Wakeup by enabled interrupts

Action of CPU: Resumes and serves the interrupt request.

Wakeup sources: Enabled watchdog interrupt, port wakeup interrupt and

<u>Preliminary</u>	52 / 124	V0.1
TEL:+886-2-22231558 FAX:+886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw

real-time wakeup interrupt

Wakeup by disable	<u>d interrupts</u>
Action of CPU:	Resumes and executes the next instruction before halt
Wakeup sources:	Disabled watchdog interrupt, port wakeup interrupt and real-time wakeup interrupt (corresponding interrupt enable bit is cleared)
Wakeup by resets	
Action of CPU:	Resets and serves the reset routine at program counter 0x0000
Wakeup sources:	All resets

6.3.5 Power Down Mode

The definition of power down mode is that the whole system clock is shut down by turning off the source crystal oscillator. As CFP5102 has dual crystal oscillators, the condition of power down is tabulated in Table 6-5. The procedures of stopping crystal oscillators are shown in Section 6.1.3. It is recommended to disable all peripherals and also DPLL in power down mode. Only selected interrupt and reset sources can resume the clocks and deactivate power down mode.

Table 6-5: Power down condition

System clock source	Stop high-speed oscillator	Stop 32,768 Hz oscillator		
High-speed oscillator	Power Down mode	Normal mode		
Real-time oscillator	Normal mode	Power Down mode		

Wakeup by enabled interrupts

Action of CPU:	Resets and serves the reset routine at program counter 0x0000
Wakeup sources:	Enabled port wakeup interrupt and real-time wakeup interrupt
Wakeup by resets	

Action of CPU:	Resets and serves the reset routine at program counter 0x0000
Wakeup sources:	All resets

6.3.6 Additional Low Power Options

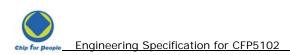
To tackle the static power consumption in OTP and crystal oscillators, 2 additional low power options are designed.

OTP low power mode

This option suppresses the speed of the OTP to reduce its static power consumption. It suits for CPU clock less than 5 MHz. As long as the CPU clock reduces in this mode, OTP static power consumption reduces linearly.

CCON: TYPE: ADDRES	R/		jister						
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO	
Mnemonia	:		LPM						
Default			0						
Name	Mode	Description				Se	etting		
LPM	RW	Low power r	node enabl	e bit.		0:	disable		
		Reduce the			by OTP m	emory. 1:	enable		
	Caution: this mode can only be enabled when system clock is under 5 MHz								

32,768 Hz crystal oscillator low power mode


This option puts 32,768 Hz crystal oscillator in low power mode, at the cost of reducing compatibility to different crystals. The power factor can be reduced four times compared to normal mode in oscillator.

CKCONO:	Clock Control Register 0							
TYPE:	R/W							
ADDRESS:	0x91							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic			LPOSC					
Default			0					
	1					1	1	

Name	Mode	Description	Setting
LPOSC	RW	32,768 Hz oscillator low power mode enable bit For low power mode, set this bit before enable 32,768 Hz oscillator	0: disable 1: enable

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

7 Ports and Peripherals

7.1 Ports

CFP5102 has 32 IO pins organized as 4 byte-wide ports. User can completely control over the operation mode, the direction, the presence of pull-up of each pin individually through control registers. The configuration of the control registers are described in the following section.

CFP5102 are designed to work in both 3.3V and 5V systems and all port pins can output either 3.3V or 5V depending on VDDIO voltage.

P3.2 and P3.3 are used to enter special mode of CFP5102. Their voltage levels at the pads are captured in the reset state to determine the working mode. In normal operation, P3.3 must be kept at high voltage level during reset. If it is not desired to force the CFP5102 to use external memory interface, P3.2 should be also kept high during reset.

7.1.1 Push-Pull Mode and Open-Drain Mode

There are two operation modes of the port for interfacing different off-chip peripherals. The default one is push-pull mode showing in Figure 7-1. In the initial state after reset, all pins are configured as input. All pull-ups are disabled and no port synchronizer is in use.

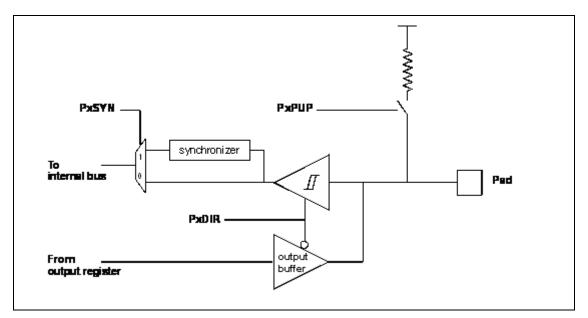


Figure 7-1: Block diagram of push-pull mode

TEL: +886-2-22231558 FAX: +886-2-22233988

E-mai : sales@cfpt.com.tw

The other operation mode of the port is open-drain mode, showing in Figure 7-2. This mode is selected by manipulating registers POOD, P1OD, P2OD and P3OD. In addition, the corresponding pins have to be configured as input (refer to Section 7.1.2). Open-drain mode does not enable the internal pull-ups automatically. User should enable pull-ups in registers POPUP, P1PUP, P2PUP and P3PUP (refer to Section 7.1.4).

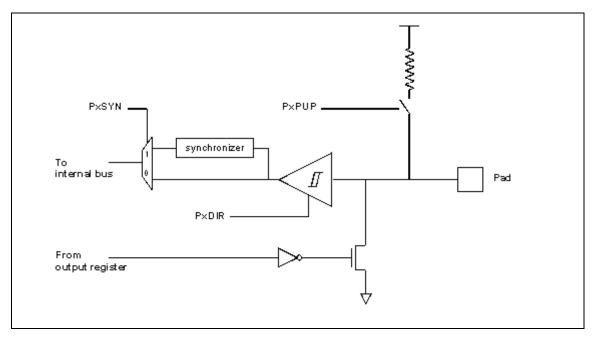


Figure 7-2: Block diagram of open-drain mode

PxDIR	PxDIR Description			Address	Default		
P0OD)	Port 0 Open-drain Mode Register	0xA4	0x00			
P10D)	Port 1 Open-drain Mode Register	R/W	0xA5	0x00		
P2OD)	Port 2 Open-drain Mode Register	R/W	0xA6	0x00		
P3OD)	Port 3 Open-drain Mode Register	R/W	0xA7	0x00		
Name Mode Description				Setting			
PxOD[7]	RW	•	ort x pin 7 open-drain mode select bit				
PxOD[6]	RW	Port x pin 6 open-drain mode sele	0: push-pull mode 1: open-drain mode				
PxOD[5]	RW	Port x pin 5 open-drain mode sele	0: push-pull mode 1: open-drain mode				
PxOD[4]	RW	Port x pin 4 open-drain mode sele	0: push-p 1: open-c	oull mode Irain mode			
PxOD[3]	RW	Port x pin 3 open-drain mode sele	ect bit	0: push-p 1: open-c	oull mode Irain mode		
PxOD[2]	RW	Port x pin 2 open-drain mode sele	0: push-p 1: open-c	oull mode Irain mode			
PxOD[1]	RW	Port x pin 1 open-drain mode sele	ect bit	0: push-p 1: open-c	oull mode Irain mode		
PxOD[0]	RW	Port x pin 0 open-drain mode sele	0: push-p 1: open-c	ull mode Irain mode			

Preliminary

7.1.2 Setting Port Direction

In push-pull mode, the direction of the ports is defined in registers PODIR, P1DIR, P2DIR and P3DIR. When a pin is set as output, its pull-up resistor is disabled automatically to avoid leakage current. Wrong operations like: (1) reading from an output pin results in reading out '0' only; and (2) writing to an input pin does not change the voltage level of the pad, only the corresponding port data register is changed.

In open-drain mode, port output is always available. With regards of this, registers PODIR, P1DIR, P2DIR and P3DIR only control the input buffer. When the pin is set as output, the input buffer is disabled and the readout from the pin is always '0'. To obtain the voltage level at the pad, keep the input buffer on and write '1' to port data register to force the pad to high impedance state before reading the port data register.

PxDIR	Description	Туре	Address	Default
P0DIR	Port 0 Direction Control Register	R/W	0xAC	0xFF
P1DIR	Port 1 Direction Control Register	R/W	0xAD	0xFF
P2DIR	Port 2 Direction Control Register	R/W	0xAE	0xFF
P3DIR	Port 3 Direction Control Register	R/W	0xAF	0xFF

Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic	PxDIR[7:0]							

Name	Mode	Description	Setting	
			Push-pull mode	0: output
PxDIR[7]	RW	Port x pin 7 direction control bit		1: input
			Open-drain mode	0: disable input buffer
				1: enable input buffer
			Push-pull mode	0: output
PxDIR[6]	RW	Port x pin 6 direction control bit	o	1: input
		· · · · · · · · · · · · · · · · · · ·	Open-drain mode	0: disable input buffer
				1: enable input buffer
			Push-pull mode	0: output
PxDIR[5]	RW	Port x pin 5 direction control bit	Onon drain mode	1: input
1-1		•	Open-drain mode	
			Duch null mode	1: enable input buffer
			Push-pull mode	0: output 1: input
PxDIR[4]	RW	Port x pin 4 direction control bit	Onon drain modo	0: disable input buffer
_				1: enable input buffer
			Push-pull mode	0: output
				1: input
PxDIR[3]	RW	Port x pin 3 direction control bit	Open-drain mode	0: disable input buffer
				1: enable input buffer
			Push-pull mode	0: output
				1: input
PxDIR[2]	RW	Port x pin 2 direction control bit	Open-drain mode	
				1: enable input buffer
			Push-pull mode	0: output
ראסוסעס		Dort y nin 1 direction control hit		1: input
PxDIR[1]	RW	Port x pin 1 direction control bit	Open-drain mode	0: disable input buffer
			-	1: enable input buffer
			Push-pull mode	0: output
PxDIR[0]	RW	Port x pin 0 direction control bit		1: input
		For x pin o unection control bit	Open-drain mode	
				1: enable input buffer

7.1.3 Reading from and Writing to Port

Port 0 to Port 3 are memory-mapped into the registers P0, P1, P2 and P3 in SFR space. Writing to a port data register sets the voltage levels of the corresponding port pins that have been configured to operate as outputs. Reading from a data register reads the voltage levels of the corresponding port pins.

There is major difference of reading the port values when the port is set as input or is set as output. When the port is set as output, the CPU will read the port value from port data register instead of the voltage level at the pad. When the port is set as input, the CPU will read the value from in directly instead of the port value from port data register. As a result, the user should be very careful when using **Read-then-Write** instructions to access the ports and change port direction control register before write the output value to port data register when using port as output. For example:

Assembler: ANL PODIR, #OFEH MOV PO, #O1h C language: PODIR &= 0xFE; PO = 0xO1;

The first instruction in this example configures P0.0 as output, and then the second instruction writes the Port 0 data register (P0), which controls the output levels of the P0.0.

There are port synchronizers associate to each port. These synchronizers are controlled by register PSYN. When the port synchronizers are enabled, the voltage level at the pin will be passed to port synchronizers, and the readout is the output of the synchronizers instead of the voltage level at the pad.

Px	Description	Туре	Address	Default
P0	Port 0 Data Register	R/W	0x80	0xXX
P1	Port 1 Data Register	R/W	0x90	0xXX
P2	Port 2 Data Register	R/W	0xA0	0xXX
P3	Port 0 Data Register	R/W	0xB0	0xXX

Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic				Px[7:0]			

Name	Mode	Description	Setting	
Px	RW	Port x data register In output mode: - outputs data to pads when writing to Px - reads in register data when reading Px In input mode: - output to pads is prohibited - reads in data at pads when reading Px		

TEL: +886-2-22231558 FAX: +886-2-22233988

E-mai : sales@cfpt.com.tw

Engineering Specification for CFP5102

PSYN:	Port S	Port Synchronizer Enable Register											
TYPE:	R/W												
ADDRESS:	0xB6												
Position	Bit7	Bit6 Bit5 Bit4			Bit3	Bit2	Bit1	BitO					
Mnemonic	-			-	P3SYN	P2SYN	P1SYN	POSYN					
Default	0	0 0 0 0			0	0	0	0					
Name M	Name Mode Description Setting												
		secomption			0: disable								
P3SYN F	RW I	Port 3 synch	ronizers en	able bit	1: enable								
P2SYN F	RW F	Port 2 synch	ronizers en	able bit	0: disable								
		ent <u>=</u> ejner					l: enable						
P1SYN F	RW F	Port 1 synch	ronizore on	abla bit	0: disable								
FISTN F		-on i synci			1: enable								
	ז אור			abla bit		(): disable						
POSYN F	RW I	Port 0 synch	ironizers en		1: enable								

7.1.4 Using Pull-Ups

Each port pin associates with a 20Kohm pull-up resistor. The pull-up is disabled by default and it is enabled through register POPUP, P1PUP, P2PUP and P3PUP. To get rid of current leaking through the pull-up resistors, the pull-up is disabled automatically when the pin is set as output in push-pull mode and the pin outputs a low voltage level in open-drain mode.

PxPUP	Description	Туре	Address	Default
POPUP	Port 0 Pull-up Control Register	R/W	0xB1	0x00
P1PUP	Port 1 Pull-up Control Register	R/W	0xB2	0x00
P2PUP	Port 2 Pull-up Control Register	R/W	0xB3	0x00
P3PUP	Port 3 Pull-up Control Register	R/W	0xB4	0x0C

Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	PxPUP[7:0]							

Name	Mode	Description	Setting
PxPUP[7]	RW	Port x pin 7 pull-up enable bit	0: disable
	1		1: enable
PxPUP[6]	RW	Port x pin 6 pull-up enable bit	0: disable
	1		1: enable
PxPUP[5]	RW	Port x pin 5 pull-up enable bit	0: disable
			1: enable
PxPUP[4]	RW	Port x pin 4 pull-up enable bit	0: disable
			1: enable
PxPUP[3]	RW	Port x pin 3 pull-up enable bit	0: disable
			1: enable
PxPUP[2]	RW	Port x pin 2 pull-up enable bit	0: disable
			1: enable
PxPUP[1]	RW	Port x pin 1 pull-up enable bit	0: disable
	1.1.4.4		1: enable
PxPUPI01	RW	Port x pin 0 pull-up enable bit	0: disable
1 21 01 [0]	1.00		1: enable

Caution:

(1) In push-pull mode, the pull-up resistor can be enabled only when input

Preliminary

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

7.1.5 Configuring for Analog Input

To configurable a port pin for analog peripherals, the first step is to disable the digital buffers in order to reduce interference to the analog input.

- 1. Set the pin to open-drain mode
- 2. Write '1' to port data register to force the pad to high impedance state
- 3. Disable the input buffer by clearing port direction control register

After the above procedure, the digital buffers of the pin are completely off. At this moment, analog channel can be enabled by manipulating register POAIE, P1AIE, P2AIE and P3AIE. To avoid leakage current, always keeps analog channels disabled when it is not being used.

POALE:	Port 0	Port 0 Analog Input Enable Register										
TYPE:	R/W	R/W										
ADDRESS:	OxE1											
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO				
Mnemonic		POAIE[7:0]										
Default		00000000										

P1AIE:	Port 1 Analog Input Enable Register											
TYPE:	R/W	R/W										
ADDRESS:	OxE2											
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Mnemonic	-	-	-	-	-	P1AIE[2]	-	-				
Default	0	0	0	0	0	0	0	0				

P3AIE: TYPE: ADDRESS:	R/W	Port 3 Analog Input Enable Register R/W 0xE4									
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO			
Mnemonic	-	-	-	-	-	-	-	P3AIE[0]			
Default	0	0	0	0	0	0	0	0			

Name	Mode	Description	Setting
PxAIE[7]	RW	Port x pin 7 analog input channel enable bit	0: disable
			1: enable
PxAIE[6]	RW	Port x pin 6 analog input channel enable bit	0: disable
			1: enable
PxAIE[5]	RW	Port x pin 5 analog input channel enable bit	0: disable
			1: enable
	PxAIE[4] RW	Port x pin 4 analog input channel enable bit	0: disable
			1: enable
PxAIE[3]	RW	Port x pin 3 analog input channel enable bit	0: disable
			1: enable
PxAIE[2]	RW	Port x pin 2 analog input channel enable bit	0: disable
			1: enable
PxAIE[1]	RW	Port x pin 1 analog input channel enable bit	0: disable
	1.1.1		1: enable
PxAIE[0]	RW	Port x pin 0 analog input channel enable bit	0: disable
	1.1.4		1: enable

Caution:

(1) To avoid leakage current, always keeps analog input channel disable when it is not being used.

Preliminary

60 / 124

7.1.6 IO Shared with Peripherals

Most port IO are shared with different peripherals. The functionality of the pins switch when the corresponding peripheral is enabled. (please refer to operation flow of each peripheral for details.) Table 7-1 shows the allocation of IO to the peripherals.

