
5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 77        

5: Network Topologies & Control Strategies 
While the XBee does a great job of handling the data link layer communications—getting data 
between the nodes—it is up to the microcontroller coding to handle the communicating meaningfully 
across the network at the application layer. Determining what data is sent, what will be done with it, 
what node it is addressed to, and ensuring devices are ready to accept and use the data, are all up to 
the programmer. The programmer must employ some networking strategy to help ensure application 
data is sent and received properly. Depending on the complexity of the network and the data, different 
topologies and schemes may be employed to send the data and interact between nodes. Networking 
topologies include point-to-point and point-to-multipoint. 
 
In either topology, but especially in point-to-multipoint, control of network must be performed to 
ensure receivers are ready to accept data, the returning node knows where data is to be sent and 
multiple nodes may not be able to send at once to common destination. The XBee handles moving the 
data between nodes, but the application of the network may require some scheme on the 
programming side to ensure the controlled flow of data for operation, such as polling or scheduling. 
In this chapter we will explore some networking strategies and use code to pass data between nodes 
for control and acquiring data. We will keep the code and hardware fairly simple, but as always, use 
your knowledge and desires to adapt these to your own needs. 

Network Topologies and Communication Strategies 

Point-to-Point Network 
In a point-to-point network, data is sent between two nodes as shown in Figure 5-1. This is the 
simplest form of communications to implement and doesn’t require any configuration changes to the 
XBee. Both devices may be left on address 0 (MY = 0 and DL = 0), their default configuration. Data 
sent from one unit to address 0 is accepted by and, if data is to be returned, is sent back to address 0. 
 

 
Figure 5-1: Point-to-point Communication Between Two Nodes 

 
Should another pair of XBee wish to communicate in the same area, the address of those nodes may 
be changed, such as to 1 by setting their MY and DL addresses, to allow point-to-point 
communications between them. They may also be placed in different PANs by changing the ID, or 
different frequency channels using CH. A good example of point-to-point communication with 
multiple channels would be a set of radio-controlled cars, each operating on a different set of 
frequencies. 



5: Network Topologies & Control Strategies 

Page 78    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

Point-to-Multipoint Networks 
In a point-to-multipoint network, a node can communicate with multiple nodes on the network. This 
requires each node having a unique address on the network.  

Simple Point-to-multipoint Network 

In a simple network as shown in Figure 5-2, all traffic is managed by a central node (a master, base or 
coordinator) that addresses a remote node, sends data to that node, and data is from the remote is sent 
back to the base node.  
 
With the XBee,  the software at the base (master) can change the destination address (DL) to send to a 
particular remote node. Data from remote is always sent to the base’s address. If needed, the base can 
manage between nodes and control, such as a remote sensor reading controlling an actuator on 
another node. 
 

 
Figure 5-2: Point-to-multipoint—Base Note Communicating 

Individually to Multiple Remote Nodes 
 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 79        

Complex Point-to-multipoint Network 

In more complex networks, data from any node may send data to any other node, as shown in Figure 
5-3 . In order for our program to respond with data properly, the receiving node must know the 
address to return data. The address data may be passed as part of the application data sent or extracted 
from the frame when using API mode (Chapter 6). 
 

 
Figure 5-3: Point-to-multipoint—All Nodes Able to Talk to Other Nodes 

 

Broadcast Point-to-multipoint Network 

Another form of point-to-multipoint is the network broadcast. Data is sent from one node to all nodes 
on the network. With the XBee, a DL of FFFF is used to send data to all nodes. On the data link side, 
XBee communications using the broadcast address are NOT acknowledged. Data is simply sent and 
assumed to have reached the all destinations. While control actions may work well with a broadcast, 
such as energizing a remote LED, requesting a value be returned, such as a sensor reading, is 
problematic since all nodes will attempt to respond. 
 



5: Network Topologies & Control Strategies 

Page 80    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

 
 

Figure 5-4: Point-to-multipoint—Broadcasting Data to All Nodes 
 

Polling Strategy 
In moving data in our network, some control of which talks when may be required to ensure the data 
from multiple sources does not cause confusion. In a polling strategy, a central base, coordinator or 
master is in charge of controlling communications by always talking first. Remote nodes, or slaves, 
are not allowed to send data until polled by the base. The base may send out updates for the remote 
nodes or request data from them ensuring a controlled use of the network and data flow. The base 
goes through a list or range of remote addresses communicating with each in turn maintaining control 
of communications. Note that the remote nodes must remain alert and ready to receive data from the 
base. The USB protocol uses a polling strategy—the host PC continually polls the USB devices. 

Scheduling Strategy 
A scheduling strategy may be employed where instead of the base controlling communication and 
remotes having to remain alert, the base may be the passive node waiting for scheduled updates from 
the remotes. The remote node may perform some task, go into a low power sleep mode, and wake to 
send an update to the base and receive updates. Scheduling allows remote nodes to sleep or spend 
time processing, then to periodically send an update to the base and receive new updates before going 
back to sleep or doing its business of controlling its system. It also allows a remote node with urgent 
data (intruder alert!) to be sent immediately without waiting for its turn to be polled. 
 
With this strategy, since the base does not initiate the remote's transmission, it needs to have some 
method of determining the source of the received message. In addition to the remote's data, it also 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 81        

needs the remote's address so that it may respond to send updates to the active remote node. There is a 
problem in that if two or more nodes try to send data at once, the based may not be robust enough to 
process data coming in from multiple nodes at once. 

BASIC Stamp Examples 
With the BASIC Stamp, we will explore a variety of strategies to move data between devices. Due to 
the BASIC Stamp module’s serial communications abilities, careful control of data is required. We 
will use basic, common hardware to illustrate principles that may aid you in development of your own 
systems.  

Hardware 

(2) BASIC Stamp development boards 
(2) XBee Adapter Boards (XBee 5V/3.3V 
Adapter Board or XBee SIP Adapter) 
(2) XBee modules with default settings 
(1) Pushbutton 
(1) LED 
(1) Buzzer (piezospeaker) 

(1) Servo 
(1) Phototransistor 
(1) 0.01µF capacitor 
(1) 10 kΩ Resistor 
(1) 220 Ω Resistor  
Optional: XBee USB Adapter and 
additional XBee module 

 
Assemble the hardware as shown in Figure 5-5 for the base and at least one remote (multiple remotes 
may be constructed for testing multi-node communications). The base will use the Debug Terminal 
for control and notifications in most examples.      
                      

 

 
Base BASIC Stamp and XBee module 

 
Remote BASIC Stamp and XBee module 

 
Figure 5-5: BASIC Stamp Base and Remote Schematics 

 
Board and Power! 

Use an appropriate BASIC Stamp XBee Adapter Board with supplied power per Chapter 2.  



5: Network Topologies & Control Strategies 

Page 82    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

Using Point-to-Point for Pushbutton Control 
In this example a pushbutton on the base is used to control the remote buzzer and LED. The default 
settings of the XBee are used to send data between only two nodes, both on address 0. 
 
As the pushbutton on the base is pressed, the value of variable Freq is incremented by 500 and sent 
as a decimal value to the remote, increasing the pitch of the buzzer. If the value of Freq exceeds 
5000, it is reset to 500. 
 
