
Asynchronous Serial Communication · Page 215

Copyright © Parallax Inc, 2010

Chapter 6: Asynchronous Serial Communication

The previous chapter introduced synchronous serial communication, which relies on a
separate clock signal to synchronize the exchange of a series of values. In contrast,
asynchronous serial communication is the exchange of a series of values without the
synchronizing clock signal.

ASYNCHRONOUS SERIAL DEVICES
Figure 6-1 shows some examples of devices that use asynchronous serial communication
to exchange information. When a BASIC Stamp executes a DEBUG command, it uses
asynchronous serial communication to send information to the PC, either through a serial
cable, or to a chip that converts the serial message to the USB protocol. Another
example, the BASIC Stamp makes the Parallax Serial Liquid Crystal Display (LCD)
display text by sending it asynchronous serial messages. Other useful peripherals that
utilize asynchronous serial communication include geographic positioning systems
(GPS), radio frequency identification (RFID), and radio frequency communication
modules that make it possible for microcontrollers to communicate “wirelessly”. This
chapter introduces the signaling these devices use to communicate and examines and
decodes certain asynchronous serial messages with the PropScope.

Figure 6-1: Asynchronous Serial Device Examples

Asynchronous Serial
Communication

BS2 to PC on Serial
Board of Education

BS2 to Parallax Serial LCD

BS2 to USB/Serial Converter
on USB Board of Education

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text
 For another

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text
use

Paul C Smith
Inserted Text
 readers

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text
teaches you to examine and decode certain asynchronous serial messages using the PropScope

Page 216 · Understanding Signals with the PropScope

Draft Copy 7/28/2010

ACTIVITY #1: ASCII CODES
ASCII stands for American Standard Code for Information Exchange, and it uses
numeric codes to represent US alphabet characters. It also includes some special codes
called control characters for keys on your keyboard like Esc and Backspace. When the
BASIC Stamp sends messages that get displayed as text by a PC or serial LCD, it uses
ASCII codes to send the characters that get displayed.

Printable ASCII Chart.bs2 displays characters and their Corresponding ASCII codes for
values of 32 through 127 in the Debug Terminal.

 Enter and run Printable ASCII Chart.bs2

' Printable ASCII Chart.bs2
' Display 32 through 127 along with the ASCII characters those
' values represent.

' {$STAMP BS2} ' Target module = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

char VAR Word ' Will store ASCII codes

PAUSE 1000 ' 1 second delay before messages

DEBUG CLS, " PRINTABLE ASCII CHARACTERS", ' Display chart heading
 CR, " from 32 to 127"

FOR char = 32 TO 127 ' Character=ASCII value loop
 DEBUG CRSRXY, char-32/24*10, char-32//24+3 ' Position cursor row, column
 DEBUG char, " = ", DEC3 char ' Display Character=ASCII value
NEXT

The Debug Terminal display should resemble Figure 6-2.

 If the display gets scrambled because there’s not enough room in the Debug
Terminal, make the window larger and restart the program by pressing and
releasing the Reset button on your board.

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text
c

Asynchronous Serial Communication · Page 217

Copyright © Parallax Inc, 2010

Figure 6-2
Characters and Decimal
Value ASCII Codes
Displayed in Debug
Terminal

Figure 6-3 shows ASCII values the Debug Terminal uses as control characters for
operations like Clear Screen, Home, Backspace, Tab, Carriage return and others.

 In the BASIC Stamp Editor, click Edit and select Preferences. Then, click the
Debug Function tab.

Page 218 · Understanding Signals with the PropScope

Draft Copy 7/28/2010

Figure 6-3
Debug Terminal Control
Character Values and
Functions

All of the control characters listed in Figure 6-3 have symbol names in the PBASIC
language. For example, instead of DEBUG 0 for Clear Screen, you can use DEBUG
CLS. In place of DEBUG 13 for Carriage Return, you can use DEBUG CR. The
DEBUG command documentation in the BASIC Stamp Editor Help’s PBASIC Language
Reference has a complete list of PBASIC control character symbol names, descriptions of
their functions, and the values they represent.

 Close the preferences window and open the BASIC Stamp Editor’s Help. (Click
Help and select BASIC Stamp Editor Help…)

 In the PBASIC Language Reference, follow the link to the DEBUG command
documentation.

 Scroll down to the last table. It lists the names and ASCII values of the
functions in Figure 6-3 along with PBASIC Symbol names you can use as
DEBUG command arguments, like CLS, CR, HOME, etc.