Port Pin	Serial Interface	External Interrupt	Waveform Output	Analog Peripherals
P0.0				
P0.1				
P0.2				
P0.3				ADC p.92
P0.4				ADC p.92
P0.5				
P0.6				
P0.7				
P1.0		Port Wakeup	Clock Output p.47	
P1.1		p.62		
P1.2		p.02		ADC
P1.3	GPSI			
P1.4	p.92			
P1.5				
P1.6				
P1.7	SPI			
P2.0	p.80			
P2.1	p.00			
P2.2			8-bit PWM p.73	
P2.3			0 bit 1 Wit p.70	
P2.4				
P2.5				
P2.6			16-bit PWM p.73	
P2.7			10 bit 1 Will p.70	
P3.0	UART			Reference Output
P3.1	p.80			
P3.2		8051 External		
P3.3		Interrupt p.64		
P3.4				
P3.5				
P3.6				
P3.7				

Table 7-1: The list of IO shared with peripherals

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

7.1.7 Interrupt and Wakeup

There are 4 dedicated circuits associating with P0.5, P0.6, P0.7 and USB data pin USBDP for capturing transitions at the pad. When an interested transition (defined in register WKEDG) appears at the pad, these circuits generate a port wakeup interrupt pending. If the corresponding interrupt is enabled (EPW = 1), the interrupt request is asserted immediately to notify CPU to take action. All these circuits share the same interrupt service entry, therefore interpretation inside ISR is needed to determine the triggered circuit.

As these circuits are designed to work without clock, they are used not only for wakeup signal of idle mode, but also wakeup signal of halt mode and power down mode. For details, please refer to Section 0.

These circuits are controlled by port wakeup control register, WKEN. The detecting event is defined in register WKEDG. The corresponding interrupt pending flags are gathered in register WKPND.

To enable the circuit, there is an initialization procedure. User has to disable the interrupt first, and then do the setting. Before enabling the interrupt, the interrupt pending must be cleared, because false triggering is possibly happened when changing the circuit setting. Initialization must be redone in every change of setting.

WKEN: TYPE: ADDRESS:	Port W R/W OxBC	0xBC									
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO			
Mnemonic	-	-	-	-		WKEN	I[3:0]				
Default	0	0	0	0	0	0	0	0			
Name M	ode [de Description Setting									
WKEN[3] R	WKEN[3] RW USB OTG DP wakeup enable bit					0: disable					
	vv t	J2P 010 D	r wakeup e		1: enable						
WKEN[2] R	W F	0.7 wakeur	onable bit		0: disable						
	VV F	-0.7 wakeup				1:	enable				
WKEN[1] R	W F	P0.6 wakeur	onable bit		0: disable						
	VV F	0.0 Wakeup				1:	enable				
WKEN[0] R	WKEN[0] RW P0.5 wakeup enable bit					0: disable					
	VV F	0.5 Wakeup			1: enable						

Caution:

(1) The wakeup pending of port wakeup are in undefined state after reset. User must clear the pending bit before using port wakeup as interrupt. Otherwise unexpected interrupt will be resulted.

(2) Procedure of using port wakeup as interrupt

- i. disable the interrupt if it is enabled
- ii. select wakeup event (rising or falling edges)
- iii. assign priority
- iv. clear the wakeup pending MUST!
- v. enable the interrupt

WKPND: TYPE: ADDRESS:	Port V R/W 0xBB	Vakeup Per	nding Regi	ster						
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic	-	-	-	-		WKPN	D[3:0]			
Default	0	0	0	0	Х	Х	X	Х		
Name	Mode	Description	Description Setting							
WKPND[3]	RW	USB OTG by software		ccurs. Interr	upt source.		inactive active			
WKPND[2]	RW	P0.7 wake	•	curs. Interru	ipt source.		inactive active			
WKPND[1]	RW	P0.6 wake	up event oc e		inactive active					
WKPND[0]	RW	P0.5 waker by software	up event oc e		inactive active					

Port W	Port Wakeup Edge Select Register						
R/W							
OxBD							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
-	-	-	-		WKED	G[3:0]	
0	0	0	0	X	Х	Х	Х
	R/W 0xBD Bit7	R/W 0xBD Bit7 Bit6	R/W OxBD Bit7 Bit6 Bit5	R/W OxBD Bit7 Bit6 Bit5 Bit4	R/W OxBD Bit7 Bit6 Bit5 Bit4 Bit3 	R/W OxBD Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 WKED	R/W Bit Bit

Name	Mode	Description	Setting
WKEDG[3]	RW	Select the wakeup event of USB OTG DP	0: rising edge 1: falling edge
WKEDG[2]	RW	Select the wakeup event of P0.7	0: rising edge 1: falling edge
WKEDG[1]	RW	Select the wakeup event of P0.6	0: rising edge 1: falling edge
WKEDG[0]	RW	Select the wakeup event of P0.5	0: rising edge 1: falling edge

IEN1: TYPE: ADDRESS	R/\		e Register	1				
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic								EPW
Default								0
Name	Mode	Description	Description			Setting		
EPW	RW	Port wakeup	Port wakeup interrupt enable bit 0: disable					
			-			1:	enable	

TEL : +886-2-22231558 FAX : +886-2-22233988 E-mai : <u>sales@cfpt.com.tw</u>

Engineering Specification for CFP5102

V0.1

Classic 8051/8052 external interrupt

CFP5102 reserves the external interrupts of classic 8051/8052. The related control registers are summarized below. Unlike CFP5102's port wakeup circuitry, these external interrupts cannot be wakeup source.

TCON: TYPE: ADDRESS:	Timer R/W 0x88	Control Re	egister					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic					IE1	IT1	IEO	I TO
Default					0	0	0	0
Name N	Mode D	Description				S	etting	
			runt 0 tuno	aalaat hit				rod
IIU r	Т	External inte This bit selec signal will de	ts whether	the configur			level trigge edge trigge	
IEO F	RW E	External Inte	rrupt 0			0:	inactive	
	t <u>y</u> s v	This flag is s ype defined oftware but rectors to the 1. This flag ogic level wh	by IT0 is de is automation External Ir is the invert	etected. It ca cally cleared nterrupt 0 se	an be cleare d when the (ervice routing	d by CPU e if IT0	Interrupt pe	ending
IT1 F	RW E	External inte	rrupt 1 type	select bit		0:	level trigge	red.
	Т	his bit selec	ts whether	the configur			edge trigge	
IE1 F		External Inte				0.	inactive	
	T ty s v =	This flag is s ype defined oftware but rectors to the 1. This flag ogic level wh	et by hardw by IT1 is de is automation External In is the invertion	etected. It ca cally cleared nterrupt 0 se	an be cleare d when the (ervice routine	l of 1: d by CPU e if IT1	Interrupt pe	ending
IENO: TYPE: ADDRESS:	Interr R/W 0xA8	upt Enable	Register	D				
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic						EX1		EXO
Default						0		0
Name N	Mode D	Description				S	etting	
		External inte	rrunt 1 enst	le hit			disable	
			napt i chat				enable	

FX1		External interrunt 1 anable bit	0: diachla
EXI	RW	External interrupt 1 enable bit	0: disable
			1: enable
EX0	RW	External interrupt 0 enable bit	0: disable
		·	1: enable

Caution:

- (1) The wakeup pending of port wakeup are in undefined state after reset. User must clear the pending bit before using port wakeup as interrupt. Otherwise unexpected interrupt will be resulted.
- (2) Procedure of using port wakeup as interrupt
 - i. disable the interrupt if it is enabled
 - ii. select wakeup event (low level or falling edges)
 - iii. assign priority
 - iv. clear the wakeup pending MUST!
 - v. enable the interrupt

7.2 Timer 0/1

Timer 0 and Timer 1 are accessed and controlled through SFRs. Each counter/timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control (TCON) register is used to enable Timer 0 and Timer 1 as well as indicate their status. Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits M1-M0 in the Counter/Timer Mode (TMOD) register. Each timer can be configured independently. Following is a detailed description of each operating mode.

7.2.1 Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as a 13-bit counter/timer in Mode 0. The following describes the configuration and operation of Timer0. However, both timers operate identically and Timer 1 is configured in the same manner as described for Timer0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4-TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if enabled. The C/T0 bit (TMOD.2) selects the counter/timer's clock source. Clearing C/T selects the system clock as the input for the timer. When C/T0 is set to logic 1, high-to-low transitions at the selected input pin increment the timer register.

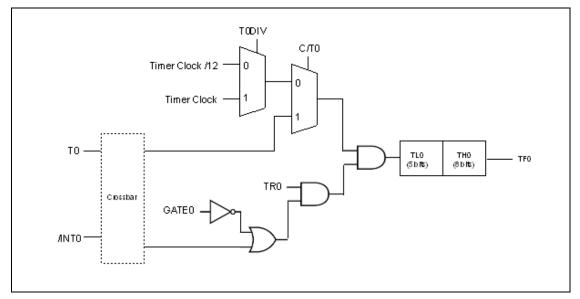
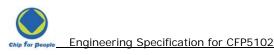



Figure 7-3: Block diagram of mode 0

7.2.2 Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

Preliminary	66 / 124	V0.1
TEL:+886-2-22231558 FAX:+886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw

7.2.3 Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. The TLO holds the count and THO holds the reload value. When the count in TLO overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TLO is reloaded from THO. If enabled, an interrupt will occur when the TFO flag is set. The reload value in THO is not changed. TLO must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer1 operates identically to Timer0. Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0.

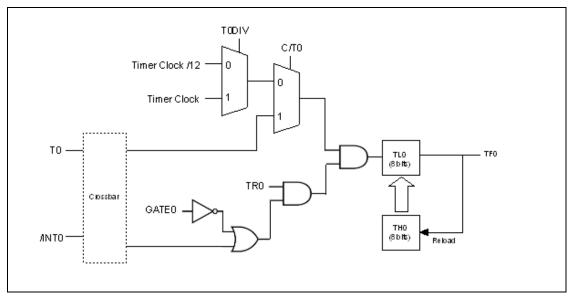


Figure 7-4: Block diagram of mode 2

7.2.4 Mode 3: Two 8-bit Counter/Timers (Timer0 Only)

Timer 0 and Timer 1 behave differently in Mode 3. Timer0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. It can use either the system clock or an external input signal as its time base. The TH0 register is restricted to a timer function sourced by the system clock. TH0 is enabled using the Timer1 run control bit TR1. TH0 sets the Timer1 overflow flag TF1 on overflow and thus controls the Timer1 interrupt. Timer1 is inactive in Mode 3, so with Timer0 in Mode 3, Timer1 can be turned off and on by switching it into and out of its Mode 3. When Timer0 is in Mode 3, Timer1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer1 overflow can be used for baud rate generation. Refer to Section 7.5 (serial port) for information on configuring Timer1 for baud rate generation.

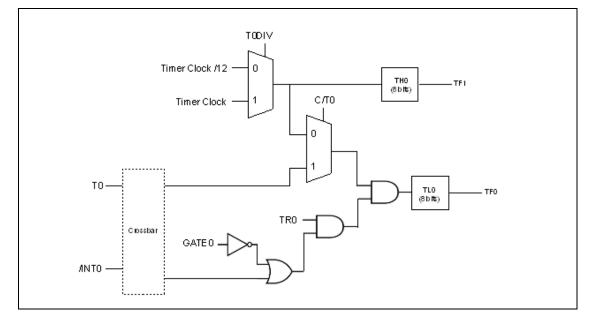


Figure 7-5: Block diagram of mode 3

ADDRESS: Position	Ox			DUE	DitA	Dito	Dito	Dita	Dito		
	Bit7		it6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic Default			TR1 TF0 TR0			IE1	IT1	IEO	ITO		
Delault	0		0	0	0	0	0	0	0		
Name	Mode	Descri	Description Setting								
TF1	RW	Timer	1 over	flow flag			0:	inactive			
			Set by hardware when Timer 1 overflows. This flag 1: overflow occurs								
			can be cleared by software but is automatically								
					ectors to th						
		service	e routir	ne.							
TR1	RW	Timer	1 run d	control			0:	timer 1 disa	able		
							1:	timer 1 ena	ble		
TF0	RW	Timer 0 overflow flag					0:	inactive			
		Set by	Set by hardware when Timer 0 overflows. This flag						1: overflow occurs		
		can be	e cleare								
		cleare	d wher	n the CPU v	ectors to th	e Timer 0 ir	nterrupt				
		service	e routir	ne.							
TR0	RW	Timer	0 run d	control			0:	timer 0 disa	able		
							1:	timer 0 ena	ble		
IE1	RW			rrupt 1			•••	inactive			
			This flag is set by hardware when an edge/level of						ending		
					etected. It ca						
					cally cleared						
					nterrupt 0 se						
					rse of the IN	IT1 input sig	gnal's				
				nen IT1 = 0							
IT1	RW			rrupt 1 type				level trigge			
					the configu		3.3) 1:	edge trigge	red		
		-		-	edge or acti	ve-low					
IE0	RW			rrupt 0			•••	inactive			
					are when a			Interrupt pe	ending		
					etected. It ca						
		softwa	ire but	is automati	cally cleared	d when the	CPU				
		vector	s to the	e External li	nterrupt 0 se	ervice routin	eitiiu				

ITC		lo	ogic level wi	nen IT0 = 0	rse of the IN	IT0 input sig		Invest C.	and a
IT0	RV	Т		ts whether	select bit the configur edge or activ		0: 3.2) 1:	level trigge edge trigge	
TMOD: TYPE: ADDRES	SS:	Timer R/W 0x89	Mode Reg	ister					
Position		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemoni	ic	GATE1	C/T1	T1M[1]	T1M[0]	GATEO	C/TO	TOM[1]	TOM[0]
Default		0	0	0	0	0	0	0	0
Name	Мо		cription		Sett	ina			
GATE1	RW	Time Whe AND	er 1 Gate co n set to '1' INT1 = log pled when 1	timer 1 is gic level one	enabled on e; While cle espective of	ly when TF ar to '0' tim	er 1 is		
C/T1	RW	Cou	nter/Timer 1	select bit			0:	timer functi	on
-		FSE Cou	T[2]. nter Functio	on: Timer 1	remented b increment t pin T1(P3.	ed by high	ned by 1:	counter fun	
T1M	RW		er 1 Mode S		•				
						T1m	Mode	0.64	
						00	Mode 0: 1		
						01	counter/ti Mode 1: 2		
						01	counter/ti		
						10	Mode 2: 8		
							counter/ti		
							auto-reloa	ad	
						11	Mode 3: 1 Inactive/s		
GATE0	RW	Whe AND	INT1 = log bled when T	timer 1 is gic level one	enabled on e; While cle espective of	ar to '0' tim	er 1 is		
C/T0	RW		nter/Timer C					timer functi	
		FSE	T[6].		remented b	-	-	counter fun	ction
					t pin T0(P3.4				
TOM	RW		er 0 Mode S		. 、	TOM	Mode		
						00	Mode 0: 1	13-hit	
						00	counter/ti		
						01	Mode 1: 1		
							counter/ti	mer	
						10	Mode 2: 8		
							counter/ti		
						44	auto-reloa		
						11	Mode 3: 1 Inactive/s		
FSET: TYPE:		R/W	I Function	Setting R	egister				
ADDRES	:5.	OxBF							

<u>Preliminary</u>

Mnemonic

Default

69 / 124

TODD

1

T1DD

1

Name	Mode	Description	Cotting
Name	wode	Description	Setting
T0DIV	RW	Timer 0 clock divider select bit	0: system clock / 12
			1: system clock
T1DIV	RW	Timer 1 clock divider select bit	0: system clock / 12
			1: system clock

TLO: TYPE:	R/W	0 Counter	Low Byte	Register						
ADDRESS:	Ox8A		1							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic				TI	_0					
Default		0x00								
TL1:	Timer	Timer 1 Counter Low Byte Register								
TYPE:	R/W	R/W								
ADDRESS:	0x8B	n	1	1		n	1	·		
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic				TI	_1					
Default				Ox	00					
THO:		0 Counter	High Byte	Register						
TYPE:	R/W									
ADDRESS:	0x8C		1							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic		THO								
Default				Ox	00					
TH1:	Timer	Timer 1 Counter High Byte Register								
TYPE:	R/W									
ADDRESS:	0x8D									
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic				Tŀ	-11					
Default				Ox	00					
IENO:	Interr	upt Enable	Register	0						
TYPE:	R/W									
ADDRESS:	0xA8						-	<u> </u>		
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic					ET1		ETO			
Default					0		0			
Name N	/lode D	Description				Se	etting			
ET1 F	RW T	imer 1 inter	rupt enable	bit		0:	disable			
			-			1:	enable			
ET0 F	RW T	imer 0 inter	rupt enable	bit		0:	disable			
	-					•••	enable			
						••	· · · •			

TEL : +886-2-22231558 FAX : +886-2-22233988 E-mai : <u>sales@cfpt.com.tw</u>

7.3 Timer 2

Timer 2 is a 16-bit Timer/Counter which can operate as a timer or an event counter. This is selectable by bit C/T2 in the SFR T2CON. Timer 2 consists of two 8-bit registers, TH2 and TL2. In Timer function, TL2 register is incremented every clock cycle. In Counter function, TL2 register is incremented in response to a 1-to-0 transition at its external input pin T2 (P2.4). Timer 2 has three operating modes: capture, auto-reload (up or down counting) and PWM.