' *********************************************** 
' Simple_Control_Base.bs2 
' Sends changing frequency when button pressed 
' *********************************************** 
 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
#SELECT $STAMP 
  #CASE BS2, BS2E, BS2PE 
    T9600       CON     84 
  #CASE BS2SX, BS2P 
    T9600       CON     240 
  #CASE BS2PX 
    T9600       CON     396 
#ENDSELECT 
 
' ***************** Variables, Constants and Pins 
Baud            CON     T9600   ' Set baud rate 
Rx              PIN     15      ' XBee DOUT 
Tx              PIN     14      ' XBee DIN 
PB              PIN     0       ' Pushbutton 
Freq            VAR     Word 
 
' ***************** Main Loop 
DO 
 IF PB = 1 THEN                     ' If button pressed... 
   Freq = Freq + 500                ' Increment Frequency 
   IF Freq > 5000 THEN Freq = 500   ' Limit to 500 to 5000 
   SEROUT Tx, Baud,[DEC Freq,CR]    ' Send Frequency as decimal 
   PAUSE 500                        ' Short delay 
 ENDIF 
LOOP 
 
On the remote side, the code waits until a decimal value is received, accepts the value, lights the 
LED, sounds the buzzer at the frequency received, and finally turns off the LED to wait for another 
decimal value. Note that in this example no flow control (RTS) is used so the BASIC Stamp must be 
ready to accept incoming data. 
 
' *************************************************** 
' Simple_Control_Remote.bs2 
' Receives decimal value to control buzzer and LED 
' *************************************************** 
 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 83        

' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
#SELECT $STAMP 
  #CASE BS2, BS2E, BS2PE 
    T9600       CON     84 
  #CASE BS2SX, BS2P 
    T9600       CON     240 
  #CASE BS2PX 
    T9600       CON     396 
#ENDSELECT 
 
' ***************** Variables, Constants and Pins 
Baud            CON     T9600 ' Set Baud rate 
 
Rx              PIN     15    ' XBee DOUT 
Tx              PIN     14    ' XBee DIN 
Led             PIN     0 
Buzzer          PIN     8 
Freq            VAR     Word 
 
' ***************** Main Loop 
DO 
 SERIN Rx, Baud, [DEC Freq]      ' Wait for decimal and accept 
 HIGH LED                        ' Turn on LED 
 FREQOUT Buzzer,200,Freq         ' Sound tone 
 LOW LED                         ' Turn off LED 
LOOP                         
 

Testing: 

 Download Simple_Control_Base.bs2 to your base BASIC Stamp. 
 Download Simple_Control_Remote.bs2 to your remote BASIC Stamp. 
 Press and press and hold the base’s pushbutton to test. 

 

 
Optional Testing and Monitoring 

If you have an XBee at address 0 on USB and using X-CTU, you can enter values to be sent to the remote 
unit or simply monitor communications passing between nodes. 

 

Point-to-Multipoint – Manual Polling of Remote Nodes 
With manual polling, the user will interact with the base to control and monitor the remote nodes. The 
base unit prompts the user for information to control the remote’s LED, buzzer, servo or to request 
the reading of the photo resistor. The first step is to enter the remote node to be addressed. It 
illustrates XBee configurations, flow control, node addressing and application acknowledgements. 
 
In the code, the XBee is configured for fast Command Mode by setting the guard time low (ATGT). 
It requests from the user the address of the node to control. This is based on constants in the remote’s 
code for the node’s address. In testing, only a single remote may be used, but you are free to set up as 
many as you desire. 



5: Network Topologies & Control Strategies 

Page 84    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

 
After accepting the remote’s address, it requests what action to perform: whether to control the LED, 
the buzzer, the servo or to get the phototransistor reading. For control, the value is request from the 
user. The data is sent as an action identifier (L,B,S or R) plus a decimal value for control items, such 
as for servo control: 

 
SEROUT Tx,Baud,["S",CR,CR]             ' Send S 
SEROUT Tx,Baud,[DEC DataOut,CR,CR]     ' Send Data 
GOSUB CheckAck                          
 

The program waits briefly for an acknowledgement (“1”) from the remote or the remote reading and 
repeats. 
 
By setting the guard time low, the BASIC Stamp can configure the XBee within 20 or so milliseconds 
instead of requiring 5 seconds to update the destination address (DL). Note that this code does not use 
RTS flow control – no data will be buffered. Since the base is controlling the flow of data (remote’s 
do not send data without being contacted), the base can be prepared to accept data. Also, the OK’s 
sent from the XBee during configuration are not buffered – they are sent to the BASIC Stamp which 
does not accept or use them because of how communications are timed. 
 
' ****************************************************** 
' Manual_Polling_Base.bs2 
' This program: 
'   - Configures XBee for fast AT Command Mode 
'   - Using DEBUG Window, User can control remote 
'     L-LED, B-Buzzer, S-Servo or R-Read remote sensor 
'   - Sets address and data to selected node address 
'   - Accepts an acknowledgement value 
'   - Requires 802.15.4 XBee (Series 1) 
' ****************************************************** 
 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
#SELECT $STAMP 
  #CASE BS2, BS2E, BS2PE 
    T9600       CON     84 
  #CASE BS2SX, BS2P 
    T9600       CON     240 
  #CASE BS2PX 
    T9600       CON     396 
#ENDSELECT 
 
' ***************** Variables, Constants and Pins 
Baud            CON     T9600  ' Set Baud rate 
 
Rx              PIN     15     ' XBee DOUT 
Tx              PIN     14     ' XBee DIN 
 
DataOut         VAR     Word   ' Frequency to send 
DL_Addr         VAR     Word   ' Destination address for data 
DataIn          VAR     Byte   ' General variable for data 
Light           VAR     Word   ' Returned light level 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 85        

 
' ***************** Configure XBee in AT Command Mode 
PAUSE 500 
DEBUG CLS,"Configuring XBee..." 
 
PAUSE 3000                        ' Guard time 
SEROUT Tx,Baud,["+++"]            ' Command Mode Sequence 
PAUSE 2000                        ' Guard time 
SEROUT Tx,Baud,["ATGT 3,MY 0",CR] ' Set low guard time and base address 
SEROUT TX,Baud,["ATCN",CR]        ' Exit Command Mode 
 
' ***************** Main Loop 
DO 
  ' Request address and action in DEBUG Window 
  DEBUG CLS,"Enter Node Address in Hex (1-FFFF):" 
  DEBUGIN HEX DL_Addr                   ' Accept address in Hex 
  GOSUB Config_XBee                     ' Set DL address of XBee 
 
  DEBUG CR,"Choose Action:",CR, 
        "S - Set Servo Position",CR, 
        "L - Set LED State",CR, 
        "B - Set Buzzer Frequency",CR, 
        "R - Read Light Level",CR, 
        "? " 
  DEBUGIN DataIn                        ' Accept choice 
 
  ' If Servo Control, get value and send 
  SELECT DataIn 
   CASE "S","s" 
    DEBUG CR,"Enter Servo Position (500-1000):" 
    DEBUGIN DEC DataOut                    ' Accept user data 
    DEBUG "Sending Data!",CR 
    SEROUT Tx,Baud,["S",CR,CR]             ' Send S 
    SEROUT Tx,Baud,[DEC DataOut,CR,CR]     ' Send Data 
    GOSUB CheckAck                         ' Get acknowledgement 
    GOTO Done 
 
  ' LED control, get state and send 
   CASE "L","l" 
    DEBUG CR,"Enter LED State (0/1):" 
    DEBUGIN DEC DataOut                    ' Accept user data 
    DEBUG "Sending Data!",CR 
    SEROUT Tx,Baud,["L",CR,CR]             ' Send L 
    SEROUT Tx,Baud,[DEC DataOut,CR,CR]     ' Send LED state 
    GOSUB CheckAck                         ' Get Acknowledgement 
    GOTO Done 
 