Asynchronous Serial Communication · Page 219

Copyright © Parallax Inc, 2010

Your Turn: Display “A” to “Z”, “a” to “z”, and 128 to 255

Printable ASCII Chart.bs2 uses the char variable in a FOR…NEXT loop to count from
32 TO 127. Each time through the loop, the DEBUG command transmits the char
variable’s value to the PC using asynchronous serial communication. The Debug
Terminal then displays the ASCII value’s corresponding character. The PBASIC
language treats characters in quotes as their ASCII value equivalents, so you could
actually create a FOR…NEXT loop that counts from "A" to "Z", "a" to "z", or even "!" to
".".

 In Printable ASCII Chart.bs2, try changing 32 TO 127 to "A" TO "Z".
 Load the modified program into the BASIC Stamp, and observe the results.
 Repeat for "a" TO "z" and "!" TO "." .

The Debug Terminal has more characters in the 128 to 255 range that you can check too.
These can be useful for displays in certain languages as well as symbols like degrees °, ±,
¼ and other symbols. For example, the a DEBUG command to display 180° would be
DEBUG "180", 176. The code 176 makes the Debug Terminal display the ° symbol.

 Try this modified FOR…NEXT loop in Printable ASCII Chart.bs2.

FOR char = 128 TO 255
 DEBUG CRSRXY, char-128/24*10, char-128//24+3
 DEBUG char, " = ", DEC3 char
NEXT

 Make a note of any character codes that might be useful for displays in future
BASIC Stamp projects.

ACTIVITY #2: FIRST LOOK AT ASYNCHRONOUS SERIAL BYTES
Figure 6-4 shows an example timing diagram for the number 65, which is the letter "A",
transmitted with a widely used format of asynchronous serial signaling. The device that
transmits this byte starts with a transition from high (Resting State) to low (Start Bit).
Both of the devices use that as the starting point. The sending device uses it for updating
the bit values it transmits at regular time intervals (tbit), and the receiving device knows to
check for new binary values at those intervals. The baud rate determines the time
interval, which is tbit = 1/baud rate. For example, if the baud rate is 9600 bits per second
(bps), it means that each bit period has to be 1/9600th of a second. In other words, the bit
time is tbit = 1 ÷ (9600 bits/second) ≈ 104.17 μs/bit. So the transmitting device updates its

Comment [AL62]: Search replace
+/- with this character throughout
document.

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text
These include accented characters like é used in other languages, as well as technical and math symbols like degrees (°), ±, and ¼.

Paul C Smith
Inserted Text
serial representation of the

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text
the sending and receving devices

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text
uses it as a signal

Paul C Smith
Sticky Note
This whole thing isn't quite clear to me. I don't know how asynchronous serial works, but I'm guessing that you mean something like this: The sending device starts by taking the serial line from high (Resting State) to low (Start Bit), and then back to high after a certain amount of time. The amount of time the sending device holds the serial line low during this "Start Bit" indicates to the receiving device the rate at which to expect bits of data. This rate is known as the "baud rate", measured with a unit of bits per second. For example, if the serial communications is to take place at 9600 baud (9600 bits per second), each bit will be sent in 1/9600th of a second, and the bit time (tbit) = 1/9600 = 104.17 us/bit. So the sending device sends a start bit that is 104.17 µs long, and then another bit of data every 104.17 µs, and the receiving device notes the length of the start bit, and therefore knows to read a bit value from the serial line in the middle of each 104.17 µs time period. I think that's what this section is saying - that's how I'm reading it, anyway. Or am I inventing a new method of serial communication that has nothing to do with how it really works?

Page 220 · Understanding Signals with the PropScope

Draft Copy 7/28/2010

binary values every 104.17 μs, and the receiving device checks in the middle of each of
those time periods for the next binary value in the byte.

Figure 6-4: Number 65 Transmitted with 8-Bit, True, No Parity Asynchronous Serial Signaling

A device that transmits or receives the asynchronous serial signal in Figure 6-4 is using a
format called true signaling, 8-bits, no parity, and one stop bit. The shorthand for 8-bits,
no parity, one stop bit, 8N1, and its usually preceded by a baud rate, like this: 9600 bps,
8N1. With True signaling, which is also called non-inverted, a high signal sends a
binary-1, and a low signal sends a binary-0. 8-bits means that the signal contains 8
binary values (bits). “No parity” indicates that this signal does not contain a parity bit.
Serial signals can also be configured to contain a parity bit, that the transmitter and
receiver use to help detect communication errors. Parity bits will be examined in the
Projects at the end of the chapter. One stop bit means that that the transmitter has to wait
at least one bit period (tbit) before sending another message. With 1 start bit, 8 data bits,
and 1 stop bit, the total amount of time it takes to send/receive a single byte is 10 bit
periods.