7.3.1 Capture Mode

In capture mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 is a 16-bit timer or counter which sets bit TF2 in T2CON when overflow occurs. This bit can then be used to generate an interrupt. If EXEN2 = 1, Timer 2 performs the same operation, but a 1-to-0 transition at external input pin T2EX (P2.5) also causes the current value in TH2 and TL2 to be captured into RCAP2H and RCAP2L, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. The capture mode is illustrated in Figure 7-6.

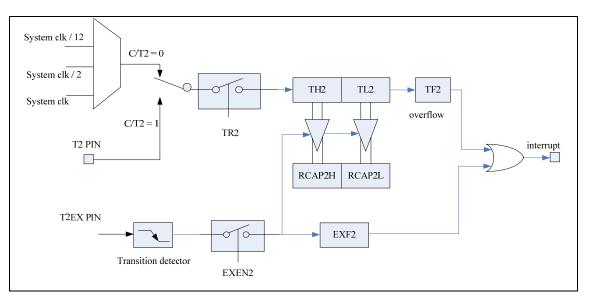


Figure 7-6: Block diagram of timer 2 in capture mode

7.3.2 Auto-reload Mode (Up or Down Counter)

Timer 2 can be programmed to count up or down in 16-bit auto-reload mode by using a bit named DCEN (Down Counter Enable) located in SFR T2MOD. Upon reset, DCEN bit is set to 0 so that Timer 2 will default to count up. When DCEN is set, Timer 2 can count up or down depending on the value of T2EX pin.

Figure 7-7 shows that Timer 2 is counting up when DCEN=0. In this mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 counts up to

<u>Preliminary</u>	71 / 124	V0.1
TEL:+886-2-22231558 FAX:+886-2-22233988	E-mai : sales@cfpt.com.tw	Web-site : www.cfpt.com.tw

OFFFFH and sets TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16-bit value in RCAP2H and RCAP2L. The values in RCAP2H and RCAP2L can be defined by software. If EXEN2 = 1, a 16-bit reload can be triggered by either an overflow or a 1-to-0 transition at external pin T2EX. This transition also sets the EXF2 bit. Both TF2 and EXF2 can generate an interrupt if enabled.

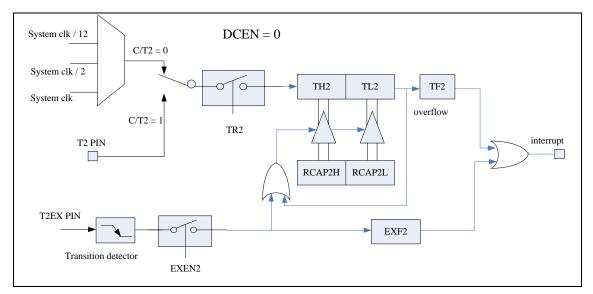


Figure 7-7: Block diagram of timer 2 in auto-reload mode when DCEN = 0

Figure 7-8 shows that Timer 2 can count up or down when DCEN=1. In this mode, T2EX pin controls the counting direction. Logic 1 at T2EX enables Timer 2 to count up. The timer will overflow at OFFFFH and set TF2 bit. The overflow also causes the 16-bit value in RCAP2H and RCAP2L to be reloaded to TH2 and TL2, respectively.

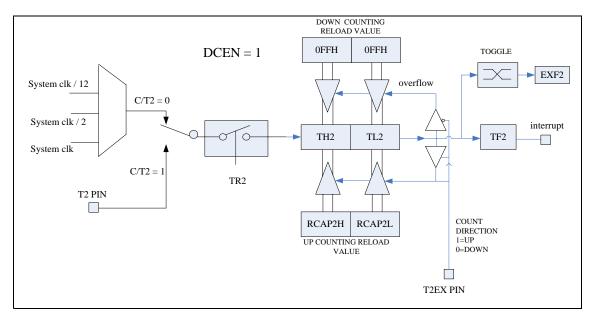


Figure 7-8: Block diagram of timer 2 in auto-reload mode when DCEN = 1

<u>Preliminary</u>	72 / 124	V0.1
TEL : +886-2-22231558 FAX : +886-2-22233988	E-mai : sales@cfpt.com.tw	Web-site : www.cfpt.com.tw

Logic 0 at T2EX enables Timer 2 to count down. In this case, Timer 2 underflows when TH2 and TL2 equal to the values stored in RCAP2H and RCAP2L. The underflow sets TF2 bit and causes 0FFFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer 2 overflows or underflows only when DCEN=1. This bit can be used as the 17th bit for the timer registers if desired. In this case, EXF2 does not trigger an interrupt. Also, capture mode is not available when DCEN=1.

7.3.3 Pulse Width Modulation (PWM)

Timer 2 PWM has two operating modes: 8-bit and 16-bit modes. In 16-bit mode, TPR2L and TPR2H become a 16-bit period register (TPR2). Similarly, RCAP2L and RCAP2H become a 16-bit duty cycle register (RCAP2). Figure 7-9 shows the Timer 2 operation in 16-bit PWM mode.

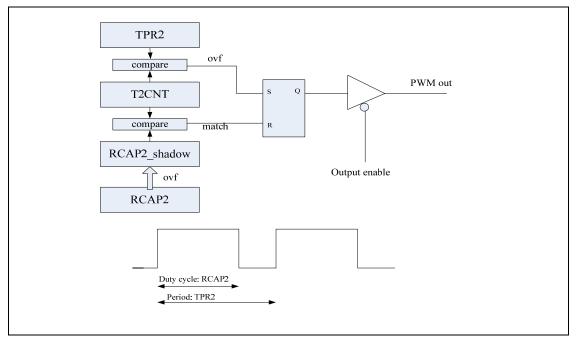


Figure 7-9: Block diagram of timer 2 in pulse width modulation mode

Timer register TL2 is incremented every clock cycle. When value of timer register is equal to period register TPR2, PWM output will be set to 1 and timer register will be reset to 0000H. The content of RCAP will be reloaded into a shadow register for comparison purpose. When timer register reaches the value of duty cycle register RCAP2, PWM output will be set to 0. Bit T2OE in T2MOD is the master control for all PWM output signals. Once T2OE is set, PWM16P bit and PWM16N bit can control the output at PWMP (P2.6) and PWMN (P2.7), respectively. When PWM16P bit is set, PWMOP will output PWM signal according to the settings of TPR2 and RCAP2. When

PWM16N bit is set, PWMN will output an inverted signal of the original PWMP. Both PWM16P and PWM16N can be set simultaneously.

PWM 8-bit mode works exactly the same as PWM 16-bit mode, except that the 16-bit period register TPR2 and duty cycle register RCAP2 are divided into two 8-bit registers to separately control two 8-bit PWM output signals. The 8-bit period register TPR2L and 8-bit duty cycle register RCAP2L control the output of PWM1 (P2.2). The 8-bit period register TPR2H and 8-bit duty cycle register RCAP2H control the output of PWM2 (P2.3). When PWM8 bit and T2OE bit are set, it enables the output of PWM1 and PWM2.

T2CON:		Timer 2 Control Register								
TYPE:	R/W									
ADDRESS:	0xC8									
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic	TF2	EXF2	-	-	EXEN2	TR2	C/T2	CP/RL2		
Default	0	0	0	0	0	0	0	0		

Name	Mode	Description	Setting
TF2	RW	Timer 2 overflow flag is set when Timer 2 overflows	0: inactive
		and must be cleared by software.	1: overflow occurs
EXF2	RW	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2=1. When Timer 2 interrupt is enabled, EXF2=1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN=1).	0: inactive 1: Negative transition on T2EX occurs
EXEN2	RW	Timer 2 external event enable. When EXEN2=1, it allows a capture or reload to occur as a result of a negative transition on T2EX. EXEN2=0 causes Timer 2 to ignore events at T2EX.	0: Timer 2 ignores external events at T2EX 1: Timer 2 detects external events at T2EX
TR2	RW	Start/Stop control for Timer 2. TR2=1 starts the timer.	0: Disable Timer 2 1: Enable Timer 2
C/T2	RW	Timer 2 counter/timer select bit Timer Function: Timer 2 is incremented every clock cycle. Counter Function: Timer 2 is incremented by a negative transition on external input pin T2 (P2.4).	0: Timer function 1: Counter function
CP/RL2	RW	Capture/Reload select bit Capture mode: Timer 2 captures on negative transitions at T2EX if EXEN2=1. Reload mode: Timer 2 reloads automatically when Timer 2 overflows or negative transitions occur at T2EX when EXEN2=1	0: Reload mode 1: Capture mode

T2MOD: TYPE: ADDRESS:	R/W	Timer 2 Mode Register R/W 0xC9								
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Mnemonic	-	PWM8	T2CLK[1]	T2CLK[0]	PWM16N	PWM16P	T2OE	DCEN		
Default	0	0	0	0	0	0	0	0		

Name	Mode	Description		Setting
PWM8	RW	8-bit PWM output enable bit.	When PWM8 is set, it	0: Disable 8-bit PWM

74 / 124

Preliminary

Chip for People	ingineering a	specification		JZ			Novei			
		enables 8	bit PWM or	utput signals	at P\M/M1 (P2 2)	output			
		and PWM		itput signals		1 2.2)	1: Enable 8-I	bit PWM		
TOCI (//4.01		Timer O al	مماد مانينامم	alaat			output			
T2CLK[1:0]	RW	nmer z cio	ock divider s	select			00: system c 01: system c			
			10: system c							
							11: inactive			
PWM16N	RW	16-bit PV	16-bit PWM inverted output enable bit. When 0: Disable output at							
			WM16N is set, it enables 16-bit PWM output signal PWMON							
		at PWMN	(P2.7).		·	•	1: Enable ou	tput at		
							PWMON			
PWM16P	RW			nable bit.			0: Disable ou	utput at		
			bles 16-bit	PWM outpu	it signal at	PWMP	PWMOP	4		
		(P2.6).					1: Enable ou PWMOP	liput at		
T2OE	RW	Timer 2 P	WM output	t enable bit	It is the	master	0: Disable P	WM output		
1202			•	16-bit PWN			1: Enable PV			
DCEN	RW	Down cou	unter enabl	e bit. Wh	en DCEN	is set,	0: Disable do			
				nfigured as		counter	counter			
		depending	on the valu	ue of T2EX p	oin.		1: Enable do	wn		
							counter			
RCAP2L:		2 Capture	/Reload/P	WM duty o	ycle Low I	Byte Reg	gister			
TYPE:	R/W									
ADDRESS: Position	OxCA Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic	BILT	БКО	BIt3			DILZ	ыл	БПО		
Default		RCAP2L 0x00								
RCAP2HL:		2 Capture	/Reload/P	WM duty o	ycle High	Byte Re	gister			
TYPE: ADDRESS:	R/W 0xCB									
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic				RCA	P2H					
Default				0х	00					
TL2:		2 Counter	Low Byte	Register						
TYPE:	R/W									
ADDRESS: Position	OxCC Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Mnemonic	Bity	Bito	Bito		_2	DILL	Bitti	Bito		
Default					00					
TH2:		2 Counter	High Byte	Register						
TYPE: ADDRESS:	R/W 0xCD									
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic					12		•			
Default				Ox	00					
TPR2L:	Timer	2 PWM Pe	riod Low E	Byte Regist	er					
TYPE:	R/W									
ADDRESS: Position	OxCE	Bit6	Bit5	Dit 4	Bit3	Bit2	D:+4	Dito		
Mnemonic	Bit7	DILO	БЦЭ	Bit4 TPI		DILZ	Bit1	BitO		
Default					FF					
TPR2H:		2 PWM Pe	riod High	Byte Regis	ter					
TYPE: ADDRESS:	R/W 0xCF									
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Mnemonic					R2H					

November 2007

Default

OxFF

V0.1

IENO: TYPE: ADDRESS	R/W	rupt Enable	Register	D					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Mnemonic			ET2						
Default			0						
Name	Mode	Description				Se	etting		
ET2	RW	Timer 2 interrupt enable bit 0:							
		1: enable							

7.3.4 Operation Flow

Capture or reload mode

- 1. Set counter value TH2 and TL2
- 2. Set limit value TPR2H and TPR2L
- 3. Set reload value RCAP2H and RCAP2L (reload mode only)
- 4. Configure T2MOD (DCEN and T2CLK)
- 5. Configure T2CON (EXEN2, C/T2, CP/RL2) and start Timer 2 (TR2=1)
- 6. Enable Timer 2 interrupt (set ET2 to 1)
- 7. When Timer 2 interrupt occurs (by external event, counter overflow or counter reaches limit value), clear Timer 2 overflow flag (TF2)
- 8. Read RCAP2H and RCAP2L if necessary (in capture mode only)

PWM mode

- 1. Disable Timer 2 interrupt (set ET2=0)
- 2. Set counter value TH2 and TL2
- 3. Set period register value TPR2H and TPR2L
- 4. Set duty cycle register RCAP2H and RCAP2L
- 5. Configure T2MOD (PWM8, T2CLK, PWM16N, PWM16P, T2OE, and set DCEN=0)
- Configure T2CON (set EXEN2=0, C/T2=0, CP/RL2=0, and TF2=0) and start Timer 2 (TR2=1)

7.4 Real Time Wakeup

Real time wakeup module provides a regular, periodic interrupt based on 32,768 Hz clock. It can be used for generating software real time clock or low-frequency interrupt that cannot be handled by Timer 0/1 and Timer 2.

The clock source for real time wakeup module comes from 32,768 Hz oscillator. User should refer to *Clock System* in section 6.1 for more details on enabling or disabling 32,768 Hz clock. Once enabled, RTDIV controls frequency of the real time wakeup clock.

Since real time wakeup module has internal wakeup circuitry, it can work with IDLE, HALT and Power Down power-saving modes. The following scenarios may occur when real time wakeup module is enabled.

Normal running mode with interrupt enabled

When real time wakeup module is enabled (RTWE=1) and ERT is set to 1, it sets the pending flag RTWK and triggers an interrupt periodically according to the setting of RTDIV.

Idle mode with interrupt enabled

When real time wakeup module sets RTWK flag and triggers an interrupt, CFP5102 exits IDLE mode and enters interrupt service routine at vector 0x33. Once the routine is served, CFP5102 will run the next instruction immediately after entering IDLE mode.

Halt mode with interrupt enabled

Similar to in idle mode, the CFP5102 exits IDLE mode and enters interrupt service routine at vector 0x33.

Halt mode with interrupt disabled

Real time wakeup module sets RTWK flag and does not trigger an interrupt. CFP5102 will run the next instruction immediately after entering IDLE mode.

Power down mode

The module triggers a reset when real time wakeup event occurs.

Caution:

(1) As the 32,768 Hz clock runs freely after enabled, the first wakeup after enabling real-time wakeup is possibly earlier than expected. After that, the time between the second and the first wakeup will be exactly the period defined in RTDIV.

TEL: +886-2-22231558 FAX: +886-2-22233988

E-mai : sales@cfpt.com.tw

RTCON:	Real Time Control Register									
TYPE:	R/W									
ADDRESS:	0xD8									
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic	-	RTWK	-	-	RTWE	-	-	-		
Default	0	0	0	0	0	0	0	0		
Name Mode Description Setting										
RTWK RV	√ Rea	l time wakeu	ip pending f	lag		0: in	active			
	lt ca	n be cleared	by software	Э.		1: Ir	iterrupt pen	ding		
RTWE RV		l time wakeı				0: di	isable			
			•			1: e	nable			
IENO:	Interr	upt Enable	Register ()						
TYPE:	R/W	•	5							
ADDRESS:	0xA8									
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Position										
Position Mnemonic		ERT								
		ERT 0								
Mnemonic										
Mnemonic Default	ode [Se	tting			

7.4.1 Operation Flow

- 1. Enable 32,768 Hz clock (refer to section 6.1.3 for details)
- 2. Enable real time clock (set RTCKE to 1 in CKCON1)

Engineering Specification for CFP5102

- 3. Configure RTDIV
- 4. Clear real time wakeup pending flag (set RTWK to 0)

TEL: +886-2-22231558 FAX: +886-2-22233988 E-mai: sales@cfpt.com.tw

- 5. Enable real time wakeup module (set RTWE to 1)
- 6. Enable real time wakeup interrupt (set ERT to 1 in IENO) if necessary
- 7. When real time wakeup event occurs, clear pending flag (set RTWK to 0) and ready for next event

V0.1

November 2007

1: enable

7.5 Serial Port (UART)

UART is a serial port capable of asynchronous transmission. The UARTO can function in full duplex mode. In all modes, receive data is buffered in a holding register. This allows the UARTO to start reception of a second incoming data byte before software has finished reading the previous data byte.

