PROPELLER ASSEMBLY SOURCECODE
DEBUGGER (PASD)

USER’S MANUAL

Version |.1
09/04/07

Manual © 2007 Insonix
Written by Andy Schenk and Eric Moyer

PASD © 2007 Insonix
Written by Andy Schenk

A
o
|

TABLE OF CONTENTS

I, PASD OVEIVIEW...ccciiiiiiiiinnnnnnentiieecsissssssnnnesssesssasssssssssssssssssanssssssssss 3
2. INSEAIIAtION..cccciiiiiiiiiiinnnteeeteeeeniisinntattteeeessssssssssansessesssssssssssssasasssssssssssssssasssssssssssssssssasssssssssssssssssssasssssssssssssssssansssssssssssssnns 4
3. PASD WalKtRIrOUZhcciiiiiiiiiiiiiiiiiiiiniiiniiinenesteinesenesesesesesesesssesss 5
4. Setting up your spin code to USe PASDieeeiiriieeeiieiieeenieteieieeiettetttetttetttttttttttttetttetestttttsttttststsstssssssssssssssssssssssssses 7
LT @ o T - ¥ Lo R 8
5.0 Main APPlICAtION MENUS ...ttt sttt et ettt s st s st sttt bt s st eaesesetaeaessataeas 8
5.1.1 FIIE IENU ettt ettt st ettt b s et st s et e st e s bt aeaeseataeaesen 8
5.1.2. DIEDUEZ MENU ...ttt ettt ettt ettt ettt ettt ettt s bbb st aenes 8
5.1.3. COM MENU ...ttt e st ss sttt e ettt et ettt sttt s e s e seabasas 9
5.1.4. HEIP MENU .ttt ettt ettt £ttt ettt et s e bt s bt e s atacaesn 9

5.2, COG RAM VIBWET ...ttt eeae e tseseas st esess st e e st e s tae st ettt ettt s bt s st sttt ae bt ae s e bt e aesssetacaesssntacas 9
52.1. VIEWET OPEIAtiONceeueuceiieuceeieieueisietseeaeasesesesess e esessastese st taese st se s e et se s bae s s st e s s bt s et s st aes e s s e eataes st ae s bt e aeasaeteacasantaeas 9
5.2.2. MOdIfying COG RAM ...ttt et ss s st e st et ettt bbb e st e saces 10

530 MAIN RAM VIBWET ...ttt ettt st st st ettt bttt st e s et ae s st e aeseantaeas 10
54, PN VIEWET ..ttt ettt st s ettt E bbbt s et s st eas I
5.5, KEYDOAIrd SNOITCULS ...ttt ettt st st ettt ettt bbbttt st aes e s taesesesntaeas 12
6. UNdEr The HoOOdceeieiiiiiiiinnnnneeitieeecisnsssnnnnneeeeesssssssssssssassssessasssssssssssssssssanssssssssss 13
T, LiMItatiONS cucccceeiiiiiiininnnneieeencccissssssnneeeeeneccssssssssssseesssessssssssssssseessnne 14
Tl INUMDEE Of COGS ...ttt ettt ettt ettt ettt s et s et et sttt et bt taea et tae s ettt ae s st etaeas 14
7.2, RUNtIME MOQIfIEd INSTIUCTIONS ...ttt ettt ettt sttt bttt ettt b bt aeseseteeas 14
7.3, WAITCNT anNd WAITVIDcoiieerieicireireiseeieiseisesseastse e sseseesstas st ssssstsstas s st sstse s s s s et st s e s ettt ees e s s s et setsstae e seseesstassassas 14
74, REPEALEd DEfINITIONS ...c.couiuiieiieeieiricicirectei ettt s sttt bttt sttt bttt bttt aebaessbacsebecses 14
8. ADOUL INSONIXuciiiiiirieiiisissssnnneeeeecisssssssnaseeeesscssssssssssseeessssssssssssssssessssessssssssssssssssssssssssssssssssesssssssssssssssasssssssssssssssssasasssssssss 15

PASD User’s Manual |

@somx

LLER]

“There are no rules here--we're trying to accomplish something.