Examining Figure 6-4 from left to right, the resting state of the signal is high. That signal
could stay high for an indefinite amount of time if the device transmitting messages
doesn’t have anything to send. When it does have something to send, it sends a low Start
Bit signal for one bit period. Again, both transmitter and receiver use the negative edge
of this signal for timing. The transmitter has to update its output between every bit
period, and the receiver has to check for a value in the middle of each bit period. After
the start bit, the transmitter sends the least-significant bit (Bit-0 or LSB), followed by Bit-
1 during the next bit period, Bit-2 in the bit period after that, and so on, up through Bit-7

Baud rate = 1/tbit in bits per second (bps).

(1×1) + (0×2) + (0×4) + (0×8) + (0×16) + (0×32) + (1×64) + (0×128) = 65

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text
This is usually abbreviated as "8N1", and is usually preceded by the baud rate, like this: "9600 bps, 8N1".

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text
p

Asynchronous Serial Communication · Page 221

Copyright © Parallax Inc, 2010

during the 8th bit period after the start bit. The receiver knows to treat bit-0 as the number
of 1s, in the value, Bit-1 as the number of 2s, Bit-2 as the number of 4s, and so on up
through bit-7, which is the number of 128s in the value. In Figure 6-4, bit-0, which is the
number of 1s is high, and so is bit-6, which is the number of 64s. All the rest of the bits
are low, so the value this signal transmits is (1 × 1) + (1 × 64) = 65.

In this activity, you will program the BASIC Stamp to use 9600 bps, 8N1 true
asynchronous serial signaling to transmit the values in the previous activity’s ASCII chart
using an I/O pin. A new character will be transmitted once every second, and you will
use the PropScope to monitor the sequence of ASCII values.

Asynchronous Serial Test Parts

(1) Resistor – 220 Ω (red-red-brown)
(misc) Jumper wires

Asynchronous Serial Test Circuit

Figure 6-5 shows the test circuit and Figure 6-6 shows a wiring diagram example.
.

 Build the circuit in Figure 6-5 using Figure 6-6 as a guide.

Figure 6-5
Test Circuit for Probing
Asynchronous Serial
Messages Transmitted
by the BASIC Stamp’s
I/O pin P11.

Comment [AL63]: i-box: Resistors
are used in this chapter because a
function generator signal will be
applied to an I/O pin later. They are
not needed, except to ensure that
there is no way to make a mistake
and inadvertently apply function
generator voltage to an I/O pin that is
set to output.

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Sticky Note
Excellent. This is very clear.

Page 222 · Understanding Signals with the PropScope

Draft Copy 7/28/2010

Figure 6-6
Wiring Diagram Example
for Figure 6-5

Asynchronous Serial Test Code

Printable ASCII Chart to IO.bs2 sends a character from the ASCII chart to the DEBUG
Terminal once every second. At about the same time, it sends a copy of that character to
I/O pin P11 using 9600 8N1 true serial signaling.

 Open the BASIC Stamp Editor’s Help, and look up the SEROUT command in
the PBASIC Language Reference.

 Read the Syntax and function sections.
 Find the Common Baud Rates and Corresponding Baud mode Values table for

the BASIC Stamp 2, and verify that 84 is the Baud mode in SEROUT 11, 84,
[char] that will make it send its characters using true signaling at 9600, 8N1.

 Enter and run Printable ASCII Chart to IO.bs2.

' Printable ASCII Chart to IO.bs2
' Display another value in the ASCII character chart once every second.
' Transmit a copy of that value to P11 using 9600 bps 8N1 with true signaling.

' {$STAMP BS2} ' Target module = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

char VAR Word ' For counting and storing ASCII

Asynchronous Serial Communication · Page 223

Copyright © Parallax Inc, 2010

PAUSE 1000 ' 1 second delay before messages

DO ' Main loop

 DEBUG CLS,
 " PRINTABLE ASCII CHARACTERS", ' Table heading
 CR, " from 32 to 127"

 FOR char = 32 TO 127 ' Count from 32 to 127
 DEBUG CRSRXY, char-32/24*10, char-32//24+3 ' Position cursor
 SEROUT 11, 84, [char] ' Send 9600 bps, 8N1 true byte
 DEBUG char, " = ", DEC3 char ' Display byte in Debug Terminal
 PAUSE 1000 ' 1 second delay
 NEXT ' Repeat FOR...NEXT loop

LOOP ' Repeat main loop

Asynchronous Serial Test Measurements

Figure 6-7 shows an example of the "A" character, which will display for one second,
about 34 seconds into the program. (That’s 33 seconds worth or characters and the 1
second PAUSE command at the very beginning.) Keep in mind that the signaling shown
by the PropScope will change once every second as the BASIC Stamp transmits a new
ASCII value. Also, notice that the Trigger in Figure 6-7 has been set to Fall since the
message begins with a negative transition from high resting state to low start bit.