Receive pin (RXD) - P3.0

Transmit pin (TXD) – P3.1

UART provides four operating modes selected by setting configuration bits in the SCON register. These four modes offer different baud rates and communication protocols.

Table 7-2: Operation modes of UART

Mode	Synchronization	Baud Clock	Data Bits	Start/Sto Bits
0	Synchronous	System clock / 12	8	None
1	Asynchronous	Timer 1 overflow	8	1 Start, 1 Stop
2	Asynchronous	System clock / 32 or / 64	9	1 Start, 1 Stop
3	Asynchronous	Timer 1 overflow	9	1 Start, 1 Stop

7.5.1 Mode 0

Mode O provides synchronous, half-duplex communication. Serial data is transmitted and received on the RX pin. The TX pin provides the shift clock for both transmit and receive. The MCU must be the master since it generates the shift clock for transmission in both directions.

Data transmission begins when an instruction writes a data byte to the SBUF register. Eight data bits are transferred LSB first, and the TI Transmit Interrupt Flag is set at the end of the eighth bit time. Data reception begins when the REN Receive Enable bit is set to logic 1 and the RI Receive Interrupt Flag is cleared. One cycle after the eighth bit is shifted in, the RI flag is set and reception stops until software clears the RI bit. An interrupt will occur if enabled when either TI or RI are set.

7.5.2 Mode 1

Mode 1 provides standard asynchronous, full duplex communication using a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted from the TX pin and received at the RX pin. On receive, the eight data bits are stored in SBUF and the stop bit goes into RB8.

Data transmission begins when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt Flag is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN Receive Enable bit is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF receive register if the following conditions are met:

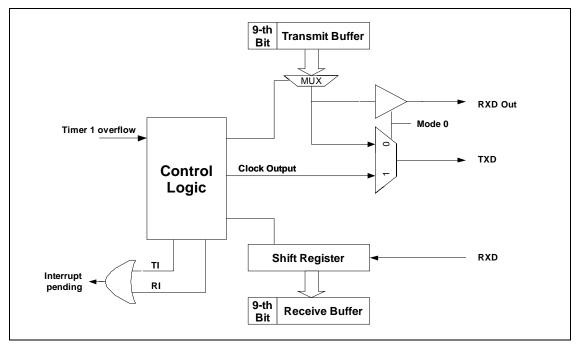
RI must be logic 0, and if SM2 is logic 1, the stop bit must be logic 1.

If these conditions are met, the eight bits of data are stored in SBUF, the stop bit is stored in RB8 and the RI flag is set. If these conditions are not met, SBUF and RB8

<u>Preliminary</u>	80 / 124	V0.1
TEL : +886-2-22231558 FAX : +886-2-22233988	E-mai : sales@cfpt.com.tw	Web-site : www.cfpt.com.tw

will not be loaded and the RI flag will not be set. An interrupt will occur if enabled when either TI or RI is set.

7.5.3 Mode 2


Mode 2 provides asynchronous, full-duplex communication using a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. Mode 2 supports multiprocessor communications. On transmit, the ninth data bit is determined by the value in TB8. It can be assigned the value of the parity flag P in the PSW or used in multiprocessor communications. On receive, the ninth data bit goes into RB8 and the stop bit is ignored. Data transmission begins when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt Flag is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN Receive Enable bit is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF receive register if RI is logic 0 and one of the following requirements are met:

- 1. SM2 is logic 0
- 2. SM2 is logic 1, the received 9th bit is logic 1.

If the above conditions are satisfied, the eight bits of data are stored in SBUF, the ninth bit is stored in RB8 and the RI flag is set. If these conditions are not met, SBUF and RB8 will not be loaded and the RI flag will not be set. An interrupt will occur if enabled when either TI or RI is set.

7.5.4 Mode 3

Mode 3 uses the Mode 2 transmission protocol with the Mode 1 baud rate generation. Mode 3 operation transmits 11 bits: 1 start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. Multiprocessor communications is supported.

Figure 7-10: UART block diagram

Preliminary	81 / 124	V0.1
TEL : +886-2-22231558 FAX : +886-2-22233988	E-mai : sales@cfpt.com.tw	Web-site : www.cfpt.com.tw

Position	S:	0x98	D:+/			D:+ 4	Di	10	D:10	D:14	Dito
Mnemoni	c	Bit7 SM0	Bit6 SM1		it5 M2	Bit4 REN	Bi		Bit2 RB8	Bit1 TI	Bit0 RI
Default	0	0	0		0	0			0	0	0
					-						
Name	Mode		cription						Set	ting	
SM0,	RW	Seria	al port ope	eration i	mode		CMO	CN44	Mada		
SM1							SM0 0	SM1 0	Mode mode 0	, synchrono	us fixed
							Ū	0		e: system cl	
							0	1	mode 1	, 8 bit UART	
										baudrate	
							1	0		, 9bit UART,	
										e: system cl m clock / 64	
							1	1		, 9bit UART,	
									baudrat		
SM2	RW	Seria	al port mu	Itiproce	ssor c	ommunica	itions bi	l .			
		Th	e functior	of this	bit is o	dependent	on the	Serial F	Port Opera	ation Mode	
			Mode	SM2		•			•		
		_	0	0/1	No et				_		_
			1	0		level of s					_
		-	2, 3	1 0		II only be a c level of n				c level 1	_
			2, 3	1		set and ar				nlv when	-
						inth bit is I		pt lo go			
		Dee	oive ench	la hit					0. d	iaabla	_
REN	RW	Rec	eive enab	ie dit						isable nable	
TB8	RW		h transmis								
			logic leve smission b			vill be ass	igned to	the n	inth		
						and 5.	Set or o	cleared	by		
			ware as re						~)		
RB8	RW		h receive								
				-	-	c level of the	ne ninth	bit			
			lode 1 if S			, RB8 is as	sianed	the loa	ic		
			l of the re				oignea	and log	10		
		RB8	is not use	ed in Mo	ode 0.						
TI	RW		nsmit inter		-					nactive	
						6 for detai	S			nterrupt pen	ding
RI	RW		eive interr							nactive	
		Plea	ise refer to	o Sectio	on 7.5.	6 for detai	S		1:1	nterrupt pen	aing
		Coriol	Dowt Duf	for Doc	niatan						
SBUF: TYPE:		Serial R/W	Port Buf	iei keç	Jister						
ADDRES	S:	0x99									
Position		Bit7	Bit6	В	it5	Bit4	Bi	t3	Bit2	Bit1	BitO
Mnemoni Default	С						BUF x00				
Jeraun						Ľ					
Descriptio	on								Se	etting	
			d the data	to tran	omitto	r huffor D	and thin	locatio		<u> </u>	

7.5.5 Baudrate Setting

UART does not have a dedicated baudrate generator. It refers to the period of timer 1 overflow to generate local clock for both transmit and receive. The relationship of transmit and receive baudrate and the overflow frequency of timer 1 is as follows:

$$Baudrate = (2^{SMOD} \times f_{overflow})/32$$

PCON:		essor Contro	ol Register	r				
TYPE:	R/W							
ADDRESS	: 0x87	7						
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	SMOD							
Default	0							
	-	-			<u>.</u>		-	-
Name	Mode	Description				Se	etting	
SMOD	RW	Serial port baudrate select bit 0: frequency of timer overflow / 32						
						1:	frequency overflow /	

7.5.6 Interrupt

UART asserts interrupts in two situations: (1) when one byte of data is received; (2) when one byte of data is transmitted. The corresponding pending flags are located in bit 0 and bit 1 of SCON. Interrupt enable bit ES controls both transmit and receive interrupt pending together. User should check the pending bit in the interrupt service subroutine to distinguish the source of interrupt.

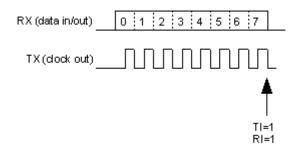


Figure 7-11 Interrupt timing for 8-bit synchronous mode (mode 0)

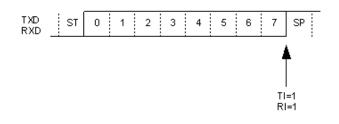
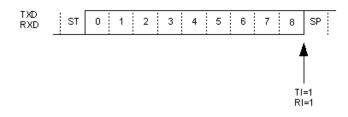



Figure 7-12 Interrupt timing for 8-bit asynchronous mode (mode 1)

Preliminary	83 / 124	V0.1
TEL:+886-2-22231558 FAX:+886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw

V0.1

Figure 7-13 Interrupt timing for 9-bit asynchronous mode (mode 2, 3)

IENO:	Interre	upt Enable	Register	0				
TYPE:	R/W							
ADDRESS:	0xA8							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic				ES				
Default				0				
			•	•	•	•	•	•
Nomo M	ada D	ocorintion				6	otting	

Name	Iviode	Description	Setting
ES	RW	Serial port interrupt enable bit	0: disable 1: enable

SCON: TYPE:	R/W	Port Contr	ol Registe	r				
ADDRESS:	0x98							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic							TI	RI
Default							0	0

Name	Mode	Description	Setting
ΤΙ	RW	Transmit interrupt flag Set by hardware when a byte of data has been transmitted by the UART (after the 8th bit in Mode 0 or at the beginning of the stop bit in other modes). When the UART interrupt is enabled, setting this bit causes the CPU to vector to the UART interrupt service routine. This bit must be cleared manually by software.	0: inactive 1: Interrupt pending
RI	RW	Receive interrupt flag Set by hardware when a byte of data has been received by the UART (after the 8th bit in Mode 0, or after the stop bit in other modes – see SM2 bit for exception). When the UART interrupt is enabled, setting this bit causes the CPU to vector to the UART interrupt service routine. This bit must be cleared manually by software.	0: inactive 1: Interrupt pending

7.5.7 Operation Flow

Mode 0 transmit data

- 1. Configure timer 1 and SMOD to generate desired baudrate
- 2. Write '1' to P3.0 port buffer
- 3. Set P3.0 and P3.1 as output
- 4. Configure SCON

<u>Preliminary</u>

84 / 124

- 5. Set ES and global interrupt enable EA if necessary
- 6. Fill transmit data to SBUF
- 7. Poll for TI changing to '1', or wait for interrupt
- 8. Clear TI, go to step 6 if intends for transmitting another byte of data

Mode 0 receive data

- 1. Configure timer 1 and SMOD to generate desired baudrate
- 2. Set P3.0 as input and P3.1 as output
- 3. Configure SCON
- 4. Set ES and global interrupt enable EA if necessary
- 5. Poll for RI changing to '1', or wait for interrupt
- 6. Read received data from SBUF, clear RI
- 7. Go to step 5 to wait for another byte of data, or turn off UART by clearing REN and ES

Mode 1, 2, 3 transmit data

- 1. Configure timer 1 and SMOD to generate desired baudrate
- 2. Write '1' to P3.0 port buffer
- 3. P3.1 as output
- 4. Configure SCON
- 5. Set ES and global interrupt enable EA if necessary
- 6. Fill transmit data to SBUF
- 7. Poll for TI changing to '1', or wait for interrupt
- 8. Clear TI ,go to step 6 if intends for transmitting another byte of data

Mode 1, 2, 3 receive data

- 1. Configure timer 1 and SMOD to generate desired baudrate
- 2. Set P3.0 as input
- 3. Configure SCON
- 4. Set ES and global interrupt enable EA if necessary
- 5. Poll for RI changing to '1', or wait for interrupt
- 6. Read received data from SBUF, clear RI

TEL:+886-2-22231558 FAX:+886-2-22233988

7. Go to step 5 to wait for another byte of data, or turn off UART by clearing REN and ES

E-mai : <u>sales@cfpt.com.tw</u>

7.6 Serial Protocol Interface (SPI)

SPI provides full-duplex, synchronous serial communication between CFP5102 and peripherals. It is a 3-wire protocol, consisting of clock (SCK), data output (SDO) and data input (SDI). The system architecture is illustrated in Figure 7-14: System diagram of SPI between two devices showing the connection of a master device and a slave device. CFP5102 uses the following pins for SPI.

Serial clock (SCK) – P1.7

Serial data input (SDI) – P2.0

Serial data output (SDO) – P2.1

It also supports 2-wire mode, which is a variation for reducing the footprint in on-board connections.

Serial clock (SCK) – P1.7

Serial data input / output (SD) – P2.0

The SPI can be configured to operate as master and slave by SM bit (bit 6 of SPICON). The transmission format can also be defined through SPICON. The details of master and slave mode are described in the following sections.

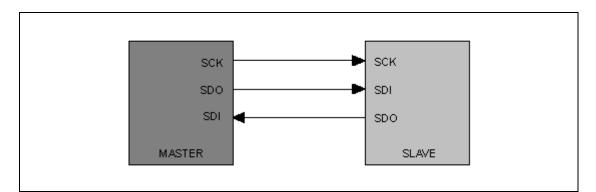


Figure 7-14: System diagram of SPI between two devices

7.6.1 Master Mode

In master mode, clock (SCK) is generated from internal system clock by setting SM bit to 0. SCK pin (P1.7) must be configured as an output pin for master mode. The transmit clock frequency is determined by the value of SPIBAUD. IDS bit defines the logic level of SCK in idle state. When IDS=0, logic level of SCK will be 0 when data is not transmitting. SMP bit determines whether data is transmitted or sampled at rising or falling edge of the clock. Selection of rising of falling edge of the clock depends on IDS bit. When IDS and SMP have the same value (IDS=SMP=0 or IDS=SMP=1), falling edge is selected for transmission or reception. On the other hand, if IDS and SMP are have different values (IDS=0, SMP=1; or IDS=1, SMP=0), rising edge is selected. Figure 7-15 SPI waveform shows the relationship between SMP, IDS, and the SPI output waveform when IDS=0 and IDS=1.

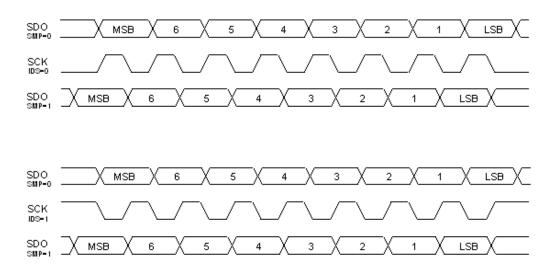


Figure 7-15 SPI waveform

7.6.2 Slave Mode

Slave mode operation is the same as master code, except that the input clock signal SCK is from an external source. Therefore, SCK pin (P1.7) must be configured as an input pin for slave mode. It is highly recommended that SCK frequency is 1/8 of CFP5102 system clock frequency or slower to ensure proper operation.

7.6.3 Two-wire Mode

Typical SPI connection requires three wires, with separate data input and output lines. SPI also supports 2-wire mode, which uses a single wire for bi-directional data operation. Two-wire mode can be selected by setting WS bit (bit 4 of SPICON) to 1. RTS bit controls whether data is transmitting or receiving in 2-wire mode. During data transmission, set RTS to 0 and SD (P2.0) as output pin. For data reception, set RTS to 1 and SD as input pin. RTS status may be disregarded when operating in 3-wire mode. Figure 7-16 SPI two-wire connection illustrates the SPI 2-wire mode connection.

Preliminary	87 / 124	V0.1
TEL : +886-2-22231558 FAX : +886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw

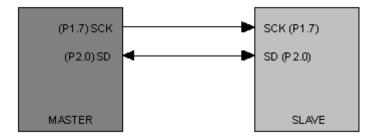


Figure 7-16 SPI two-wire connection

7.6.4 Receive-only Mode

When SPI is used for receiving data only, receive-only can be enabled by setting RXO (bit 3 of SPICON) to 1. Receive-only mode allows fewer instructions to be run by software when data is received continuously. During normal data reception, data must be written to SPIBUF to initiate reception. In receive-only mode, data reception can be initiated once only. After the first time, data reception will start automatically again once data is loaded from receive buffer by reading SPIBUF. Pending bit (SPIPND) does not need to be cleared by software nor by writing data to SPIBUF to initiate reception. Receive-only mode is applicable to any combination of master/slave and 2/3-wire modes.

Caution:

(1) In receive-only mode, the data in the transmit data buffer is also output in data reception. To define the level of the data output wire, user has to initial the transmit data buffer to output desired level. For example, to keep the output wire high, write 0xFF to SPIBUF before data reception.