-Thomas Alva Edison

l. PASD Overview

The Propeller Assembler Source-code Debugger (PASD) is a
suite of software components which enable end-users to
debug Propeller assembly language code at the source level
using a remote (USB attached) Windows PC. PASD supports
setting multiple break points, single-step execution, memory
inspection/modification of COG RAM, inspection of Main
RAM, label recognition, and 1/O pin state inspection.

The debugger suite consists of a Windows application, a spin
object and a short Debug Kernel which must be inserted at
the beginning of the code to be debugged. The Debug Kernel
is only 12 longs in size, and makes possible communication
with the PASD spin driver, which runs into own Cog. The
PASD spin driver communicates over the Propeller’s serial
programming interface with the PASD Windows application
running on an attached PC. Except for pins 30 and 3| (the
Propeller’s serial programming interface pins) all Propeller 10
pins are freely available during debugging.

The total Propeller resource footprint of the PASD suite is:

1) Two O Pins (30 and 31, the serial programming
interface pins).

2) 12 longs at the start of COG Ram in the COG
whose assembly code is being debugged.

3) The upper two longs of Main RAM ($7ff8 and
$71ff).

4) The PASD driver which occupies about 223 Longs
and runs in one dedicated COG.

PASD User’s Manual

All remaining Propeller resources (cogs, RAM, pins) are
fully usable.

PASD presently supports debugging code in only one
COG at a time. It would be conceivable for a future
version of PASD to support debugging in all remaining
cogs.

User ASM Code to
be Debugged

Cog

Main RAM

@somx

2. Installation

Place the contents of the PASD .ZIP file into any directory.
PASD.exe is a stand alone executable and does not unpack
any files or require a “Setup” installation.

PASD Walkthrough

2\

) Double click the PASD_AsmDebugDemo.spin
module to load it into the Propeller IDE.

s | PASD_Asmbebughema.spin
Propeller Source Code
JKE

2) Note: If you are working on a Hydra or target hardware
other then the Propeler Demo Board then you must modify
the _clkmode and _xinfreq settings to match your target
hardware and establish an 80MHz clock. For the Hydra
these setting would be:

CON

__clkmode
_xinfreq

xtall + pll8x
10_000_000

3) Power on and connect your target hardware.

4) Press <F10> to upload and run
PASD_AsmDebugDemo.spin. NOTE: Do not close
the Propeller IDE.

5) Double click the PASD.exe executable to start it.

% PasD,.exe

6) In PASD, Select “Com Port” from the “COM” menu
and specify your COM port.

7) Make sure that the Propeller IDE is still open, and that
the “PASD_AsmDebugDemo spin” window in the

PASD User’s Manual

Propeller IDE is the currently active window. Press
<F2> (or alternatively select “Get Asm Code” from
the “File” menu)

The main PASD window will update to show the
source code for the module being debugged
(PASD_AsmDebugDemo.spin).

8) Note that the current line ($00C) is highlighted in blue.
This is the first line which will be run when execution
in started.

[] #AC ARBFECAC :inir mov dira, LEDS ' Configure LEDs as ourpurs (1)

‘I_l
[AAN FARFERAL e ura | D ! Ger |Fle ro rhe '0ff' erare (@)

9) Single step the code by pressing <F8> or choosing
“Step” from the “Debug” menu. Note that line $00C
has executed and the current line is now $00D.

10) Place a breakpoint on line $017 by checking the box at
the left of that line.

1) Run the code by pressing <F5> or choosing “Run”
from the “Debug” menu. Note that execution has
halted on line $017 where the breakpoint was set.

12) Try to set a breakpoint on line $01E by checking the
box at the left of that line. Note that the line becomes
highlighted in red, and that an error message is
displayed at the bottom of the PASD main window.