  ' Buzzer control, get value and send 
   CASE "B","b" 
    DEBUG CR,"Enter Buzzer Frequency:" 
    DEBUGIN DEC DataOut                    ' Accept user data 
    DEBUG "Sending Data!",CR 
    SEROUT Tx,Baud,["B",CR,CR]             ' Send B 
    SEROUT Tx,Baud,[DEC DataOut,CR,CR]     ' Send Buzzer Frequency 



5: Network Topologies & Control Strategies 

Page 86    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

    GOSUB CheckAck                         ' Get Acknowledgement 
    GOTO Done 
 
  ' Get reading from remote sensor 
   CASE "R","r" 
    DEBUG CR,"Requesting reading...",CR 
    SEROUT Tx,Baud,["R",CR,CR]               ' Send R 
    SERIN  Rx,Baud,1000, Timeout,[DEC Light] ' Accept returning data 
    DEBUG "Light level = ", DEC light,CR     ' Display 
    GOTO Done 
  ENDSELECT 
Timeout: 
  DEBUG "No data received",CR 
Done: 
  PAUSE 2000 
LOOP 
 
Config_XBee: 
  ' Configure XBee for destination node address 
  PAUSE 10                                  ' Short guard time 
  SEROUT Tx,Baud,["+++"]                    ' Command Mode sequence 
  PAUSE 10                                  ' Short guard time 
  SEROUT TX,Baud,["ATDL ", HEX DL_Addr,CR]  ' Set Destination Node Address 
  SEROUT Tx,Baud,["ATCN",CR]                ' Exit Command Mode 
RETURN 
 
CheckAck: 
  SERIN Rx,Baud,1000,CheckTimeout,[DEC dataIn] ' Accept incoming byte 
  IF dataIn = 1 THEN                           ' If 1, then ack'd 
    DEBUG BELL,"OK - Ack Received!",CR 
  ELSE                                         ' If received, but not "1", problem 
    DEBUG "Bad Ack!",CR 
  ENDIF 
  RETURN 
CheckTimeout: 
  DEBUG "No ack received!",CR                  ' If nothing recieved 
RETURN 
 
The remote’s code uses RTS and a short timeout to keep the buzzer sounding and servo positioned. It 
accepts a letter code and a decimal value for control (if L, S, or B) or sends the phototransistor’s 
reading (if R). For control actions, it sends back decimal value of 1 as acknowledgment to the base 
once data is received and processed. 
 
If no data arrives within 10 ms, the execution branches to the Control subroutine to control the 
LED, drive the servo, and sound the buzzer. By using a timeout, the output devices are continually 
refreshed. RTS ensures that any data received during control action timing will be buffered for the 
next SERIN operation. 
 
' ****************************************************** 
' Polling_Remote.bs2 
' This program accepts a character and values: 
'   - L & 0 or 1 to control state of LED 
'   - B & value to control buzzer frequency 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 87        

'   - S & value to control servo position 
'   - R to return value of light sensor 
' Return acknowledgements or value to base 
' The address of node may be set by changing MY_Addr value 
' Requires 802.15.4 XBee (Series 1) 
' ****************************************************** 
 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
#SELECT $STAMP 
  #CASE BS2, BS2E, BS2PE 
    T9600       CON     84 
  #CASE BS2SX, BS2P 
    T9600       CON     240 
  #CASE BS2PX 
    T9600       CON     396 
#ENDSELECT 
 
'****************** Variable, Constants and Pins 
Baud            CON     T9600 
 
LED             PIN     0 
Buzzer          PIN     8 
PhotoT          PIN     5 
Servo           PIN     12 
 
Rx              PIN     15   ' XBee DOUT 
Tx              PIN     14   ' XBee DIN 
RTS             PIN     11   ' XBee RTS 
 
Freq            VAR     Word ' Received frequency for buzzer 
State           VAR     Bit  ' Received state of LED 
DataIn          VAR     Byte ' General byte data 
Light           VAR     Word ' Measured light level 
Position        VAR     Word ' Received servo position 
 
My_Addr         CON     $2   ' Set address of node, modify as desired, $1-$FFFE 
 
' ***************** Configure XBee to use RTS and set Address 
Position = 750 
 
PAUSE 500 
DEBUG CLS,"Configuring XBee...",CR 
PAUSE 3000                      ' Guard time 
SEROUT Tx,Baud,["+++"]          ' Command Mode Sequence 
PAUSE 2000                      ' Guard time 
SEROUT Tx,Baud,["ATD6 1",CR]    ' Enable RTS 
SEROUT Tx,Baud,["ATMY ", HEX My_Addr,CR]  ' Set node address 
SEROUT Tx,Baud,["ATDL 0,CN",CR] ' Set destination address of base 
                                ' & Exit Command Mode 
' ***************** Main Loop 
DO 
  GOSUB AcceptData 



5: Network Topologies & Control Strategies 

Page 88    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

  GOSUB Control 
LOOP 
 
AcceptData: 
  SERIN Rx\RTS,Baud,10,Timeout,[DataIn]       ' Accept byte 
  SELECT DataIn 
    CASE "L"                                  ' L to control LEF 
      SERIN Rx\RTS,Baud,1000,Timeout,[DEC State]' Accept LED state 
      PAUSE 200                               ' Give base time to set up 
      SEROUT Tx,Baud,[CR,DEC 1,CR]            ' Return acknowledgment 
 
    CASE "B"                                  ' B to set Buzzer 
      SERIN Rx\RTS,Baud,1000,Timeout,[DEC Freq] ' Accept buzzer frequency 
      PAUSE 200                               ' Give base time to set up 
      SEROUT Tx,Baud,[CR,DEC 1,CR]            ' Return acknowledgment 
 
    CASE "S"                                  ' S to control Servo 
      SERIN Rx\RTS,Baud,1000,Timeout,[DEC Position]' Accept position 
      PAUSE 200 
      SEROUT Tx,Baud,[CR,DEC 1,CR]            ' Return acknowledgment 
 
    CASE "R"                                  ' R to read light sensor 
      HIGH PhotoT                             ' Use RCTime to get value 
      PAUSE 5 
      RCTIME PhotoT,1,Light 
      PAUSE 100                               ' Give base time to set up 
      SEROUT Tx, Baud,[DEC Light,CR]          ' Send value to base 
   ENDSELECT 
Timeout: 
RETURN 
 
Control: 
  IF State = 1 THEN                          ' Control LED based on state 
    HIGH LED 
  ELSE 
    LOW LED 
  ENDIF 
 
  IF Freq <> 0 THEN                          ' Control Buzzer based on Freq 
    FREQOUT Buzzer,50,Freq 
  ELSE 
    PAUSE 100 
  ENDIF 
 
  FOR DataIn = 1 TO 20                       ' Control Servo based on Position 
    PULSOUT Servo, Position 
    PAUSE 20 
  NEXT 
RETURN 

Testing: 

 Open Polling_Remote.bs2 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 89        

 Modify the MY_Addr constant to assign your remote’s address, $1 to $FFFE (code default 
is $2). 

 Download to your remote hardware. 
 Repeat steps above for any additional remotes, giving each a unique address. 
 Open and download Manual_Polling_Base.bs2 and download to your base hardware. 
 Using the Debug Terminal’s transmit pane, answer requested information using both the used 

(as shown in Figure 5-6) and unused remote addresses and monitor the remote’s actions and 
responses. 