TEL: +886-2-22231558 FAX: +886-2-22233988

E-mai : sales@cfpt.com.tw

the SPI clock

SPICON: TYPE: ADDRESS:	SPI C R/W 0x95	ontrol Regi	ster							
Position	Bit7	Bit6	Bit5	Bit4	Bit3		Bit2	Bit1	Bit0	
Mnemonic	SPIPND	SM	RTS	WS	RXO		SMP	IDS	SPIEN	
Default	0	0	0	0	0		0	0	0	
Name	Mode	Description	Description Setting							
		SPI interrupt pending flag					0: in	0: inactive		
SPIPND	RW	Please refe	r to Section		1: Interrupt pending					
SM	RW	Master mode or slave mode select bit 0: master mode						ode		
SIVI	RVV	Master mot	le of slave i	noue select	DIL	1: slave mode				
RTS	RW	Receive / T	ransmit sele	ect bit in 2-v	vire mode	÷	0: tra	ansmit		
KI3		Status of R	TS is disreg	arded for 3-	wire moo	de	1: re	eceive		
		2-wire mode/3-wire mode select bit 0: 3-wire mode								
WS	RW	SPI uses SD (P2.0) only for data input and output					117	1: 2-wire mode		
		in 2-wire mode						wite the		
		Receive-on					0 [.] di	sable		
RXO	RW		mber of ope	rations for r	eceive da	ata ir	1	nable		
		this mode.								
		SDI compli		oot hit						
SMD.		SPI samplin				S	SMP = 0	-	MP = 1	
SMP	RW	Define the		ige of	0		Falling ed		Rising edge	

IDS	RW	SPI clock signal idle state	0: clock signal stay at 0
	RW	Define the logic level of clock signal when idle	1: clock signal stay at 1
	RW		0: disable
SPIEN	RW	SPI enable bit	1: enable

1

Rising edge

SPIBUF: TYPE: ADDRESS:	SPI Da R/W 0x97	ata Buffer	Register						
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO	
Mnemonic				SPI	BUF				
Default		0x00							

7.6.5 **Baudrate Setting**

SPI has a dedicated baudrate generator. It is controlled by register SPIBAUD, and it determines the output clock in master mode as:

$$Baudrate = \frac{f_{system_clock}}{2 \times (SPIBAUD + 1)}$$

TEL:+886-2-22231558 FAX:+886-2-22233988

SPIBAUD: TYPE:	R/W	ud Contro	l Register					
ADDRESS: Position	0x96	Dit/	Ditt	D:+ 4	Dita	Dito	Ditd	Dito
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	SPIBAUD							
Default				0x	:00			

Description

Setting SPIBAUD register defines the baud rate of the SPI. This is effective in master mode only. The effective output clock frequency is equal to system clock frequency / [2(SPIBAUD+1)].

E-mai : sales@cfpt.com.tw

V0.1

November 2007

Falling edge

0: disable 1: enable

7.6.6 Interrupt

SPI asserts an interrupt when ESI is enabled and SPI pending bit (SPIPND, bit 7 of SPICON) is set to 1. SPI sets pending bit to 1 when one byte of data is received or transmitted. SPIPND can be cleared by one of the following actions:

- 1. Write transmit data to SPIBUF
- 2. Read received data from SPIBUF in receive-only mode (RXO=1)
- 3. Write 0 to SPIPND bit

IEN1: TYPE: ADDRESS	R/		e Register	1				
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic							ESI	
Default							0	
Name	Mode	Description				Se	etting	
ESI	RW	Serial proto	Serial protocol interface interrupt enable bit 0: disable					

SPICON:	SPI C	ontrol Regi	ster					
TYPE:	R/W	-						
ADDRESS:	0x95							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	SPIPND							
Default	0							
Name	Mode	Description				Sett	ing	
SPIPND	RW	SPI interrupt pending flag.SPIPND is set to 1 when one byte of data is transmitted or received. It can be cleared by: (1) write transmit data to SPIBUF; (2) read0: inactive 1: Interrupt pending						
					eive-only mo			

7.6.7 **Operation Flow**

Receive and transmit data in normal mode

Configure P1.7, P2.0, and P2.1 input/output direction 1.

(3) write '0' to this bit

- 2. Configure baud rate (SPIBAUD)
- 3. Configure operation mode (IDS and SMP)
- 4. Disable Receive-only mode
- 5. Clear pending flag
- 6. Set SPI interrupt enable bit in IEN1 if necessary
- 7. Enable the SPI
- Write transmit data to SPIBUF 8.
- When pending bit is set to 1, read received data from SPIBUF 9.
- 10. Repeat step 8

<u>Preliminary</u>	90 / 124	V0.1
TEL : +886-2-22231558 FAX : +886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw

Receive data in Receive-only mode

- 1. Configure P1.7, P2.0, and P2.1 input/output direction
- 2. Configure baud rate (SPIBAUD)
- 3. Configure operation mode (IDS and SMP)
- 4. Enable receive-only mode (set RXO to 1)
- 5. Clear pending flag
- 6. Set SPI interrupt enable bit in IEN1 if necessary
- 7. Enable the SPI
- 8. Write dummy data to SPIBUF for the first time (content will not be changed after data is received)
- 9. When pending bit is set to 1, read received data from SPIBUF
- 10. Repeat step 9

7.7 General Purpose Serial Interface (GPSI)

GPSI is a flexible, bi-directional serial interface which provides a straight forward connection to a communication controller through synchronous serial data stream for transmit and receive data. GPSI module supports the following features:

- Master or slave mode
- Four different transmit modes: GPSI, SPI-like, USART-like, and UART-like
- 16-bit or 32-bit header function
- Adjustable transmit clock baud rate divider

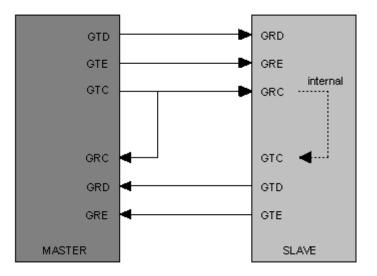
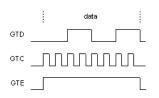


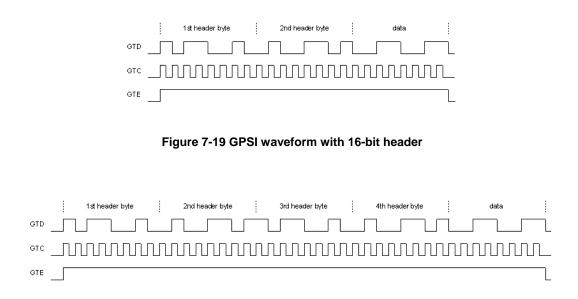
Figure 7-17: Typical GPSI master and slave mode connection

Figure 7-17 shows the typical master and slave mode connection. GPSI uses 6 pins:

- Transmit clock (P1.1) GTC
- Transmit enable (P1.2) GTE
- Transmit data (P1.3) GTD
- Receive data (P1.4) GRD
- Receive clock (P1.5) GRC
- Receive enable (P1.6) GRE


In master mode, transmit clock (GTC) is generated from internal system clock by setting TXCLKSEL bit to 0. The transmit clock frequency is determined by the value of GPSIBAUD. In slave mode, GPSI uses receive clock (GRC) as transmit clock by setting TXCLKSEL to 1. In this case, transmit clock bypasses internal baud rate divider, so value of GPSIBAUD is disregarded. TXEDSEL and RXEDSEL can be used for selecting either rising edge or falling edge of its clock during data transmission and reception.

<u>Preliminary</u>	92 / 124	V0.1
TEL:+886-2-22231558 FAX:+886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw



7.7.1 Header

GPSI supports 16-bit and 32-bit header. Header function can be enabled by setting TXHDREN or RXHDREN when transmitting or receiving data. HEAD32 defines whether header length is 16 or 32 bits long. When transmit header is enabled by setting TXHDREN to 1, a header, defined in GPSIHDR, will be transmitted, immediately followed by the data stored in GPSIBUF. Once enabled, TXHDREN HDRTXLOAD flag will be set to 1 once the header is transmitted. HDRTXLOAD flag can be cleared by writing 0 to HDRTXCLR bit. Writing 1 to HDRTXCLR bit will have no effect on HDRTXLOAD flag. The following figures illustrate the waveform for data transmission without header (Figure 7-18), 16-bit header (Figure 7-19), and 32-bit header (Figure 7-20).

Figure 7-18 GPSI waveform without header

Figure 7-20 GPSI waveform with 32-bit header

For 16-bit header, GPSI transmits the content of GPSIHDR for the first byte in header. The second byte is the inverted content of GPSIHDR. As an example illustrated in Figure 7-19, if value of GPSIHDR is 0x4D, the first header byte to be transmitted is 0x4D and the second header byte is 0xB2, followed by the data stored in GPSIBUF (0xCC). For 32-bit header (Figure 7-20 GPSI waveform with 32-bit header), four bytes of header is transmitted in the following order: 0x4D, 0xB2, 0x4D, 0xB2,

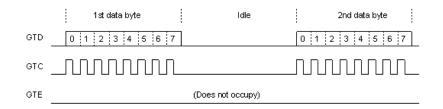
<u>Preliminary</u>	93 / 124	V0.1
TEL:+886-2-22231558 FAX:+886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw

where the first and third byte is the content of GPSIHDR, and the second and fourth byte is the inverted content of GPSIHDR.

If receive header is enabled, GPSI expects a header before the incoming data and checks the received header with the value stored in GPSIHDR. If the received header matches with the content in GPSIHDR, HDRRXMATCH flag will be set to 1. Using the above example, the content of GPSIHDR is 0x4D. If the received header has 0x4D for the first byte (i.e. content of GPSIHDR) and 0xB2 for the second byte (i.e. the inverted content of the GPSIHDR), the receive header matches. For 32-bit header, GPSI checks for the following 4 bytes: 0x4D, 0xB2, 0x4D, 0xB2 (i.e. the first and third byte is the content of GPSIHDR, the second and fourth byte is the inverted content of GPSIHDR, the second and fourth byte is the inverted content of GPSIHDR. When HDRTXCLR bit is set to 1, it will have no effect on HDRRXMATCH flag.

GPSIHDR: TYPE: ADDRESS:	GPSI H R/W 0xC3	leader Re	gister					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic				GPS	IHDR			
Default				Ох	:00			

7.7.2 Transmit Protocol


GPSI module supports 4 different transmit modes: GPSI, SPI-like, USART-like, and UART-like modes.

GPSI mode

When data is not transmitted, GTD remain logic 0, but GTC is running at all times. GTE is logic 1 for the duration of data transmission. This is the standard GPSI interface.

SPI-like mode

GTD and GTC remain logic 0 when data is not transmitted. The state of GTE does not matter and GPSI does not occupy GTE (P1.2).

Figure 7-21 GPSI SPI-like mode

USART-like mode

When data is not transmitted, GTD remains logic 0, but GTC is running at all times. The state of GTE does not matter and GPSI does not occupy GTE (P1.2).

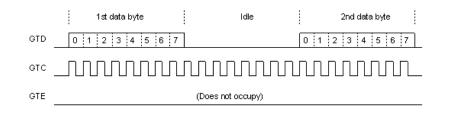
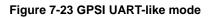



Figure 7-22 GPSI USART-like mode

UART-like mode

When data is not transmitted, GTD remains logic 0. The state of GTE and GTC does not matter and GPSI does not occupy GTE (P1.2) and GTC (P1.1). Note that GPSIBAUD still controls the data rate even when GTC is not in use.

Caution:

(1) Note that the least significant bit of each byte is transmitted / received first.

7.7.3 Receive Protocol

When RXENOFF (bit 2 of GPSICON1) is set to 1, GRE pin (P1.6) is not used by GPSI module. Internally, GPSI always has RX enabled. In this case, EOP will not be detected and GPSI does not occupy P1.6. When RXENOFF is set to 0, GRE pin will indicate if valid data is available for reception. EOP flag will be ineffective when RXENOFF is set to 1.

TEL: +886-2-22231558 FAX: +886-2-22233988 E-mai: <u>sales@cfpt.com.tw</u>

TYPE: ADDRESS:	R/W 0xC0									
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit	2	Bit1	Bit0	
Mnemonic	-	-	GPSI RXIE	GPSI TXIE	TXCL SEL		D	TXED SEL	GPSIEN	
Default	0	0	0	0	0	0	_	0	0	
Name	Mode	Description Setting								
			GPSI RX interrupt enable bit O: Disable RX interrupt							
GPSIRXIE	RW	lf enabled RXBUFFL	Of Or INX interrupt chable bitO: Disable RX interruptIf enabled, GPSI triggers an interrupt if0: Disable RX interruptRXBUFFULL is set to 1.1: Enable RX interrupt							
GPSITXIE	RW	If enabled	GPSI TX interrupt enable bit0: Disable TX interruptIf enabled, GPSI triggers an interrupt if1: Enable TX interruptTXBUFEPTY is set to 1.1: Enable TX interrupt							
TXCLKSEL	RW	When TX and GPSI frequency RX clock	GPSI transmit clock source select bit When TXCLKSEL=0, TX clock uses system clock and GPSIBAUD determines the actual clock frequency. When TXCLKSEL=1, TX clock uses RX clock any bypasses internal baud rate divider.							
RXEDSEL	RW	When RX clock risin	GPSI receive clock edge select bit When RXEDSEL=0, GPSI receives data at RX 1: Rising edge clock rising edge. When RXEDSEL=1, GPSI 0: Falling edge receives data at RX clock rising edge. 0: Falling edge							
TXEDSEL	RW	GPSI transmit clock edge select bit When TXEDSEL=0, GPSI transmits data at TX 1: Rising edge clock rising edge. When TXEDSEL=1, GPSI 0: Falling edge transmits data at TX clock rising edge. 0: Falling edge								
GPSIEN	RW	GPSI ena	ble bit					able GPS		
GPSICON1: TYPE: ADDRESS:	R/W 0xC1	Control Re		Dit (Dita					
Position Mnemonic	Bit7 RXBUF	Bit6 TXBUF	Bit5 RX	Bit4 TX	Bit3	Bit2 RXEN		it1 IODE	Bit0 TXMODE	
Whethorne	FULL	EPTY		HDREN	EOP	OFF		1]	[0]	
Default	0	0	0	0	0	0		0	0	
									0	
Name	Mode	Descrip	tion						0	
RXBUFFULL	RW	This flag	RX buffer full flag This flag will be set to 1 when RX buffer is full.					g	0	
		It must				r is full.		•	s not full	
TXBUFEPTY	R	TX buff This fla empty.	g will be set be cleared b er empty flag g will be set It will be cl into GPSIBL	by software g to 1 when eared to 0	TX buffer	is	0: RX 1: RX 0: TX	buffer is buffer is	s not full s full s not empty	
RXHDREN	R W	TX buff This fla empty. written RX hea Once e softwar a heade	be cleared to er empty flag g will be set It will be cl into GPSIBL der enable to nabled, it ca e. It will be er is received	by software g to 1 when eared to 0 JF. bit innot be dis disabled a d.	TX buffer when dat abled by	is a is	0: RX 1: RX 0: TX 1: TX 0: Disa	buffer is buffer is buffer is buffer is able RX	s not full s full s not empty	
		TX buff This fla empty. written RX hea Once e softwar a heade TX hea Once e softwar header	be cleared t er empty flag g will be set it will be cl into GPSIBL der enable t nabled, it ca e. It will be er is receive der enable t nabled, it ca e. It will be c is transmitte	by software g to 1 when eared to 0 JF. bit annot be dis disabled a d. bit unnot be dis disabled au ed.	TX buffer when dat abled by utomatic: abled by	is a is ally after	0: RX 1: RX 0: TX 1: TX 0: Diss 1: Ena	buffer is buffer is buffer is buffer is able RX able RX	s not full s full s not empty s empty header header header	
RXHDREN	W	TX buff This fla empty. written RX hea Once e softwar header End of EOP fla detecte by softw	be cleared to er empty flag g will be set it will be cl into GPSIBL der enable to nabled, it ca e. It will be er is received der enable to nabled, it ca e. It will be co is transmitte backet (EOF g will be set d on GRE pi vare.	by software g to 1 when eared to 0 JF. bit annot be dis disabled a d. bit disabled au ed. b) flag t to 1 when	TX buffer when dat abled by utomatical abled by tomatical 1-to-0 tra	is a is ally after ly after a nsition is	0: RX 1: RX 0: TX 1: TX 0: Diss 1: Ena 0: Diss 1: Ena	buffer is buffer is buffer is buffer is able RX able RX able TX	s not full s full s not empty s empty t header header header header detected	
RXHDREN TXHDREN	w	TX buff This fla empty. written RX hea Once e softwar header End of EOP fla detecte by softw RX ena When F	be cleared to er empty flag g will be set into GPSIBL der enable to nabled, it ca e. It will be er is received der enable to nabled, it ca e. It will be co is transmitte backet (EOF g will be set d on GRE pi vare. ble off bit EXENOFF=1	by software g to 1 when eared to 0 JF. bit unnot be dis e disabled a d. bit disabled au ed. b) flag to 1 when in (P1.6).	TX buffer when dat abled by utomatical abled by tomatical 1-to-0 tra It must be (P1.6) is vays has	is a is ally after ly after a nsition is e cleared not used RX	0: RX 1: RX 0: TX 1: TX 0: Disi 1: Ena 0: Disi 1: Ena 0: EO 1: EO 0: GR	buffer is buffer is buffer is buffer is able RX able RX able RX P is not P is not P is deta E pin is	s not full s full s not empty s empty t header header header header detected	
RXHDREN TXHDREN EOP	W W RW RW	TX buff This fla empty. written RX hea Once e softward a heade TX hea Once e softward header End of EOP fla detecte by softw RX ena When F by GPS	be cleared <u>b</u> er empty flag g will be set It will be cl into GPSIBL der enable b nabled, it ca e. It will be er is received der enable b nabled, it ca e. It will be co is transmitte backet (EOF g will be set d on GRE pi vare. ble off bit XXENOFF=1 I. Internall b. In this ca	by software g to 1 when eared to 0 JF. bit unnot be dis e disabled a d. bit disabled au ed. P) flag to 1 when in (P1.6).	TX buffer when dat abled by utomatical abled by tomatical 1-to-0 tra It must be (P1.6) is vays has	is a is ally after ly after a nsition is e cleared not used RX	0: RX 1: RX 0: TX 1: TX 0: Disi 1: Ena 0: Disi 1: Ena 0: EO 1: EO 0: GR	buffer is buffer is buffer is buffer is able RX able RX able RX P is not P is not P is deta E pin is	s not full s full s not empty s empty t header header header detected ected enabled	

November 2007

 TEL:
 +886-2-22231558
 FAX:
 +886-2-22233988
 E-mai:
 sales@cfpt.com.tw
 Web-site:
 www.cfpt.com.tw

V0.1

and GPSI does not occupy P1.6.