 Click, hold and drag the CH1 trace downward so that 0 V is only slightly above
the time scale. (In Figure 6-7, the 0 V ground line is 1 voltage division above
the time scale.)

 Configure the PropScope’s Horizontal, Vertical and Trigger controls according
to Figure 6-7.

 Set the Trigger Voltage control to about 2.5 V, and the Trigger Time control to
the second time division.

 Watch the counting pattern in the Oscilloscope, and use the Debug Terminal as a
reference for seeing how the ASCII codes correspond to the signals in the
Oscilloscope.

 Verify that the pattern displayed by the PropScope changes once every second.

Page 224 · Understanding Signals with the PropScope

Draft Copy 7/28/2010

Figure 6-7: ASCII 65, one of the values in the 32…127 sequence that will be displayed

Figure 6-8 shows samples of the binary patterns for the characters "A" through "E",
which correspond to ASCII codes 65 through 69. This is a portion of the sequence of
asynchronous serial bytes the PropScope should display while Printable ASCII Chart to
IO.bs2 is running.

Asynchronous Serial Communication · Page 225

Copyright © Parallax Inc, 2010

Figure 6-8
Byte Values 65 to 96

These are the ASCII
codes for the characters
"A" through "E"
transmitted at 9600 bps
with 8N1 true signaling.

Your Turn: DEBUG vs. SEROUT

DEBUG is a special case of the SEROUT command. It’s SEROUT 16, 84,
[arguments…]. For example, in Printable ASCII Character Chart to IO.bs2, you can
replace DEBUG char, " = ", DEC3 char with SEROUT 16, 84, [char, " = ", DEC3 char],
and the Debug Terminal will behave exactly the same.

 Try it.

ACTIVITY #3: A CLOSER LOOK AT A SERIAL BYTE
In this activity, you will program the BASIC Stamp to send the letter "A" (ASCII 65)
using 9600 bps, 8N1, true asynchronous serial signaling and decode its value with the
PropScope.

Letter A Test Code

Letter A to P11.bs2 transmits the "A" character via I/O pin P11 once every second, and it
also sends it to the Debug Terminal to verify that characters are still getting sent once

A = 65

B = 66

C = 67

D = 68

E = 69

Paul C Smith
Sticky Note
When I first look at these, I think "That can't be right. It looks like a start bit, then a 1, a bunch of 0s, finally a 1 and then a 0", for A, and then a start bit, then a 0, a 1, a few more 0s, then a 1 and then a 0 for B". Then I remember that you read from right to left, so instead there's a 1, a bunch of 0s, a 1 and then a 0 for A, then a 1, a bunch of 0s, a 1, then two more 0s for B, as I would expect. Perhaps there should be a reminder to the reader that the bits arrive from the left and move to the right, so the diagrams are read from right to left? Figure 6-4 is read the same way, and it might be a good idea up there to explicitly point out that the most significant digits are on the right, rather than on the left, as we're used to seeing in our everyday use of numbers. Reading right to left I see: 01000001 = 6501000010 = 6601000011 = 6701000100 = 6801000101 = 69and so on. Reading right to left it makes perfect sense. I do have to know that the last "low" there on the left is the stop bit, though, and that the start bit is not appearing here, apparently. Is that correct? Or have I screwed this up entirely? That would be an amazing coincident, for the bit patterns to have come out that way by chance.If I watch the PropScope output as it counts through the values, it's obvious that the 1s column, as it were, of the counting is taking place over on the left side of the signal, so the leftmost and second-to-leftmost bits are updated frequently, while the bits on the right side are only updated infrequently. Of course you can see that happening here in Figure 6-8 as well, though it's more dramatic on the scope in real time.

Paul C Smith
Sticky Note
I'm not sure why this is important enough to include, unless it's just so that the reader has an activity to do. It doesn't require any different reading of the scope output, or anything like that.

Page 226 · Understanding Signals with the PropScope

Draft Copy 7/28/2010

every second. The Debug Terminal verification can be useful for situations when you’re
not sure if the Oscilloscope display should be updating or not.

 Enter and run Letter A to P11.bs2.

' Letter A to P11.bs2
' Transmit "A" to P11 and Debug Terminal once every second.