 Note that the Node Address is entered as a "2" in the Debug Terminal without the 
hexadecimal identifier of $. 

 

 
Figure 5-6: Manual Polling Debug Terminal 

 

Testing using Broadcast to Multiple Units  

If you have multiple remotes, perform a broadcast to all units using a node address of FFFF to control 
an action and monitor remotes. You may test with a single remote to see that it works. 
 

Optional: Using XBee & X-CTU for Monitoring and Control 

Using an XBee on USB and Digi’s X-CTU software is an effective way of testing data 
communications, debugging, and monitoring data to or from the base. It may be used to monitor data 
being sent from the base to the remote by assigning the XBee the remote’s address. It may be used to 
monitor data from the remote by assigning it the base’s address. By assigning the destination address 
to that of the remote, you may use the terminal to send the control codes and values to the remote. 
 

 Place the USB-connected XBee on address 0 (ATMY 0) to monitor data from the remote to 
the base using the normal base hardware to send data and used the Debug Terminal and base 
unit to poll remote nodes. 



5: Network Topologies & Control Strategies 

Page 90    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

 Place the USB connected XBee on a remote’s address (ATMY 2) to monitor data from the 
base to the remote.  

 Place the USB-connected XBee to sent to the remote unit’s address (ATDL 2) with the MY 
address of 0 (ATMY 0). 

 Send data to a remote by using the Assemble Packet window, such as: 
o L (Enter),1 (Enter), or , 
o S (Enter), 750 (Enter), or, 
o B (Enter) 2500 (Enter), or,  
o R to read 

 

More on Acknowledgements 

For acknowledgements, we have 3 cases: A “1” returned to the base means data was accepted and 
acknowledged (ACK). If no value is received, this is a no-acknowledgement (NACK) meaning the 
data wasn’t received. A value other than “1” would be a bad acknowledgement; this will normally 
never happen unless there is a problem in our code and data is in the XBee buffer that isn’t meant to 
be there. 
 
While our code doesn’t take action on a NACK except to display it, you may program a DO 
WHILE... LOOP to send the data several times (keeping track with a counter) until the retry value is 
exceeded or an ACK is received. This is very similar to what the XBee does to ensure data delivery 
between modems, but ours would be for data delivery between the microcontroller applications. 

Point-to-Multipoint - Automatic Polling of Remote Units with dBm 
With automatic polling, the base cycles through the provided range of remote unit addresses, sending 
new parameters to each, reading each, and requesting and displaying the RSSI level of the received 
packet using ATDB. For control actions, acknowledgements from remote units are still accepted and 
the status is displayed. 
 
In the code, setting Start_Addr and End_Addr establishes the range of addresses to poll. A FOR-
NEXT loop cycles through the addresses, setting the DL parameter for each using fast Command 
Mode. Frequency, servo position and LED state are set and sent to the individual remote unit using 
the same format as in manual polling. The R command is sent to read the remote unit and the dBm 
level is obtained and displayed.  After a complete cycle, one more set of updates is sent to the 
broadcast address updating all remote nodes with the same data. 
 
Partial code listing for Automatic_Polling_Base.bs2; please see distributed files for full listing: 
 

' ***************** Main Loop  
DO 
  FOR DL_Addr = Start_Addr TO End_Addr  ' loop through range of addresses 
     DEBUG CR,CR,"***** Starting Control of Address ", 
                        IHEX DL_Addr," *******" 
     GOSUB Config_XBee                              ' Set DL address 
     State = 1       :GOSUB LED_State   : PAUSE 200 ' Set remote LED 
     Position = 500  :GOSUB Servo_Pos   : PAUSE 200 ' Set remote servo 
     Freq = 5000     :GOSUB Buzzer_Freq : PAUSE 200 ' set remote buzzer 
     GOSUB Read_Light                   : PAUSE 200 ' Go read remote 
     GOSUB Get_dB                                   ' Go read & display dB 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 91        

     Freq = 0        :GOSUB Buzzer_Freq : PAUSE 200 ' Set remote buzzer 
     Position = 1000 :GOSUB Servo_Pos   : PAUSE 200 ' Set remote servo 
     State = 0       :GOSUB LED_State   : PAUSE 200 ' Set remote LED 
     PAUSE 2000 
   NEXT 
 
   DEBUG CR, CR,"********* Control All Nodes! **********" 
   DL_Addr = $FFFF                                ' Set to control ALL nodes 
   GOSUB Config_XBee                                ' Set DL address 
     State = 1       :GOSUB LED_State   : PAUSE 200 ' Set all remote LEDs 
     Position = 500  :GOSUB Servo_Pos   : PAUSE 200 ' Set all servos 
     Freq = 5000     :GOSUB Buzzer_Freq : PAUSE 200 ' Set all buzzers 
     Freq = 0        :GOSUB Buzzer_Freq : PAUSE 200 
     Position = 1000 :GOSUB Servo_Pos   : PAUSE 200 ' Set all servos 
     State = 0       :GOSUB LED_State   : PAUSE 200 ' Set all LEDs 
     PAUSE 2000 
LOOP 
 
Get_dB: 
  ' Request, accept, display dB level 
  PAUSE 10                                  ' Short guard time 
  SEROUT Tx,Baud,["+++"]                    ' Command Mode sequence 
  PAUSE 10                                  ' Short guard time 
  SEROUT TX,Baud,["ATDB",CR]                ' request dB level 
  SERIN Rx,Baud,200,dB_Timeout,[HEX DataIn] ' Accept returning data 
  SEROUT Tx,Baud,["ATCN",CR]                ' Exit Command Mode 
  DEBUG CR,"                       RSSI dB = -", DEC DataIn 
dB_timeout: 
RETURN 

 

Testing: 

 Open Polling_Remote.bs2 
 Modify the MY_Addr constant to assign your remote’s address, $1 to $FFFE (code default 

is $2). 
 Download to your remote hardware. 
 Repeat steps above for any additional remotes, giving each a unique address. 
 Open Automatic_Polling_Base.bs2. Modify Start_Addr and End_Addr to encompass a 

range of addresses included in your remotes – include a range beyond your actual remotes to 
test what happens when node is not present (by default, range is addresses 1 to 3). 

 Download to your base hardware. 
 Using the Debug Terminal, monitor the polling as shown in Figure 5-7. 



5: Network Topologies & Control Strategies 

Page 92    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

 

 
Figure 5-7: Automatic Polling Debug Terminal 

Optional: Using XBee & X-CTU for Monitoring and Control 

Once again, an XBee on USB may be used to monitor data communications – if you did it with 
manual polling, you can do it with automatic polling as well. 
 

 Using X-CTU, set the USB-connected XBee to a remote unit’s address (ATDL 2) to monitor 
polling data from the base. 

Scheduled Updates from Remote Units 
Allowing the remote units to make initial contact with the base allows them the ability perform other 
processes or enter reduced power states (Chapter 6) without having to continually monitor for 
incoming communications from the base. A down side of this is that with relatively slow processing 
and limited serial communications handling of the BASIC Stamp, having multiple units attempting to 
contact the base simultaneously could affect operation. The use of RTS to allow the base XBee to 
buffer data (around 100 bytes worth), use of a start-delimiting character, and performing operations 
quickly will aid in ensuring that the BASIC Stamp will get incoming current values and send updates. 
Additionally, to limit the back-and-forth communications, application acknowledgements will not be 
sent for this example. 
 