TXMODE[1:0] F	R	TX mode select	00: GPSI mode 01: SPI-like mode 10: USART-like mode 11: UART-like mode
---------------	---	----------------	---

GPSICON2: TYPE: ADDRESS:	GPSI C R/W 0xC2	Control Reg	gister 2						
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Mnemonic	HDR RXCLR	HDR TXCLR	GPSI EOPIE	GPSI RXHIE	GPSI TXHIE	HEAD	HDRRX MATCH	HDRTX LOAD	
Default			0			32 0		0	
	J	U	<u> </u>	Ū	Ū	Ŭ	Ŭ	J	
Name	Mode	Descri	ption			Se	etting		
HDRRXCLR	W	HDRR HDRR has no	RX header matched flag clear bit HDRRXMATCH can be cleared by writing 0 to HDRRXCLR. When HDRRXCLR is set to 1, it has no effect. 0: Clear RX header matched flag 1: Inactive						
HDRTXCLR	W	HDRT. HDRT	TX header loaded flag clear bit HDRTXLOAD can be cleared by writing 0 to HDRTXCLR. When HDRTXCLR is set to 1, it has no effect.						
GPSIEOPIE	RW	lf enat	EOP interrupt enable bit If enabled, GPSI triggers an interrupt when EOP is set to 1. 0: Disable EOP interrupt 1: Enable EOP interrupt						
GPSIRXHIE	RW	RX header interrupt enable bit If enabled, GPSI triggers an interrupt when HDRRXMATCH is set to 1. 0: Disable RX header interrupt 1: Enable RX header interrupt							
GPSITXHIE	RW	TX header interrupt enable bit If enabled, GPSI triggers an interrupt when HDRTXLOAD is set to 1. 0: Disable TX heade interrupt 1: Enable TX heade interrupt							
HEAD32	RW	32-bit header enable bit When HEAD32 is set to 1, header length is defined to be 32 bits. 0: Header length is 16-bit 1: Header length is 32-bit							
HDRRXMATC	HR	RX header matched flag This flag will be set to 1 when RX header received is matched with the content of GPSIHDR. It can only be cleared by writing 0 to HDRRXCLR.							
HDRTXLOAD	R	This fla transm		l flag et to 1 when an only be c		is	TX header i transmitted TX header i transmitted	s	

GPSIBUF: TYPE: ADDRESS:	GPSI Data Buffer Register R/W 0xC4								
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO	
Mnemonic		GPSIBUF							
Default				Ох	:00				

7.7.4 Interrupts

GPSI has 5 different interrupt sources. When GPSI master interrupt (EGPSI, bit 5 of IE1) is enabled, one of the following GPSI interrupts will be triggered:

TX interrupt (GPSITXIE)

When GPSITXIE is set to 1, GPSI triggers TX interrupt when TXBUFEPTY flag is set to 1. If data in GPSIBUF is loaded to the internal shift register for transmission, GPSIBUF becomes empty and TXBUFEPTY flag is set to 1. It indicates that GPSIBUF is ready for more data. TXBUFEPTY flag will be cleared automatically when data is written to GPSIBUF.

TX header interrupt (GPSITXHIE)

When GPSITXHIE is set to 1, GPSI triggers TX header interrupt when HDRTXLOAD flag is set to 1. In 16-bit header case, GPSI sets HDRTXLOAD to 1 after the first header byte is transmitted. In 32-bit header case, GPSI sets HDRTXLOAD to 1 after the third header byte is transmitted. It indicates that TX header is just about finish transmission. HDRTXLOAD flag can be cleared only by writing 0 to HDRTXCLR (bit 6 of GPSICON2).

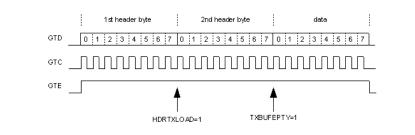
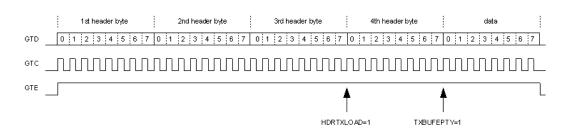
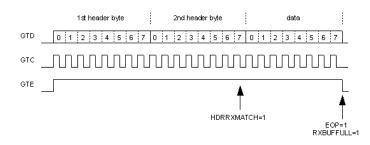



Figure 7-24 GPSI 16-bit header TX interrupt timing

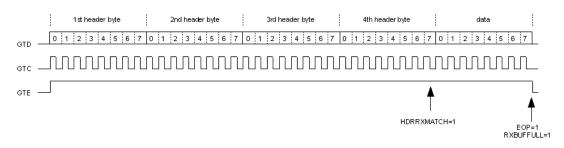
Figure 7-25 GPSI 32-bit header TX interrupt timing

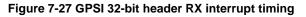
Preliminary	98 / 124	V0.1
TEL:+886-2-22231558 FAX:+886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw

RX interrupt (GPSIRXIE)


When GPSIRXIE is set to 1, GPSI triggers RX interrupt when RXBUFFULL flag is set to 1. Once the last data bit is received and stored in GPSIBUF, the receive buffer becomes full and GPSI sets RXBUFFULL flag to 1. It indicates that receive buffer contains valid data. RXBUFFULL flag can be cleared by software.

RX header interrupt (GPSIRXHIE)


When GPSIRXHIE is set to 1, GPSI triggers RX header interrupt when HDRRXMATCH flag is set to 1. For 16-bit header, the first byte must match with the content of GPSIHDR and the second byte must match with the inverted content of GPSIHDR. For 32-bit header, the first and third byte must match with the content of GPSIHDR and the second and fourth byte must match with the inverted content of GPSIHDR. When the received header matches with the defined header pattern, HDRRXMATCH flag will be set to 1. HDRRXMATCH can be cleared only by writing 0 to HDRRXCLR (bit 7 of GPSICON2).


RX EOP interrupt (GPSIEOPIE)

When GPSIEOPIE is set to 1, GPSI triggers RX EOP (end of packet) interrupt when EOP flag is set to 1 (bit 3 of GPSICON1). If a 1-to-0 transition is detected on receive enable pin (GRE), GPSI sets EOP flag to 1. EOP flag can be cleared by software. GPSIEOPIE becomes ineffective when RXENOFF is set to 1.

Figure 7-26 GPSI 16-bit header RX interrupt timing

IEN1:		upt Enable	e Register	1				
TYPE: ADDRESS:	R/W 0xA9							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic			EGPSI					
<u>Preliminary</u>	,			99 / 124				V0.1
TEL : +886-2-22231558 FAX : +886-2-22233988				E-mai : sales	@cfpt.com.tw	Web-s	ite : www.cfp	ot.com.tw

Chip for People	Engineer	ing Specification for CFP5102	November 2007			
Default		0				
Name	Mode	Description	Setting			
EGPSI	RW	GPSI interrupt enable bit	5			

7.7.5 Baudrate Setting

GPSI has a dedicated baudrate generator. It is controlled by register GPSIBAUD, and it determines the output clock in master mode as:

$$Baudrate = \frac{f_{system_clock}}{2 \times (GPSIBAUD + 1)}$$

GPSIBAUD: TYPE: ADDRESS:	GPSIE R/W 0xC5	Baud Rate	Divider Re	gister					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO	
Mnemonic				GPSI	BAUD				
Default		0x00							

Description	Setting
GPSIBAUD register defines the baud rate of the GPSI. This is effective in master mode only. The effective output clock frequency is equal to system	
clock frequency / [8(GPSIBAUD+1)].	

7.7.6 Operation Flow

TX Operation Flow

- 1. Set P1.1, P1.2, P1.3 as output, and P1.4, P1.5, P1.6 as input
- 2. Select master or slave mode
- 3. Select TX mode and TX clock edge
- 4. Enable TXHDREN and HEAD32 if necessary
- 5. Write to GPSIHDR if TXHDREN is enabled
- 6. Enable GPSITXIE and GPSITXHIE if necessary
- 7. Set GPSIEN to 1
- 8. Write to GPSIBUF to start transmission

RX Operation Flow

- 1. Set P1.1, P1.2, P1.3 as output, and P1.4, P1.5, P1.6 as input
- 2. Select master or slave mode
- 3. Select RX clock edge
- 4. Enable RXHDREN and HEAD32 if necessary
- 5. Write to GPSIHDR if RXHDREN is enabled
- 6. Enable GPSIRXIE, GPSIRXHIE, and GPSIEOPIE if necessary
- 7. Set GPSIEN to 1 to begin reception

V0.1

7.8 Analog-to-Digital Converter (ADC)

CFP5102 provides an eight-channel moderate conversion speed and a moderate resolution 8-bit successive approximated register Analog-to-Digital Converter (ADC) for users to develop applications in Measurement requiring moderate performance and speed

ADC has an 8-to-1 analog MUX channel for selecting one of the input channels to ADC circuitry. **Channels 0 to 7** are multiplexed with GPIO pin: **P0.1**, **P0.2**, **P0.3**, **P0.4**, **P0.5**, **P0.6**, **P0.7** and **P1.2**. To use either one of the channels, the GPIO has to be configured as analog input (please refer to Section 7.1) and the conversion results are stored in ADCB register. Control register ADCCON0 and ADCCON1 registers control the operation of the ADC and the ADCSC register controls the ADC sampling clock frequency for controlling the speed of conversion.

7.8.1 Reference Voltage

For the sake of flexibility, the ADC reference voltage can be selected to use either DVDD or REFO. The reference voltage defines the highest possible conversion voltage the ADC can obtain during conversion. Two options can be chosen. One is REFO which has been multiplexed to P0.0 and the other is DVDD which is the internal DVDD power supply, which is different to the external system power during LDO in use. **Precaution should be taken to check LDO output voltage to ensure reference voltage is properly required.**

Caution:

(1) Power supply voltage (DVDD) and ADC external reference voltage (REFO) should be about 3.3V. High voltage to ADC may cause permanent physical damage.

7.8.2 Input Unity-Gain Buffer

There is an internal unity-gain buffer to buffer external analog signal to the input of ADC to meet the minimum sample-and-hold requirement. If user does not know driving strength of the incoming analog signal, it is recommended to turn on the internal buffer to provide enough driving for the signal to the ADC circuitry.

7.8.3 Conversion and Interrupt

For ADC conversion, a general procedure can be like in the following:

- 1. Configure ADCCON0 register by
 - i. clear the ADC done pending bit
 - ii. select the ADC trigger mode either manual or timer-trigger
 - iii. select whether to use input buffer (make sure the input impedance from the signal is not too high)
 - iv. select the reference voltage
- 2. Configure ADCCON1 register by

Prelimin	ary

102 / 124

TEL: +886-2-22231558 FAX: +886-2-22233988 E-mai: <u>sales@cfpt.com.tw</u> Web-site: www.cfpt.com.tw

- i. select the reference voltage buffer if necessary
- ii. select the channel to use
- 3. Select the ADC clock frequency by configuring ADCSC register
- 4. Kick-start the ADC conversion by selecting timer 0/1/2 under timer-trigger mode or setting ADCGO under manual mode
- 5. During conversion, ADCGO bit keeps '1', and after each conversion, ADCGO bit will change to 0. In addition, ADC done pending bit will change to 1 after conversion, and interrupt pending will be asserted.
- 6. The conversion result is captured in register ADCB. The value retains until the next completion of conversion

ADCCONO: TYPE: ADDRESS:	ADC C R/W 0xF4	control Reg	ister 0					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic	ADCPND	INBUF	REFS	TM	TC[1]	TC[0]	GO	ADCEN
Default	0	0	0	0	0	0	0	0
Name	Mode	Description				Sett		
ADCPND	RW	ADC interru Interrupt so bit		flag. to '0' when	write a '0' to		active Iterrupt pend	ding
INBUF	RW	Input buffer	enable bit				isable nable	
REFS	RW	Reference	voltage sele	ection bit		0: V 1: P	DDCORE 00	
ТМ	RW	Trigger mod	de select bit	t			anual kick s utomatic trig	
тс	RW	Trigger sou Select a so automatica		n bit ger the conv	ersion	00:1 01:1	timer 0 over timer 1 over timer 2 over	flow flow
GO	RW	Conversion kick start bit0: idleWrite '1' to kick start conversion. This bit is set to '1' once the conversion begin and is cleared when the conversion is done1: start						
ADCEN	RW	ADC enable	e bit				isable nable	
ADCCON1: TYPE: ADDRESS:	ADC C R/W 0xF5	control Reg	ister 1					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic	СМ	GT	-	REFBE	-	AS[2]	AS[1]	AS[0]
Default	0	0	0	0	0	0	0	0
Name	Mode	Description				Sett	ing	
СМ	RW	Compare m	node enable	bit		0: di	sable	
CIVI		Compare n		, Dit.		-	nable	
GT	RW	0: less and equal to Interrupt condition selection bit in compare mode 1: greater than threshold						
DEEDE		Deference		an an able 5	1		sable	
REFBE	RW	Reierence	vollage buff	er enable bi	ι	1: ei	nable	
AS	RW	Channel se	lection for g	jroup A		001 010 011:	: P01 : P02 : P03 : P04 : P05	

Preliminary

1: enable

						110:	P06 P07	
						111:	P12	
ADCB:	ADC B	uffer Regis	ster					
TYPE:	R							
ADDRESS:	OxEE							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic				AD	СВ			
Default				0x	XX			
IEN1: TYPE:	Interr R/W	upt Enable	Register	1				

IYPE:	R/	vv						
ADDRESS	5: Ox	A9						
Position	Bit	7 Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic				EADC				
Default				0				
Name	Mode	Descriptio	n			Se	etting	
EADC	RW	ADC inter	rupt enable bit			0:	disable	

7.8.4 Comparison Mode

To facilitate real-time monitoring, ADC supports automatically comparing the measured result and the defined threshold. ADC keeps converting until the defined condition is fulfilled. This operation mode is called comparison mode. This is useful, for example during monitoring the voltage output of batteries. User can monitor the battery life by setting up a detection threshold at ADC threshold register ADCT, and then configuring the ADC to interrupt when the measured result is lower than the threshold. As the operation is automatic, CPU does not involve in decision making, thus ensuring the degree of real-time.

To operate in comparison mode, the procedure is as the following:

- 1. Configure ADCCON0 register by
 - i. clear the ADC done pending bit
 - ii. select the ADC manual trigger mode
 - iii. select whether to use input buffer (make sure the input impedance from the signal is not too high)
 - iv. select the reference voltage
- 2. Configure ADCCON1 register by
 - i. enable comparison mode
 - ii. select interrupt condition
 - iii. select the reference voltage buffer if necessary
 - iv. select the channel to use
- 3. Select the ADC clock frequency by configuring ADCSC register
- 4. Kick-start the ADC conversion by setting ADCGO under manual mode
- 5. Interrupt pending asserts when the interrupt condition is fulfilled.

<u>Preliminary</u>	104 / 124	V0.1
TEL : +886-2-22231558 FAX : +886-2-22233988	E-mai : sales@cfpt.com.tw	Web-site : www.cfpt.com.tw

- 6. The conversion result is captured in register ADCB. The value retains until the next completion of conversion
- 7. To stop during conversion,
 - i. disable ADC
 - ii. disable ADC interrupt
 - iii. Invert control bit GT in ADCCON1 to force to fulfil the interrupt condition

ADCT:	ADC T	hreshold F	Register					
TYPE:	W							
ADDRESS:	OxF1							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	ADCT							
Default	0xXX							

7.8.5 Conversion Time and Sampling Clock

A conversion in 8-bit resolution takes 13.5 ADC sampling cycles to complete. The ADC conversion speed depends not only on resolution mode but also on ADC clock frequency. The ADC clock source is generated from system clock and is divided by a separate 8-bit ADC clock divider to give out a flexible ADC sampling clock frequency range so that user can decide the actual ADC input clock and the final conversion speed based on different applications.