' {$STAMP BS2} ' Target module = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

PAUSE 1000 ' 1 second delay before messages

DO ' Main loop

 SEROUT 11, 84, ["A"] ' "A" to P11
 DEBUG "A", " ", DEC3 "A", " ", ' "A" to Debug Terminal
 BIN8 "A", CR
 PAUSE 1000 ' 1 second delay

LOOP ' Repeat main loop

Letter A Test Measurements

Figure 6-9 shows the letter "A" again. It’s important to verify that your display shows all
the transitions and states in the Oscilloscope screen before continuing.

 Verify your PropScope’s Horizontal, Vertical, and Trigger settings against
Figure 6-9.

 Verify that your Trigger Voltage Control is at about 2.5 V and that the Trigger
Time Control is at the 2nd time division (0.4 ms)

 Make sure you’ve got a good view of this on your PropScope.

Asynchronous Serial Communication · Page 227

Copyright © Parallax Inc, 2010

Figure 6-9: The Letter "A" Again

The time per division options on the Horizontal dial are not the only options, and this is a
case where a custom time per division could come in really handy. Remember from
Activity #2 that if the baud rate is 9600 bits per second (bps) Also remember from
Activity #1 that the bit time is tbit = 1 ÷ (9600 bits/second) ≈ 104.17 μs/bit. Wouldn’t it
be nice is if the Oscilloscope had a 104 μs units per division setting? Try this:

 Right click the Oscilloscope screen. The “Click on the Value you wish to
change” window in Figure 6-10 should appear.

 Shade the value 200 in the (timescale, Value) cell and change it to 104. This
will change the time scale value from the Horizontal dial’s 200 μs/division
setting to 104 μs/division.

 Press the Enter key to enter your value, and then close the window.

Paul C Smith
Sticky Note
If you highlight the entire contents of the box and then type "104", it tries to set it to 104 seconds, and you just get a flat line on the screen, with the time scale set to 1 second. You need, instead, to carefully highlight JUST the number, not the unit, and change the number to 104. I was briefly baffled by this, and it would be a good idea to point out that you need to carefully leave the units alone when you change the number.

Page 228 · Understanding Signals with the PropScope

Draft Copy 7/28/2010

Figure 6-10
Configuring Custom
Time/Division

Your Oscilloscope will need a few more adjustments before it resembles Figure 6-11.

 Adjust the Plot Area Bar slightly to the right so that you can view all the bits of
the asynchronous serial 65 byte as shown in Figure 6-11. The falling edge of the
start bit should align with the first visible time division line.

 Compare your results to the timing diagram in Figure 6-4 on page 220.

The important feature here is that each bit in the asynchronous serial byte now occupies a
single time division. This makes it much easier to translate an asynchronous serial byte
displayed on the oscilloscope screen into the value that’s being transmitted. Remember
that Bit-0 is the number of 1s in the number, Bit-1 is the number of 2s, Bit-3 is the
number of 4s, and so on up through Bit-7, which is the number of 128ths.

Shade the number 200 and
change it to 104

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Asynchronous Serial Communication · Page 229

Copyright © Parallax Inc, 2010

Figure 6-11: 9600 bps Byte Value = 65 Viewed with Timescale set to 104 μs/Division

Bits in a Byte: The values in Figure 6-11 get stored in a byte so that it looks like this:
%01000001. The % sign is a PBASIC formatter that tells the BASIC Stamp Editor that it’s a
binary number. In this binary number, bit-0 gets stored in the rightmost position, bit-1 in the
next position to the left, and so on up through bit-7, which is the leftmost digit. It’s the
opposite of the order from the binary digits get transmitted in an asynchronous serial byte.

Powers of 2 in a Byte: The value stored by Bit-0 determines the number of 1s in the
variable, and 20 = 1. The value stored by Bit-1 determines the number of 2s in the variable,
and 21= 2. The value in Bit-3 determines the number of 4s in the variable, and 22=4. More
generally: Each bit determines whether a binary number has (1 or 0) × 2bit position.

Your Turn: Pick a Byte Value

 Repeat the measurements in this activity with a character or byte value of your
choosing.

Bit-0
Bit-1

Bit-2
Bit-3

Bit-4
Bit-5

Bit-6
Bit-7

Start
Bit

1 10 0 0 0 0 0

Slide Plot Area Bar to the right until the
signal matches what you see below.

Paul C Smith
Sticky Note
This is the point that confused me a couple of pages back. It does take some mental juggling, and I think you should warn the reader of it back where I put my long comment.

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

Paul C Smith
Cross-Out

Paul C Smith
Replacement Text