To make the operation simpler, the communications back and forth will be limited to chunks of data 
instead of sending control strings for LED, servo and buzzer independently. 
 

• The remote unit will send “C” and all its current values to the base including its address (so 
the base knows which address is contacting it) in a single transmission. 

• The base monitors for the “C” start delimiter and accepts incoming data. 
• The base will configure DL for the  remote’s address using fast Command Mode. 
• The base will calculate changes and send out “U” and all updated values to the remote in a 

single transmission. 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 93        

• The remote waits for a short time for “U” and updated data. 
• Base is ready for an update from another unit. 

 
Partial code listing for Scheduled_Base.bs2; please see distributed files for full listing: 
 

' ***************** Main Loop 
DO 
  SERIN Rx\RTS,Baud,20,UpdateTOut,[DataIn]  ' Wait for "C" with timeout 
  IF DataIn = "C"  THEN                     ' If "C" (Current), collect 
    DEBUG CR,"Incoming Data",CR 
    ' Accept incoming values with timeout 
    SERIN Rx\RTS,Baud,1000,UpdateTOut,[HEX DL_Addr] 
    SERIN Rx\RTS,Baud,1000,UpdateTOut,[DEC Light] 
    SERIN Rx\RTS,Baud,1000,UpdateTOut,[DEC State] 
    SERIN Rx\RTS,Baud,1000,UpdateTOut,[DEC Freq] 
    SERIN Rx\RTS,Baud,1000,UpdateTOut,[DEC Position] 
 
    DEBUG CLS, "                    Unit ", IHEX DL_Addr," Reports",CR, 
          "Light Reading: ", DEC Light,CR,          ' Display data 
          "LED State:     ", DEC State,CR, 
          "Frequency:     ", DEC Freq,CR, 
          "Position:      ", DEC Position,CR 
 
    GOSUB Config_XBee                    ' Configure XBee for DL address 
    GOSUB ChangeRemote                   ' Change device values 
 
    SEROUT Tx,Baud,["U",CR,CR,           ' Send Update start character 
                  DEC State,CR,CR,       ' Send new LED state 
                  DEC Freq,CR,CR,        ' Send new frequency 
                  DEC Position,CR]       ' Send new position 
  ENDIF 
UpdateTout: 
DEBUG "." 
LOOP 
 
ChangeRemote: 
  Freq = Freq + 500                        ' Add 500 to received value 
  IF Freq > 5000 THEN Freq = 1000          ' limit 1000-5000 
  DEBUG CR,"Setting buzzer to frequency of:", DEC Freq 
  IF State = 1 THEN                        ' Change LED state 
    State = 0 
  ELSE 
    State = 1 
  ENDIF 
  DEBUG CR,"Setting LED to state of:       ", DEC State 
  Position = Position + 50                 ' Add 50 to servo position 
  IF position > 1000 THEN Position = 500   ' Limit 500 to 1000 
  DEBUG CR,"Setting Servo to position of:  ", DEC Position 
RETURN 

 
On the remote, the code cycles through every 3 seconds to send current values and receive updates. 
FlushBuffer is used to ensure the buffer is empty of data. In accepting data, just in case the buffer 



5: Network Topologies & Control Strategies 

Page 94    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

held data that wasn’t intended, the GOTO AcceptData ensures that erroneous characters won’t ruin 
accepting incoming data if SERIN gets something other than a “U” delimiter. 
 

 

Choosing Start Delimiters 

We’ve used “!”, “U”, “C” and other characters as delimiters to identify incoming strings and parameters. 
Typically you want to choose characters that won’t likely be transmitted for other reasons. Included in those 
not to use are the letters “O” and “K” since OK’s are sent from XBee during configuration changes. 

 
Partial code listing for Sceduled_Remote.bs2; please see distributed files for full listing: 
 

 Open Scheduled_Remote.bs2. 
 Modify the MY_Addr constant to assign your remote’s address, $1 to $FFFE (code default 

is $2). 
 Download to your remote hardware. 
 Repeat steps above for any additional remotes, giving each a unique address. 
 Download Scheduled_Base.bs2 to your base hardware. 
 Using the Debug Terminal, monitor the updates as shown in Figure 5-8. 

 

 
 Figure 5-8: Scheduled Update Monitoring in Debug Terminal 

 

Separating Update Times on Remotes 

In our code, we simply wait three seconds between updates. If you have multiple remotes with 
identical code and they are powered up at once, they will all be on the same schedule and may cause 
issues with updates as they all send at once. By energizing at separate times, it will help ensure 
updates are separated. In code you may change the PAUSE before the main DO-LOOP to be based on 
something unique if all are powered up at once, such as: 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 95        

   
PAUSE 1000 + (DL_Addr * 500) 
 

This will help offset the transmission of remote nodes. The XBee itself has a setting, Random Delay 
Slot (RN) to help randomize its “back-off and retry” algorithm so that the modems themselves are not 
locked in sync and having problems sending data with the exact same retry times. 

Propeller Examples 
The Propeller chip’s speed, buffering of the serial data, and use of multiple cogs makes duplex serial 
communications easy to implement without the use of flow control. We will use basic, common 
hardware to illustrate principles that may aid you in development of your own systems. 

Hardware 

(2) Propeller development boards 
(2) XBee adapter boards  
(2) XBee with default settings 
(1) Pushbutton 
(1) LED 
(1) Buzzer 

(1) Phototransistor 
(1) 0.01µF capacitor 
(1) 10 kΩ Resistor 
(1) 220 Ω Resistor 
Optional: XBee USB Adapter and XBee 
module

 

 
Board and Power! 

Use an appropriate BASIC Stamp XBee Adapter Board with supplied power per Chapter 2.  

 
Assemble the hardware as shown in Figure 5-9 for the base and at least one remote (multiple remotes 
may be built for testing multi-node communications). The base will use the X-CTU Terminal for 
control and notifications in most examples (any terminal program may be used such as the Parallax 
Serial Terminal). 
 

 

 
Base Propeller chip and XBee module 

 
Remote Propeller chip and XBee module 

 
Figure 5-9: Propeller Base and Remote Schematics 



5: Network Topologies & Control Strategies 

Page 96    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

Using Point-to-Point for Pushbutton Control 
In this example, the base unit will send the data to set the state of an LED and the frequency for the 
buzzer. To exploit the Propeller chip’s features, counters are used control the frequency and the 
brightness of the LED using PWM. State is a value from 0 to 1023 for 10-bit PWM control and Freq 
is a value from 0 to 5000. Pressing the button will increase State and Freq, not pressing the button 
will ramp down State and Freq. The base will continually send “!” and the 2 decimal values to be 
received and used. 
 
Partial code listing for Simple_Control_Base.spin; please see distributed files for full code: 
 

Pub  Start | State, Freq  
  XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee 
  State := 0                         ' Initial state and frequency 
  Freq  := 0 
 
   
  repeat 
    if ina[PB] == 1                  ' If button pressed, 
      Freq := Freq + 100 <# 5000     ' increase Freq to 5000 max 
      State := State + 10 <# 1020    ' increase State to 1020 max 
    else                             ' If released, 
      Freq := Freq - 100 #> 0        ' decrease freq to 0 min 
      State := State - 10 #> 0       ' decrease state to 0 min 
 
    XB.Tx("!")                       ' Send start delimiter 
    XB.Dec(State)                    ' Send decimal value of State + CR 
    XB.CR 
    XB.Dec(Freq)                     ' Send decimal value of Freq + CR 
    XB.CR 
    XB.Delay(100)                    ' Short delay before repeat 

 
The remote code waits for the start delimiter (“!”), then accepts two decimal values for control of the 
LED PWM and the buzzer frequency, which are used to control the devices. 
 