ADCSC register is used to control the clock-divide ratio of the ADC clock divider. The effective sampling clock frequency is formulated as

 $F_{ADC_CLOCK} = F_{SYSTEM_CLOCK} / 2(ADCSR + 1)$

For example, $F_{SYSTEM_CLOCK} = 48MHz$, ADCSC=0x0B, then $F_{ADC_CLOCK} = 2MHz$ (the recommended frequency)

Note:

Maximum allowable ADC clock frequency is 2MHz and frequency higher than 2MHz is not recommended.

ADCSC:	ADC Sa	ADC Sampling Clock Control Register						
TYPE:	W			-				
ADDRESS:	OxF3							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic		ADCSR						
Default		0x00						

TEL: +886-2-22231558 FAX: +886-2-22233988

E-mai : sales@cfpt.com.tw

7.9 Universal Serial Port (USB)

7.9.1 USB Device

CFP5102 has a built-in USB Device Controller (UDC), which can interpret the USB Standard Command. The Serial Interface Engine (SIE) inside the USB controller handles NRZI encoding/decoding, bit stuffing/un-stuffing, and CRC generation/checking, so that it will not trade-off the speed performance of the device. The program developer, therefore, can spend less programming effort in dealing with USB transaction.

The USB module complies with the USB 2.0 specifications for full-speed (12 Mbps) functions. The device with a built-in USB PHY (no need external power supply) and no additional off-chip components are required for USB interface. The dedicated package pins, USBDP and USBDM, can be directly connected to the USB signal wires, D+ and D-, respectively.

Endpoints

CFP5102 supports three endpoints, EP0 for control, EP1 endpoint (IN/OUT) and EP2 endpoint (IN/OUT) for data transmission. Every endpoint supports three modes: Interrupt mode, Bulk mode and Isochronous mode. All endpoints share a 208 bytes FIFO buffer. The buffer sizes of the endpoints are summarized in Table 7-3.

Table 7-3: Endpoint buffer size

Endpoint	Input Buffer	Output Buffer		
EP0	16 bytes (shared)			
EP1	64 bytes	64 bytes		
EP2	32 bytes	32 bytes		

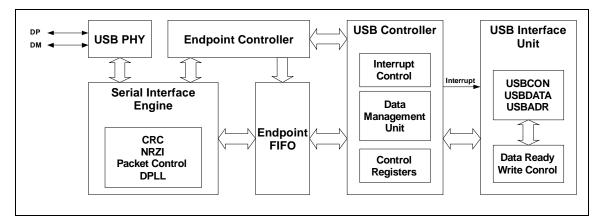


Figure 7-28: System architecture of USB module

7.9.2 USB Interface Unit

CPU controls the USB module through the registers defined in USB interface unit. The registers are assigned to dedicated address in SFR, shown in Table 7-4. All functions of the USB module are accessed through operating USBCONO, USBADR and USBDATA. USBCON1 is used to control the physical layer. The rest are for direct memory access (DMA) control. The detailed description of USBCON0 and USBCON1 are tabulated below.

Table 7-4: Registers in USB interface unit

Mnemonic	Address	Туре	Description	
USBCON0	0xF8	RW	USB control register 0	
USBCON1	0xF9	RW	USB control register 1	
USBDATA	0xFA	RW	USB access data register	
USBADR	0xFB	RW	USB access address register	
USBDADR	0xFC	RW	USB DMA base address register	
USBDM	0xFD	RW	USB DMA interrupt mask register	
USBDR	0xFE	RW	USB DMA request register	
USBDD	0xFF	RW	USB DMA done register	

USBCONO: TYPE: ADDRESS:	USB Co R/W OxF8	ontrol Reg	ister 0					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	-	UCD	URST	-	-	URW	UDS	UCS
Default	0	1	0	0	0	Х	0	0

Name	Mode	Description	Setting
UCD	RW	USB controller done flag Interrupt source. Set to '1' when USB controller completes the operation (not including DMA). Reset to '0' when write '0' to this bit. <i>Caution: when DMA is</i> <i>operating, USB controller interrupt is blocked</i> .	0: inactive 1: Interrupt pending
URST	WO	USB controller reset bit This bit resets during power-on reset and master reset only	0: force to reset state 1: release from reset
URW	RW	Read/Write select bit. Select the access mode to USB controller. It also defines the direction of DMA channel	0: write 1: read
UDS	WO	USB DMA transfer kick-start bit Write '1' to kick start DMA transfer	
UCS	WO	USB interface kick-start bit Write '1' to kick start manipulation to USB controller	

IEN1:	Inte	errupt Enable	e Register	1				
TYPE:	R/V	V						
ADDRESS	: OxA	9						
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic					EUD	EUI		
Default					0	0		
Name	Mode	Description				S	etting	
EUD	RW	USB DMA ir	nterrupt enal	ble bit	0: disable			
			•			1:	enable	
EUI	RW	USB interface interrupt enable bit			0: disable			
			•			4	enable	

Preliminary

Engineering Specification for CFP5102

USBCON1 TYPE: ADDRESS	R/V	-	ister 1					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	-	-	-	-	UDMU	UDPU	UPE	USPD
Default	0	0	0	0	0	0	0	1
Name	Mode	Description Setting						
UDMU	WO	Data pin DM pull-up control 0: pull-up disable				ble		
		-				1:	pull-up ena	ble
UDPU	RW	Data pin DP	pull-up cont	trol		0:	pull-up disa	ble
		-				1:	pull-up ena	ble
UPE	RW	USB physica	I layer enab	ole bit		0:	disable	
			-			1:	enable	
USPD	RW	USB physica	I layer spee	ed select bit		0:	low speed	
						1:	high speed	

November 2007

V0.1

7.9.3 Access USB Controller

USBADDR and USBDATA registers must be used when reading data from or writing data to USB controller register. USBADDR register stores the 6-bit address when reading from or writing to USB controller. USBDATA register stores the actual data to which USBADDR is pointing.

Write operations

To perform a write operation, the address and data are stored to USBADDR and USBDATA registers, respectively. For a write operation, clear URW bit to '0'. Write operation to most of the registers takes 2 USB clock cycles. Writing to CSRO takes 7 USB clock cycles while writing to other CSR registers (InCSR1, OutCSR1, InCSR2, and OutCSR2) takes 6 USB clock cycles. The write operation will begin in background once it is kick-started by setting UCS to '1'. UCS is write-only bit. Reading it will get a '0'. When write operation is kick-started, UCD will be cleared. User can poll the UCD bit and it will change to '1' to indicate that write operation is complete.

Read operations

Reading data from USB controller is similar to writing data to it. Store the register address to USBADDR from which data is going to be read. For a read operation, set URW to '1'. Then, set UCS to '1' to start the read operation. The data of the register, pointed by USBADDR, will be stored in USBDATA when the read operation is complete. When read operation is kick-started, UCD will be cleared. User can poll the UCD bit and it will change to '1' when read operation is complete. Reading from most registers takes 2 USB clock cycles and reading from FIFO registers takes 5 USB clock cycles.

Controlling USB controller

The built-in USB module is controlled through the USB function registers, which is divided into four groups:

Common USB control registers (addresses 0x00 to 0x0F): These registers provide control and status information for the entire controller (see Table 7-9).

Indexed registers (addresses 0x10 to 0x1F): These registers provide control and status information for different endpoints (see Table 7-10). Endpoint can be selected by writing the endpoint number to the Index register (0x0E). So, to access the registers for IN Endpoint 1 and OUT Endpoint 1, 1 must first be written to the Index register: the corresponding control and status registers for the specified endpoint will then appear in the memory map.

FIFO registers (addresses 0x20 to 0x22): The FIFO registers for the IN endpoints appear as single bytes, consecutively in the memory map starting at address 20h (see Table 7-11). The FIFO registers for the OUT endpoints also appear consecutively at the same set of addresses. Writing address 0x21 results in loading a byte into the FIFO buffer for IN Endpoint 1. Reading from address 0x21 results in unloaded a byte from the FIFO buffer for OUT Endpoint 1.

DMA Operation: Endpoint1~2's IN/OUT DMA function is controlled by InCSR2/OutCSR2 registers. Reserving spaces in DATA or in XDATA is a must before doing DMA operations. The starting address of the memory block is set by the lower byte of USBDADR. The bit 6 of USBDADR selects the location: selects DATA when setting '0'; selects XDATA when setting '1'. The effective starting address is formulated as ADDR_{DMA} = 8*USBDADR[4:0]. For example, when USBDADR is 0x27, the starting address is 0x38 in XDATA.

The size of the block should not be less than the size of the FIFO that prepares for DMA. "OUT DMA" transfers data from EndPoint's "OUT FIFO" to this block. "IN DMA" transfers data from the block to EndPoint's "IN FIFO". USBADR decides the EndPoint FIFO which undergoes DMA Operation.

USB's DMA requests can be read from USBDR. Interrupt will be generated once DMA request presents providing that DMA interrupt is enabled and the corresponding interrupt mask (USBDM) is cleared. Similarly, when USB DMA done, interrupt will also be generated if the corresponding interrupt mask is clear. USB DMA done status can be read from USBDD. The description of USBDR, USBDD and USBDM are shown below.

Setting URW means DMA operates Endpoint's "OUT FIFO", while clearing URW meaning DMA operates Endpoint's "IN FIFO". DMA will start automatically after setting UDS. Interrupt will be generated after DMA has finished if enable DMA Interrupt. The operating flow of "OUT DMA" is shown below. The difference between "OUT DMA" and "IN DMA" is that writing data to allocated memory block before setting UDS.

- 1. Poll until DMA request is active (or wait for DMA request interrupt)
- 2. Set the destination address through register USBDADR
- 3. Select the desired endpoint by setting USDADR and URW

Preliminary	110 / 124	V0.1
TEL : +886-2-22231558 FAX : +886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw

- 4. Write '1' to UDS to kick start the DMA operation
- 5. Poll for the assertion of DMA done flag (or wait for DMA done interrupt)
- 6. Clear the DMA done flag and the data is ready for manipulation

USBDR: TYPE: ADDRESS	i:	USB D R/W 0xFE	MA Reque	st Registei	r						
Position		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Mnemonic		-	-	-	-	RI2	RI1	RO2	RO1		
Default		0	0	0	0	0	0	0	0		
Name	М	ode D	Description				Se	etting			
RI2	R١		JSB Endpoir	nt 2 IN DMA	A request			inactive			
							1:	request occ	urs		
RI1	R١	N L	JSB Endpoir	nt 1 IN DMA	A request			inactive			
								request occ	urs		
RO2	R٧	V L	JSB Endpoir	nt 2 OUT D	MA request			inactive			
								request occ	urs		
R01	R٧	N I	JSB Endpoir	nt 1 OUT D	MA request			inactive			
i to i					in request			request occ	rurs		
USBDD: TYPE: ADDRESS Position	5: 	USB D R/W OxFF Bit7	MA Done F Bit6	Register Bit5	Bit4	Bit3	Bit2	Bit1	BitO		
Mnemonic		-	-	-	-	DI2	DI1	DO2	D01		
Default		0	0	0	0	0	0	0	0		
		-			-						
Name Mode Description						Se	etting				
DI2	R٧		JSB Endpoir	nt 2 IN DMA	Adone		0: inactive 1: DMA completes				
DI1	R۷	V L	JSB Endpoi	nt 1 IN DMA	Adone		0: inactive 1: DMA completes				
DO2	R۷	V L	JSB Endpoi	nt 2 OUT DI	MA done		0: inactive 1: DMA completes				
DO1	R١	ν ι	JSB Endpoir	nt 1 OUT DI	MA done		0: inactive				
							1: DMA completes				
USBDM: USB DMA Interrupt Mask Register TYPE: R/W ADDRESS: FDh											
Position Mnemonic		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Default			- 0	-		MI 2	MI1	MO2	MO1		
Derault		0	U	0	0	0	0	0	0		
Nom-	P 4	ada - T					~	tting			
Name			Description Setting								
MI2	R١	W USB Endpoint 2 IN DMA interrupt mask 0: clear mask									
								set mask			
MI1	R۷	V L	JSB Endpoir	nt 1 IN DMA	A interrupt m	ask		clear mask			
								set mask			
MO2	R۷	V L	JSB Endpoir	nt 2 OUT DI	MA interrupt	mask		clear mask			
								set mask			
MO1	R۷	V L	JSB Endpoii	nt 1 OUT DI	MA interrupt	mask	0:	clear mask	0: clear mask		

1: set mask

V0.1

USBADR	Name	Description
0x00	FAddr	Function address register.
0x01	Power	Power management register.
0x02	IntrIn1	Interrupt register for Endpoint 0 plus IN Endpoints 1 & 2.
0x03	RESERVED	
0x04	IntrOut1	Interrupt register for OUT Endpoints 1 & 2.
0x05	RESERVED	
0x06	IntrUSB	Interrupt register for common USB interrupts.
0x07	IntrIn1E	Interrupt enable register for IntrIn1.
0x08	RESERVED	
0x09	IntrOut1E	Interrupt enable register for IntrOut1.
0x0A	RESERVED	
0x0B	IntrUSBE	Interrupt enable register for IntrUSB.
0x0C	Frame1	Frame number bits 0 to 7.
0x0D	Frame2	Frame number bits 8 to 10.
0x0E	Index	Index register for selecting the endpoint status and control registers.
0x0F	RESERVED	

Table 7-5: Common USB control registers

Table 7-6: Indexed Endpoint control registers

USBADR	Name	Description
0x10	InMaxP	Maximum packet size for IN endpoint. (Endpoints 1 & 2)
0x11	CSR0	Control Status register for Endpoint 0. (Control Endpoint)
	InCSR1	Control Status register 1 for IN endpoint. (Endpoints 1 & 2)
0x12	InCSR2	Control Status register 2 for IN endpoint. (Endpoints 1 & 2)
0x13	OutMaxP	Maximum packet size for OUT endpoint. (Endpoints 1 & 2)
0x14	OutCSR1	Control Status register 1 for OUT endpoint. (Endpoints 1 & 2)
0x15	OutCSR2	Control Status register 2 for OUT endpoint. (Endpoints 1 & 2)
0x16	Count0	Number of received bytes in Endpoint 0 FIFO. (Control Endpoint)
	OutCount1	Number of bytes in OUT endpoint FIFO (lower byte). (Endpoints 1 & 2)
0x17	OutCount2	Number of bytes in OUT endpoint FIFO (upper byte). (Endpoints 1 & 2)

USBADR	Name	Description
0x20	FIFO0	FIFO register of EP0
0x21	FIFO1	FIFO register of EP1
0x22	FIFO2	FIFO register of EP2

Please refer to Appendix B for detailed description for the USB registers.

7.9.4 Wakeup Operations

CFP5102 provides a perfect management for power consumption. It reduces power consumption by banding SLEEP, HOLD and USB WAKEUP together closely. Table 7-7 shows every operating mode and requirement.

USB mode	CPU Clock	System Clock	USB Clock	USB PHY	Description
Normal Mode	V	V	√ 48MHz	V	Normal operation.
Keeping Mode	X IDLE	V	√ 48MHz	V	All USB Interrupt can wakeup CPU.
Suspend Mode	X IDLE	V	V	V	Only USB RESET/RESUME can wake up CPU. Make sure that USB clock is set back to 48MHz after wakeup sequence.
Sleep Mode	X Power Down	Х	X	X	Only USB DP wakeup takes effect. CPU resets while USB keeps its status.

USB Normal Mode: CPU and USB Module run in full speed mode. OSC and PLL must be turned on.

USB Keeping Mode: CPU enters IDLE mode. OSC and DPLL keep turn-on in order to provide clock to USB module. USB still run normally and can send or receive data at this mode. If USB interrupt enable has been set, CPU will wakeup when USB interrupt happens. Moreover, USB can wake up only after USB leaving SUSPEND Mode.

USB Suspend Mode: USB can wakeup only after USB leaving SUSPEND Mode at this mode. CPU enters idle mode and DPLL is off, but system clock must keep running to provide clock to USB Module. USB will generate RESUME Interrupt to wakeup CPU if USB interrupt enable has been set and USB RESUME Interrupt has been enabled. And USB will also generate RESUME Interrupt to wakeup on condition that USBINTWE or USB RESUME has been close but SUSPEND has been turned on.

USB Sleep Mode: This mode will provide the maximal power saving. CPU enters power down Mode and system clock stops. Enable USBDP wakeup before entering Halt Mode. CPU wakes up after receiving signal from DP pin which turns according to appointed edge. CPU would be reset while USB Module doesn't.

7.10 FIFO Interface

CFP5102 provides a FIFO interface to access USB FIFO as generic FIFO memory when USB is not in use. This extra 208 bytes of memory is excellent for data buffer. However, FIFO memory is a slow memory which takes at most 4 CPU clock cycles to access from read/write operation kick-start.