PASD does not support setting breakpoints on
instructions which will be modified at runtime (i.e. the
ret instruction, or self-modifying code).

[THIT FOBCYHSS WEITCAT WalITCoOUnTter, EIINEF Fed

ALE BCTCARAR wait_ret ret
=

I3) Select “Clear All Breakpoints” from the “Debug”
menu.

4) Open up the Pin Viewer window by selecting “Pin
Viewer” from the “Debug” menu.

I5) Run the code by pressing <F5> or choosing “Run”
from the “Debug” menu. Note that the Pin Viewer
window is continuously updated to reflect the state of
the Propeller’s 1/O pins during operation.

PASD User’s Manual

16) Stop the code by pressing <F6> or choosing “Stop”
from the “Debug” menu. Note that execution has
returned to the first line of code ($00C). Since the
Propeller does not support interrupts the PASD
Debug Kernel cannot regain control of code without a
breakpoint being set (Note: single-stepping creates a
temporary breakpoint on the next instruction which is
immediately removed after execution). If you use
“Stop” to halt a program’s execution then PASD must
unload and reload the COG to regain control, and
execution restarts at the first line of your target
program.

4.

Setting up your spin code to use PASD

PASD can be used to debug a single assembly module running
in a single target COG. To set your spin code up to use

PASD:

)

2)

3)

Include the “PASDebug” object by placing the following
line of code into your target module:

OBJ

dbg : "PASDebug"

Start the “PASDebug” object during your module
initialization by placing the following line of code into
your target module:

PUB main

dbg.start (31,30, @entry)

NOTE: The numbers 31 and 30 are the serial receive and
transmit pins respectfully.

Insert the 12 long-word PASD Debugger Kernel at the
start of your target assembly code. It is critical that

PASD User’s Manual

the PASD Debugger Kernel be the first instructions in
your assembly code.

NOTE: You must make sure that the cognew() call which
envokes your assembly code (and the dbg.start() call which
starts the debugger) both pass the start address of the
Debug Kernel, not to the start address of your target code
which follows the Debug Kernel. In the example shown
below, the label “entry” is used.

DAT

org 0
entry

'—— Debugger Kernel add this at Entry (Addr O0)
long $34FC1202,$6CE81201,$83C120B
long $8BCOEOA, SE87COE03, $8BCOEOA
long $EC7COEO05, SA0OBC1207,$5C7C0003
long $5C7C0003,S$7FFC, STFF38

5. Operation

5.1. Main Application Menus

5.1.1. File Menu

Retrieves the Asm source code from the currently active
window of the currently open Propeller IDE.

Forces the Propeller IDE to upload the module in the
currently active IDE window.

Opens an Asm source file from disk.

Sets the font size used in the main window.

Saves the PASD configuration. The saved configuration will be
loaded the next time PASD is started. The configuration
settings include the COM port setting.

Closes PASD

PASD User’s Manual

5.1.2. Debug Menu

Starts program execution. Execution will halt when a
breakpoint is reached.

Stops program execution. The target module is restarted, and
the program counter returns to the first instruction in the
module.

Executes the current instruction (highlighted in blue).
Execution halts on the next instruction.

Executes the current instruction (highlighted in blue). If the
instruction is a call, then execution halts on the instruction
following the call.

Sets the program counter to the selected instruction line.
Note: to select an instruction line, click the address/data field on the
left side of the line.

Toggles a breakpoint on the currently selected instruction
line. Note: to select an instruction line, click the address/data field
on the left side of the line.

Removes all currently set breakpoints.

Opens the COG RAM Viewer window.

Opens the Main RAM Viewer window.

Opens the Pin Viewer Window.

5.1.3. COM Menu

Sets the COM port used to communicate with the target
hardware.

When checked, the COM port is open. When unchecked, the
COM port is closed.

When checked...