Partial code listing for Simple_Control_Remote.spin; please see distributed files for full code: 
 

Pub  Start | DataIn  
  XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee 
 
  repeat 
    DataIn := XB.Rx                  ' Accept incoming byte 
    If DataIn == "!"                 ' If start delimiter 
      DataIn := XB.RxDecTime(500)    ' Accept value for LED state 
      if DataIn <> -1                ' If wasn't time out, set PWM 
        PWM_Set(LED,DataIn) 
                                         
      DataIn := XB.RxDecTime(500)    ' Accept value for Frequency 
      if DataIn <> -1                ' If wasn't timeout, set FREQOUT 
        Freqout_Set(Buzzer,DataIn) 

 

Testing: 

 Download Simple_Control_Remote.spin to your remote hardware. 
 Download Simple_Control_Base.spin to your base hardware. 
 Press and release the pushbutton on the base while monitoring the remote’s LED and buzzer. 

 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 97        

Optional: Using an USB XBee and X-CTU for Control and Monitoring 

You may use X-CTU with a USB connected XBee on address 0 to send data to the remote through 
the Assemble Packet window such as !200 (Enter) 2000 (Enter). X-CTU may also be used to monitor 
data from the base to the remote. 

Point-to-Multipoint—Manual Polling of Remote Nodes 
In this example the Propeller base requests and accepts input from the user via the PC and a terminal 
window.  The base requests the remote node’s address to control or read and control action (control 
LED, control buzzer or read phototransistor). The base also accepts an application acknowledgement 
from the remote to help ensure actions were accepted. 
 
The base code uses .AT_INIT to switch to fast Command Mode for updates. The base address is set 
to 0. The code uses the XBee_Object for the PC communications driver as well as it is more fully 
featured to accept decimal input from the terminal. The code requests the remote’s address and uses 
.AT_ConfigVal to set the DL to send data to the identified address. The user is prompted for the 
control action (L,B or R) and a value in the case of LED and buzzer control. The control action code 
is sent along with a value for the update. It then accepts the phototransistor reading for an “R” action, 
or obtains an acknowledgement for control actions of the LED and buzzer from the remote unit. 
 
Due to buffering of serial data by the Propeller FullDuplexSerial.spin drivers (up to 15 characters), 
.RxFlush is used to ensure the buffer is empty of “OK”s from the XBee and other data. In the 
Acknowledgement method, a byte value returned of 1 indicates data accepted, no data returned (a 
timeout) indicated no-acknowledgment (NACK). Any other value other than 1 indicates a problem 
with erroneous data in the buffer. 
 
While our code doesn’t take action on a NACK except to display it, you may program a REPEAT-WHILE 
loop to send the data several times (keeping track with a counter) until a retry value is exceeded or an 
ACK is received. This is very similar to what the XBee does to ensure data delivery between 
Modems, but ours would be for data delivery between the applications. 
 
Partial code listing for Manual_Polling_Base.spin; Please see distributed file for full source code: 
 

OBJ 
   XB    : "XBee_Object" 
   PC    : "XBee_Object" ' Using XBee object on PC side for more versatility  
 
Pub  Start | Light, DataIn, DL_Addr, State, Freq 
  
  XB.Delay(2000) 
  PC.start(PC_Rx, PC_Tx, 0, PC_Baud) ' Initialize comms for PC 
  PC.str(string("Configuring XBee...",CR))  
  XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee 
  XB.AT_Init                         ' Set up for fast Command Mode 
  XB.AT_Config(string("ATMY 0"))     ' Set address of base 
 
  repeat 
    PC.CR                             ' User defines remote node address 
    PC.str(string("*** Enter address of node ***",CR))  
    PC.str(string("(1 to FFFE or FFFF for all):")) 
    DL_Addr := PC.RxHex               ' Accept address in hex and sets XBee DL 
    XB.AT_ConfigVal(string("ATDL "),DL_Addr) 
                                      ' User chooses action to take 
    PC.str(string(CR,"***** Choose Action: *****",CR)) 
    PC.str(string("L - Control LED",CR)) 



5: Network Topologies & Control Strategies 

Page 98    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

    PC.str(string("B - Contol Buzzer",CR)) 
    PC.str(string("R - Read Sensor",CR)) 
    DataIn := PC.Rx                   ' Accept action 
    XB.RxFlush 
     
    case DataIn                         
       "L","l": PC.str(string(CR,"Enter LED state (0-1023): ")) 
                State := PC.RxDec      ' Accept value for state 
                XB.tx("L")             ' Transmit L followed by State 
                XB.Dec(State) 
                XB.CR 
                GetAck                 ' Check for acknowledgement 
                    
       "B","b": PC.str(string(CR,"Enter buzzer Frequency (0-5000): ")) 
                Freq := PC.RxDec       ' Accept value for frequency        
                XB.tx("B")             ' Transmit F followed by State  
                XB.Dec(Freq)                                           
                XB.CR                                                  
                GetAck                 ' Check for acknowledgement     
                                   
       "R","r": XB.Tx("R")             ' Transmit R to remote 
                Light := XB.RxDecTime(500)  ' Accept response 
                if Light == -1              ' If no data returned, 
                  PC.str(string(CR,"No Response",CR)) 
                else                        ' Else, good data 
                  PC.str(string(CR,"Light Level = ")) 
                  PC.dec(light) 
                  PC.CR 
    PC.Delay(2000) 
                      
Pub GetAck | Ack 
  Ack := XB.RxTime(500)                 ' wait for response 
  If Ack == -1                          ' -1, no ack received 
    PC.Str(string("-No Ack!",CR)) 
  elseif Ack == 1                       ' 1, good ack 
    PC.str(string("-Good Ack! ",CR)) 
  else                                  ' any other value - problem 
    PC.str(string("-Bad Ack!",CR)) 

 
In the remote’s code, the program configures for fast Command Mode and configures the MY address 
of the remote based on the value in the CON section of the code for MY_Addr. The code waits for a byte 
and checks the action identifier to determine the action, such as accepting and controlling the LED 
brightness based on the value, accepting and setting the buzzer’s frequency, or reading and sending 
the value of the phototransistor. With control actions, the acknowledgement byte of 1 is returned. 
 
Partial code listing for Polling_Remote.spin; pPlease see distributed file for full source code: 
 

Pub  Start | DataIn, Light  
  XB.start(XB_Rx, XB_Tx, 0, XB_Baud)       ' Initialize comms for XBee 
  XB.AT_Init                               ' Set up XBee for fast Command Mode 
  XB.AT_ConfigVal(string("ATMY "),MY_Addr) ' Configure node's address 
  XB.AT_Config(string("ATDL 0"))           ' Configure address of base 
    
  XB.RxFlush                               ' Ensure XBee buffer empty 
  repeat 
     DataIn := XB.Rx                       ' Wait for byte 
     case DataIn 
       "L": DataIn := XB.RxDecTime(500)    ' If byte L, accept data from LED PWM 
            if DataIn <> -1                ' Ensure wasn't timeout 
              XB.Tx(1)                     ' Send ack byte of 1 
              PWM_Set(LED,DataIn)          ' Set PWM 
      



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 99        

    
       "B": DataIn := XB.RxDecTime(500)    ' If byte B, accept data for buzzer 
                                           ' frequency 
            if DataIn <> -1                ' Ensure wasn't timeout 
              XB.Tx(1)                     ' Send ack byte of 1 
              Freqout_Set(Buzzer,DataIn)   ' Set buzzer frequency 
               
       "R": Light := RCTime(PhotoT)        ' If R, read RCTime of sensor 
            XB.DEC(Light)                  ' Send value 
            XB.CR 
            

Testing: 

 Open Polling_Remote.spin and modify the MY_Addr value as desired, choosing different 
values for multiple remotes (default is 2). 