FIFOCON	FIFO	FIFO Control Register						
TYPE:	R/W							
ADDRESS	: 0x9C							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	FEN	ONLY	-	-	-	-	WR	RD
Default	0	0	0	0	0	0	0	0
Name	Mode	Description				Se	etting	
FEN	RW	FIFO interfac	ce enable bi	t		0:	disable	
						1:	enable	
ONLY	RW	FIFO only m	ode enable	bit		0:	disable	
	-	This mode isolates the FIFO from USB. In normal 1: enable						
	1	node, FIFO	interface co	mpletes me	emory acces	s only		
	,	when USB is	idle		-	-		
WRS	RW Write operation kick start bit 0: inactive							
	,	Write '1' to kick start write operation. This bit reset to 1: kick-start write						
	•	0' when the	write operat	tion is finish	ed.			
RDS	RDS RW Read operation kick start bit 0: inactive							
		Nrite '1 ['] ' to ki			This bit res	et to 1:	kick-start re	ead
		0' when the	read operat	ion is finishe	ed.			

FIFODATA: TYPE:	FIFO E R/W	0ata Regis	ter					
ADDRESS:	0x9F							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	FIFODATA							
Default	0x00							

FIFOPTR: TYPE: ADDRESS:	FIFO P R/W 0x9D	ointer Re	gister					
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	FIFOPTR							
Default	0x00							

TEL:+886-2-22231558 FAX:+886-2-22233988

E-mai : sales@cfpt.com.tw

7.10.1 Operation Flow

Read Operation Flow

- 1. Enable FIFO interface by setting EN in FIFOCON
- 2. Select operation mode (ONLY in FIFOCON)
- 3. Set up desired address to FIFOPTR
- 4. Kick start the read operation by writing '1' to RDS in FIFOCON
- 5. Poll RDS until it is cleared
- 6. Data is ready to ready from FIFODATA

RX Operation Flow

- 1. Enable FIFO interface by setting EN in FIFOCON
- 2. Select operation mode (ONLY in FIFOCON)
- 3. Set up desired address to FIFOPTR
- 4. Put the write-in data to FIFODATA
- 5. Kick start the write operation by writing '1' to WRS in FIFOCON
- 6. The write operation is completed when WRS is cleared

Caution:

 Never do arithmetic, logic and bit operation on FIFODATA. FIFODATA is designed for MOV operation only

TEL: +886-2-22231558 FAX: +886-2-22233988 E-mai: <u>sales@cfpt.com.tw</u>

V0.1

7.11 Watchdog Timer

The WDT is clocked by internal free-running RC oscillator, which WDT operates properly when there is no clock from crystal oscillator. When device resets, the WDT is disabled and user should enable the WDT if it is needed.

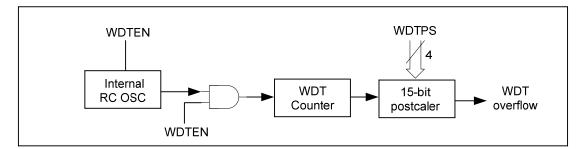


Figure 7-29: Block diagram of watchdog timer

WDTCON: TYPE: ADDRESS:	R/W	ndog Timer	Control Re	gister				
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	WDTTO	WDTPD	WDTPND	WDTEN	WDTPS[3]	WDTPS[2]	WDTPS[1]	WDTPS[0]
Default	0	0	0	0	0	0	0	0
Name	Mode	Description	Description Setting					
WDTTO	RW	Watchdog time timeout flag 0: inactive						
		1: time out						
WDTPD	R	Watchdog ti	mer power d	own indica	tor	0:	inactive	
		Read out '0'	Read out '0' before power down operation; Read out 1: a					
		'1' after pow	er down ope	ration. This	s flag is clea	ared if		
			et the watch		0			
WDTPND	RW	Watchdog ti	Watchdog timer interrupt pending flag 0: inactive					
		Write '0' to this flag clears the watchdog timer 1: time out						
WDTEN	RW	Watchdog timer enable bit 0: disable						
		0				1:	enable	
WDTPS	RW	Watchdog timer postscaler setting					efer to Table	e 7-8

7.11.1 Timer Function

The time interval of the watchdog timeout can be calculated as:

$$T_{\textit{timeout}} = \frac{256 \times 2^{\textit{WDTPS}}}{f_{\textit{RC}}} \text{,} \quad f_{\textit{RC}} = \text{16KHz (typical)}$$

In the default configuration (WDTPS is 0, thus postscaler divide ratio set to 1:1), the 8-bit counter overflows in 16 milliseconds.

Table 7-8: Postscaler settings

WDTPS	Postscaler divide ratio
0000	1:1
0001	1:2
0010	1:4
0011	1:8
0100	1:16
0101	1:32
0110	1:64
0111	1:128
1000	1:256
1001	1:512
1010	1:1024
1011	1:2048
1100	1:4096
1101	1:8192
1110	1:16384
1111	1:32768

7.11.2 Clear Watchdog Timer

In normal operation, watchdog timer has to be cleared periodically to prevent watchdog timeout. To do that, user should write '0' to WDTPND before every watchdog timeout.

<u>Preliminary</u>	117 / 124	V0.1
TEL:+886-2-22231558 FAX:+886-2-22233988	E-mai : <u>sales@cfpt.com.tw</u>	Web-site : www.cfpt.com.tw

7.11.3 Wakeup, Reset and Interrupt

To cope with different system recovery strategies, user can define the severity of failure alarm by setting watchdog overflow as interrupt source or reset source. The setting is in register FSET. User should either enable watchdog interrupt or enable watchdog reset. The value in FSET does not change to default after watchdog reset to avoid unintended change.

Watchdog interrupt has the highest priority among all other interrupts. The system can get into recovery subroutine even during (1) serving other interrupts; (2) IDLE mode; and (3) HALT mode. User is recommended to use watchdog interrupt if intended to keep the peripherals operating during recovery.

Watchdog reset forces the system to fallback to default status in any situation, giving the most immediate response to failure conditions. After watchdog reset, WDTPD will be asserted. User should detect WDTPD in reset routine to do suitable system recovery tasks.

In system that does not require failure detection or recovery, watchdog timer can be used as generic timer with interrupt capability. It is especially useful when out of timer resources. However, the clock of watchdog timer is generated from internal RC oscillator, the period of the watchdog clock is varied among chips.

FSET: TYPE: ADDRESS:	R∕W	ial Functior	n Setting F	Register				
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mnemonic							EWDT	WDTRST
Default							1	0
Name	Mode	Description					Setting	
EWDT	RW	Watchdog t	imer interru	pt enable b	it		0: disable	
		1: enable						
WDTRST	RW	Watchdog t	imer reset e			0: disable		
		0					1: enable	

TEL: +886-2-22231558 FAX: +886-2-22233988

E-mai : sales@cfpt.com.tw

V0.1

8 Code Protection

Code protection is always a severe but unsolvable problem in class 8051/8052. The keep the code safe, CFP5102 deploys the follow practice:

- 1. When CFP5102 is forced to use external memory by pull-down pin EA, the OTP is disabled automatically, which means no access to OTP is available.
- 2. There is a control bit (PROT in CCON) restricts the instruction MOVC to access OTP, when the bit is set, instruction MOVC cannot read out correct data from OTP. This avoids hackers to crack the source code from manipulating the code in external memory. This bit can be cleared only in system resets. It is recommended to enable this feature in the boot-loader stored in OTP.
- 3. The program sent to CFP5102 in in-system programming is protected by a 24-bit random key. This avoids hackers to capturing the program by cracking the programmer.

CCON: TYPE:	R/W							
ADDRESS	: OxAB							
Position	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
Mnemonic	PROT							
Default	0							
Name	Mode	Description				Se	etting	

Name	Mode	Description	Setting
PROT	RW	OTP code protection enable bit.	0: disable
		When set to '1', MOVC to OTP memory is disabled.	1: enable
		This bit can clear by reset sources only	

TEL: +886-2-22231558 FAX: +886-2-22233988

E-mai : sales@cfpt.com.tw

V0.1

9 Electrical Characteristics

9.1.1 Absolute Maximum Rating

Ambient temperature under bias	0°C to +125°C
Storage temperature	-65°C - 150°C
Voltage on DVDD with respect to VSS	0V to +3.6V
Voltage on VDDIO with respect to VSS	0V to +5.5V

9.1.2 DC Characteristics

POR DC Voltage Parameters

Sym	Characteristics	Min	Тур	Max	Units	Conditions
V _{POR}	Power-on Reset Voltage trip point	-	2.3	-	V	V _{DD} = 3.3V

DC Voltage Parameters

Symbol	Characteristics	Min	Тур	Max	Units	Conditions
V _{DD}	Supply Voltage	3.0	3.3	3.6	V	Without LDO Input from pin DVDD
		3.0	3.3	3.6	V	Using LDO Output from LDO
V _{DDIO}	Supply Voltage to IO	3.0	3.3	3.6	V	Without LDO
		4.5	5.0	5.5	V	Using LDO
V _{IL}	Input Low Voltage I/O ports	V _{SS}	-	0.8	V	V _{DDIO} = 3.3V
		V _{SS}	-	0.3xV _{DD}	V	V _{DDIO} = 5.0V
V _{IH}	Input High Voltage I/O ports	2.0	-	V _{DD}	V	V _{DDIO} = 3.3V
		0.7xV _{DD}	-	V _{DD}	V	V _{DDIO} = 5.0V
V _{OL}	Output Low Voltage I/O ports	-	-	0.65	V	V_{DDIO} = 3.3V, I_{OL} = 8mA
		-	-	0.60	V	$V_{DDIO} = 5.0V, I_{OL} = 8mA$
V _{OH}	Output High Voltage I/O ports	2.80	-	-	V	V _{DDIO} = 3.3V, I _{OH} = 8mA
		4.65	-	-	V	V_{DDIO} = 5.0V, I_{OH} = 8mA
V _{SYS}	Hysteresis of I/O Schmitt Trigger	-	200	-	mV	$V_{DDIO} = 3.3V$
		-	400	-	mV	$V_{DDIO} = 5.0V$

Engineering Specification for CFP5102

DC Current Parameters

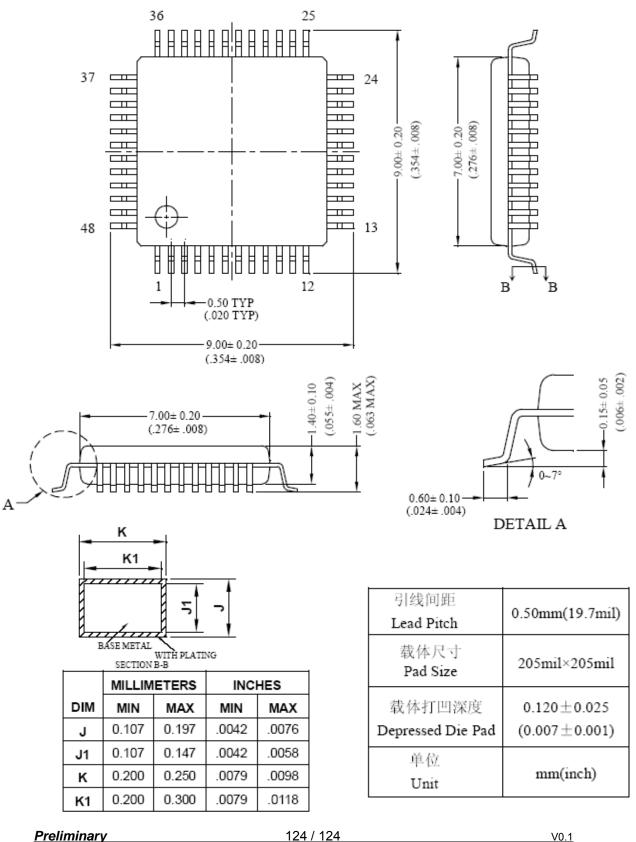
Symbol	Characteristics	Min	Тур	Max	Units	Conditions
I _{IDLE} (without LDO)	Idle mode current	-	5.80	-	mA	DPLL disable, OTP disable, all ports pull-up $F_{system_clock}^* = 24MHZ$ 32,768 Hz oscillator off $V_{DD} = 3.3V$ CKCON1 = 0x60
	Idle mode current (32,768 Hz oscillator in normal mode)	-	11.18	-	uA	DPLL disable, OTP disable, all ports pull-up F _{system_clock} * = 32,768 Hz
	Idle mode current (32,768 Hz oscillator in low power mode)	-	4.40	-	uA	$\begin{array}{l} 24 \text{MHz oscillator off} \\ \text{V}_{\text{DD}} = 3.3 \text{V} \\ \text{CKCON1} = 0 \text{x60} \end{array}$
I _{HALT} (without LDO)	Halt mode current		1.23	-	mA	DPLL disable, OTP disable, all ports pull-up $F_{system_clock}^* = 24MHZ$ 32,768 Hz oscillator off $V_{DD} = 3.3V$
	Halt mode current (32,768 Hz oscillator in normal mode)		9.20	-	uA	DPLL disable, OTP disable, all ports pull-up F _{system_clock} * = 32,768 Hz 24MHz oscillator off
	Halt mode current (32,768 Hz oscillator in low power mode)		3.29	-	uA	$V_{DD} = 3.3V$
I _{PD}	Power Down mode current (without LDO)		0.43	-	uA	DPLL disable, OTP disable, all ports pull-up High-speed oscillator off 32,768 Hz oscillator off $V_{DD} = 3.3V$
I _{LDO}	LDO quiescent current		45.89	-	uA	When V_{DDIO} = 5.0V, DVDD output around 3.3V
I _{DD} (without LDO)	Normal mode current	-	18.06	-	mA	DPLL disable, all ports pull-up F _{system_clock} * = 24MHZ 32,768 Hz oscillator off V _{DD} = 3.3V CKCON1 = 0x1E
		-	23.91	-	mA	$\begin{array}{l} \mbox{DPLL enable, all ports pull-up} \\ \mbox{F}_{system_clock}^{*} = 24 \mbox{MHZ} \\ 32,768 \mbox{Hz oscillator off} \\ \mbox{V}_{DD} = 3.3 \mbox{V} \\ \mbox{CKCON1} = 0 \mbox{1E} \end{array}$
	Normal mode current (Disable OTP low power mode)	-	5.51	-	mA	DPLL disable, all ports pull-up F _{system_clock} * = 4MHZ 32,768 Hz oscillator off VDD = 3.3V
	(Enable OTP low power mode)	-	4.49	-	mA	CKCON1 = 0x1E

Note: * - clock frequency after clock divider, please refer to Section 6.1

9.1.3 AC Parameters

Symbol	Characteristics	Min	Тур	Max	Units	Conditions
F _{OSC}	External OSC1 Frequency	DC	-	24	MHz	
	Oscillator Frequency	1	-	24	MHz	
F _{CORE}	Digital Core Operating Frequency	-	-	24	MHZ	V _{DD} = 3.3V
T _{CY}	Instruction Cycle Time	41.7	-	DC	ns	V _{DD} = 3.3V
T _{MCLR}	MCLR Pulse Width	2	-	-	us	V _{DD} = 3.3V
T _{WDT}	Watchdog Timer Time-out Period	-	16	-	ms	V _{DD} = 3.3V, postscaler divide ratios = 1:1
		-	70	-	S	V_{DD} = 3.3V, postscaler divide ratios= 1:4096
T _{OR}	Output Rise Time I/O ports	-	8.0	-	ns	V _{DDIO} = 3.3V R _L = 510 ohm; C _L = 47 pF
		-	6.4	-	ns	V _{DDIO} = 5.0V R _L = 510 ohm; C _L = 47 pF
T _{OF}	Output Fall Time I/O ports	-	8.4	-	ns	$V_{DDIO} = 3.3V$ R _L = 510 ohm; C _L = 47 pF
		-	7.4	-	ns	$V_{DDIO} = 5.0V$ R _L = 510 ohm; C _L = 47 pF

Engineering Specification for CFP5102


Parameter	Condition	Min	Тур	Max	Unit
DC Accuracy	·	·			
Resolution				8	bits
INL			+/-1		LSB
DNL			+/-1		LSB
Offset Error			+/-1		LSB
Dynamic Performance					
Conversion speed	C _{load} = 100pF			5	us
	R _{load} = infinite				
	INBUF = 0				
Analog Output					
Analog output range	INBUF = 0	0		VDDA	V
Power Specifications					
Standby Current				10	nA
Analog supply (VDDA)		2.7	3.3	3.6	V
Digital supply (VDD)		2.7	3.3	3.6	V
Analog supply current			0.5		mA
Digital supply current (avg)	DIN change @4MHz		19.2		uA

ADC Characteristics

Package Outline 10

Preliminary

TEL:+886-2-22231558 FAX:+886-2-22233988

124 / 124

E-mai : sales@cfpt.com.tw

11 Revision History

Date	Version	Author	Notice
2007.12.03	V0.1	Merlin	1. first version.