 Download the code to the remote hardware. 
 Repeat above if multiple remotes are used. 
 Download Manual_Polling_Base.spin to the base hardware (Use F11 in the event the terminal 

resets the Propeller). 
 Open a terminal program (X-CTU or other) on the PC for communications with the base and 

respond to prompts as shown in Figure 5-10. If you used F11 to download your code, you 
may reset the Propeller to catch initial messages. 

 Test both good and unused remote addresses. 
 Use an address of FFFF to test a broadcast to all nodes for a control action. 



5: Network Topologies & Control Strategies 

Page 100    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

 
Figure 5-10: Manual Polling Base Terminal 

 

Using a USB XBee for Monitoring and Control 

Using an XBee on USB and a terminal window is good way to test remote code and monitor data 
passed. By setting the USB XBee to a DL of a remote’s address, you can use the Assemble Packet 
Window of X-CTU send control actions such as setting the LED (L200 + Enter), buzzer (B3000 + 
Enter) or reading the phototransistor (R). It may also be used on MY of 0 to monitor data from the 
remote, or a MY of the remote’s address to monitor data from the base. 

Point-to-Multipoint—Automatic Polling of Remote Units with dBm 
With automatic polling, the base cycles through the provided range of remote unit addresses sending 
new parameters to each, reading each, and requesting and displaying the RSSI level of the received 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 101        

packet using ATDB. For control actions, acknowledgements from remote units are accepted and the 
status is displayed. Polling_Remote.spin is used on the remote devices. 
 
The base code uses a repeat loop to cycle through the defined range of addresses defined in the CON 
section, from DL_Start to DL_end and setting the XBee’s DL parameter. It uses methods to increment 
(but limit) the remote’s state value of LED and the buzzer’s frequency, accepting acknowledgements, 
and reading the remote’s phototransistor. It also uses fast Command Mode to request, receive and 
display the RSSI dBm level using the ATDB command. After control of each node individually, it 
uses the broadcast address ($FFFF) to control the LED and buzzer of all remote nodes at once. 
 
Partial code listing for Automatic_Polling_Base.spin; please see distributed files for full code listing. 
 

Pub  Start  
  XB.Delay(2000) 
  PC.start(PC_Rx, PC_Tx, 0, PC_Baud) ' Initialize comms for PC 
  PC.str(string("Configuring XBee...",CR))  
  XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee 
  XB.AT_Init                         ' Set up XBee for fast Command Mode 
  XB.AT_Config(string("ATMY 0"))     ' Set base node's address 
 
  repeat 
    PC.str(string(CR,CR,"*** Individual Polling of Remotes ***")) 
                                     ' Poll nodes from start to end address  
    repeat DL_Addr from DL_Start to DL_End     
      PC.str(string(CR,CR,"*** Controlling Node:         ")) 
      PC.DEC(DL_Addr) 
      XB.AT_ConfigVal(string("ATDL "),DL_Addr)  ' Set remote address 
      XB.Delay(100)                             ' Allow OK's buffer 
      XB.RxFlush                                ' Empty buffer 
      Set_LED                                   ' Send LED settings 
      Set_Buzzer                                ' Send buzzer settings 
      GetReading                                ' Request Light value 
      GetdB                                     ' Read RSSI from remote's data 
      XB.Delay(2000)                            ' 2 second delay 
                                      ' Control all remotes using broadcast 
   PC.str(string(CR,CR,"*** Controlling ALL Nodes ***")) 
      DL_Addr := $FFFF                          ' Set broadcast address 
      XB.AT_ConfigVal(string("ATDL "),DL_Addr) 
      XB.Delay(100)                             ' Allow OK's to buffer 
      XB.RxFlush                                ' Flush buffer 
      Set_LED                                   ' Control LEDs 
      Set_Buzzer                                ' Control Buzzers 
      XB.Delay(4000)                            ' 4 second delay before repeating 
 
Pub Set_LED  
  State += 100                                  ' Increase PWM state by 100 
  if State > 1000                               ' limit 0 to 1000 
    State := 0 
  PC.str(string(CR,"Setting LED to:          ")) 
  PC.Dec(State)                                  
  XB.Tx("L")                                    ' Send L + value 
  XB.Dec(State) 
  XB.CR 
  GetAck                                        ' Accept acknowledgement 
   
Pub Set_Buzzer 
  Freq += 500                                   ' Increase buzzer freq by 500 
  if Freq > 5000                                ' limit freq 0 to 5000 
    Freq := 0 
  PC.str(string("Setting Frequency to:    ")) 
  PC.Dec(Freq) 



5: Network Topologies & Control Strategies 

Page 102    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

  XB.Tx("B")                                    ' Send B + value 
  XB.Dec(Freq) 
  XB.CR 
  GetAck                                        ' Accept acknowledgement 
   
Pub GetReading 
   PC.str(string("Getting Light Level:     ")) 
   XB.Tx("R")                                   ' Send R for light level 
   Light := XB.RxDecTime(500)                   ' Accept returned data 
   If Light == -1                               ' -1 means timeout 
     PC.str(string("No Response")) 
   else 
     PC.Dec(Light)                              ' Display value 
 
Pub GetdB 
   PC.str(string(CR,"Getting RSSI dBm:       ")) 
   XB.RxFlush                                   ' Empty buffer 
   XB.AT_Config(string("ATDB"))                 ' Request RSSI dB 
   DataIn := XB.RxHexTime(500)                  ' Accept returning data in HEX 
   If DataIn == -1                              ' -1 means timeout 
     PC.str(string("No Response",CR)) 
   else 
     PC.Dec(-DataIn)                            ' Display value in hex 

 

Testing: 

 Open Polling_Remote.spin 
 Modify the MY_Addr constant to assign your remote’s address, $1 to $FFFE (code default is 

$2). 
 Download to your remote hardware. 
 Repeat steps above for any additional remotes, giving each a unique address. 
 Open Automatic_Polling_Base.spin. Modify DL_Start and DL_End to encompass a range of 

addresses included in your remotes – include a range beyond your actual remotes to test what 
happens when node is not present (By default, range is addresses 1 to 3. 

 Download to your base hardware. 
 Using a terminal window, monitor the polling as shown in Figure 5-11. 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 103        

 
Figure 5-11: Automatic Polling Base Terminal 

Scheduled Updates from Remote Units 
Allowing the remote units to make initial contact with the base allows them the ability perform other 
processes or enter reduced power states (Chapter 6) while not having to be continually monitoring for 
incoming communications from the base. It also allows a remote with an urgent update to send data 
without waiting to be polled. To limit the back-and-forth, all data is sent to both the base and to the 
remotes in one burst instead of separate commands being sent. Acknowledgements are also not used 
to limit data flow and to ensure the base is ready as quickly as possible for an update from another 
unit. 
 
To make the operation simple, the communications back and forth will be limited by sending chunks 
of data instead of sending control strings for LED and buzzer independently. 
 



5: Network Topologies & Control Strategies 

Page 104    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

• The remote unit will send “C” and all its current values to the base including its address (so 
the base knows which address is contacting it) in a single transmission. 

• The base monitors for the “C” start delimiter and accepts all incoming data. 
• The base will configure DL for the remote’s address using fast Command Mode used 

by .AT_Config. 
• The base will calculate and send out “U” and all updated values to the remote in a single 

transmission. 
• The remote waits for a short time for “U” and updated data. 
• Base is ready from update from another unit. 

 

 

Choosing Start Delimiters 

We’ve used “!”, “U”, “C” and other characters as delimiters and to identify incoming strings and parameters. 
Typically you want to choose characters that won’t typically be transmitted for other reasons. Included in those 
not to use are the letters “O” and “K” since OK’s are sent from XBee during configuration changes.  

 
 
Partial code listing for Scheduled_Base.spin; please see distributed files for complete code listing: 
 

Pub  Start   
  XB.Delay(2000) 
  PC.start(PC_Rx, PC_Tx, 0, PC_Baud) ' Initialize comms for PC 
  PC.str(string("Configuring XBee...",CR))  
  XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee 
  XB.AT_Init                         ' Configure for fast Command Mode 
  XB.AT_Config(string("ATMY 0"))     ' Set address of base (MY) 
 
   
  PC.str(string(CR,CR,"*** Waiting for Data"))       
  repeat 
     
    DataIn := XB.rx                  ' Wait for incoming byte character 
    If DataIn == "C"                 ' If C, current update 
       DL_Addr := XB.RxDecTime(500)  ' Accept remote address 
       PC.str(string(CR,"     Update from remote address :")) 
       PC.HEX(DL_Addr,2) 
       State := XB.RxDecTime(500)    ' Accept LED state 
       PC.str(string(CR,"     LED State:               ")) 
       PC.DEC(state) 
       Freq := XB.RxDecTime(500)     ' Accept frequency 
       PC.str(string(CR,"     Frequency:               ")) 
       PC.DEC(Freq) 
       Light := XB.RxDecTime(500)    ' Accept light level 
       PC.str(string(CR,"     Light Level:             ")) 
       PC.DEC(Light) 
       PC.str(string(CR,"** Updating Remote **")) 
       XB.AT_ConfigVal(string("ATDL"),DL_Addr)  ' Configure DL for remote 
       Set_LED                       ' Go send LED update 
       Set_Buzzer                    ' Go send Buzzer update 
       PC.str(string(CR,CR,"*** Waiting for Data"))       
    else                              
       PC.tx(".")                    ' Non-C data           
 
Pub Set_LED  
  State += 100                                  ' Increase PWM state by 100 
  if State > 1000                               ' limit 0 to 1000 
    State := 0 
  PC.str(string(CR,"     Setting LED to:          ")) 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 105        

  PC.Dec(State)                                  
  XB.Tx("L")                                    ' Send L + value 
  XB.Dec(State) 
  XB.CR 
   
Pub Set_Buzzer 
  Freq += 500                                   ' Increase buzzer freq by 500 
  if Freq > 5000                                ' limit freq 0 to 5000 
    Freq := 0 
  PC.str(string(CR,"     Setting Frequency to:    ")) 
  PC.Dec(Freq) 
  XB.Tx("B")                                    ' Send B + value 
  XB.Dec(Freq) 
  XB.CR 

 
The remote code uses two cogs: one to send the current data (Start method) and one to accept 
updates (AcceptData method). A delay of 5 seconds is used between sending updates (and expecting 
updates). Due to the Propeller chip’s parallel processing abilities, the remote code can still accept 
updates at anytime should data be sent from the base or USB, such as B2000. 
 
Partial code listing for Scheduled_Remote.spin; please see distributed files for complete code listing: 
 

Pub Start | DataIn  
  XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee 
  XB.AT_Init                         ' Set for fast Command mode 
  XB.AT_ConfigVal(string("ATMY "),MY_Addr) ' Set remote's address 
  XB.AT_Config(string("ATDL 0")) 
                                     ' Set base address (destination) 
  cognew(AcceptData,@stack) 
    
  XB.Delay(2000) 
    
  repeat 
     XB.tx("C")                      ' Send C for current data 
     XB.Dec(MY_Addr)                 ' Send remote's address 
     XB.CR 
     XB.Dec(State)                   ' Send state of LED PWM 
     XB.CR 
     XB.Dec(FreqIn)                  ' Send Frequency of buzzer 
     XB.CR 
     Light := RCTime(PhotoT)         ' Send Light level 
     XB.Dec(Light) 
     XB.CR 
     XB.Delay(5000)                  ' Wait 5 seconds before next update 
    
Pub AcceptData| DataIn 
' Accept incoming settings 
 
  XB.RxFlush                          ' Ensure buffer empty 
  repeat 
     DataIn := XB.Rx                  ' Accept incoming byte character 
     case DataIn 
       "L": DataIn := XB.RxDecTime(500) ' If L, accept data for LED 
            if DataIn <> -1             ' Ensure not timeout value, -1 
              State := DataIn           ' Accept state 
              PWM_Set(LED,DataIn)       ' Set LED State 
      
    
       "B": DataIn := XB.RxDecTime(500) ' If B, buzzer data 
            if DataIn <> -1             ' Ensure not timeout value, -1 
              FreqIn := DataIn          ' Accept data for Frequency 
              Freqout_Set(Buzzer,DataIn)' Set buzzer Frequency 



5: Network Topologies & Control Strategies 

Page 106    ·    Getting Started with XBee Modules DRAFT. COPYRIGHT © PARALLAX INC 2010 

 Open Scheduled_Remote.spin 
 Modify the MY_Addr constant to assign your remote’s address, $1 to $FFFE (code default 

is $2). 
 Download to your remote hardware. 
 Repeat steps above for any additional remotes, giving each a unique address. 
 Download Scheduled_Base.spin to your base hardware. 
 Using a terminal window, monitor the updates as shown in Figure 5-12. 

 

 
Figure 5-12: Scheduled Base Monitoring in Terminal 

 

Separating Update Times on Remotes 

In our code, we simply wait five seconds between updates. If you have multiple remotes with 
identical code and they are powered up at once, they will all be on the exact same schedule and may 



5: Network Topologies & Control Strategies 

DRAFT. COPYRIGHT © PARALLAX INC 2010   Getting Started with XBee RF Modules   ·   Page 107        

cause issues with updates as they all send at once. By energizing at separate times, it will help ensure 
updates are separated. In the code you may change the delay before the main loop to be based on 
something unique if all powered up at once, such as:   

 
XB.Delay(1000 + (DL_Addr * 500)) 
 

This will help offset the transmission by remote nodes. The XBee itself has a setting, Random Delay 
Slot (RN) to help randomize its “back-off and retry” algorithm so that the modems themselves are not 
locked in sync and having problems sending data with the exact same retry times. Of course, updates 
may not be based on time but on some event taking place. 

Summary 
The XBee, using the IEEE 802.15.4 protocol, ensures data is passed between XBee modules 
efficiently and correctly at the data link layer. It is up to the programmer to initiate a scheme to ensure 
data communications between the applications are also efficient and as robust as possible. Whether 
performing point-to-point or point-to-multipoint communications, the transmitter and receiver need to 
have their code coordinated for the application at hand. Some possible schemes include polling and 
scheduling of communications. 
 
 
 
 