PASD User’s Manual

e The COM port is opened and closed automatically
when an “Upload Code” command is executed.

e The COM port is closed automatically if PASD is
minimized

¢ When PASD is restored (un-minimized) the COM port
is opened and the source code is re-loaded from the

IDE (if “Get ASM Code” was originally used) or from
disk (if “Open Source Code” was originally used).

When unchecked, the COM port may be opened and closed
manually using the “COM Open/Close” setting.

5.1.4. Help Menu

The Help menu provides facilities for accessing help, the
website, and PASD build information.

5.2. COG RAM Viewer

5.2.1. Viewer Operation

The COG RAM viewer displays the entire contents of COG
RAM on the target COG. The COG RAM viewer window is
updated every time code execution is halted for a breakpoint
or a single-step execution request. Any value which has
changed between the time code execution was last started
and the time execution was halted will be highlighted in green.

Addr:
The COG RAM long-word address, in hex.

Value:

The contents of the COG RAM long-word, displayed in

both Hex and signed decimal.

Label:

The source code label associated with the COG RAM

long-word (if one exists).

 COG RAM viewer A=l

Addr | Walue Label]
P11 $R4FC2620 1425510976

M1? BEBC41FA 14E555376)
@13 sOG2FCAPRL -2097414143 tmodify

P14 s@BE3CL1FA 135166768

@15 $GCFC3ELC 1GGBASLE.LS

P16 sBCFCLERL 1828462981

@17 $ARBC41F? -1595275R86

P18 $B3BC4D2L 1R73I251569

P19 sEGTCLPRF -39451@321

@1R s2PAPAPRA D

@1E sECTCAPRF 1RG1A3A351

A1C %AABCA4BFL -1595279527 wait

P10 $BPBC4AZE -213514390@

M1E %FEBC4AZE -12157793@

@1F $5CTCRPRA 1651630336 wait_ret

P28 =A0APARRA D varl

@21 s@PFFRAARA 1G7116G0 LEDS

P22 s@PALAPRA EE536 LEDLE

A23 sPAARZARAR 131R72 LED17?

P24 $@2G26ARA 4A0RADAR BlinkFreg

P25 £4710C734 1192251905 HaitCounter

@26 $41EC3625 1195999400 V]

@'*J @'

10987554321 09R7R54321 09876543210

5.2.2. Modifying COG RAM

To modify a COG RAM long-word:

PASD User’s Manual

2)

3)

4)

3)

53.

Click the “Addr” field of the line containing the COG
RAM long-word to be modified.

The current long-word’s value will be shown in binary
inside the edit box at the bottom of the COG RAM
viewer. The numbers above the edit box indicate the
32 available bit positions.

Click the edit box. The box will be cleared to contain
a single equals sign “=".

Enter the new value after the equals sign either in
decimal with no prefix (e.g. “=1024”), or in hex with a
“$” prefix (e.g. =$aa55aa55).

Click “Update”

Main RAM Viewer

The Main RAM viewer displays 128 longwords of main
memory starting at the specified base address, and can be
used to view both RAM and ROM.

'a TN EWET] a J m—i
A44A: | DAAARAAAD | AAAA AAAA =
A444: | PAAAAAAS W AAA3 AAAA T
A445: L BRLERAALF W ARLF AALE BJ
A44C: L DAAAARAD | AAAA AAAA
A458: | DARAARAZA W ARAZA AAAA
A4G4: | DRAARAAD | AAAA AAAA
A45a6: L FFFAFFFF W FFFF FFF3
@450: L DAQAAARE W ARAA 2A8A
A4EA: | B43CAA11 W AR11 BA43C
A4G4: L PRBGRALSC W A45C AABA
A46G: L PRAARAAS W AAA3 AAAA
A4EC: L PRAARAALF W AALF AAAA
A47A: | PRAAARAALE W AALE AAAA
A474: | DRAARAZA W AAZA AAAA
A47a: L FFFFFFFF W FFFF FFFF
A47C: L PAAAARAD | AAAA AAAA @
sLgw [fom Adde |PAR

The data display format can be selected by choosing any of the
following options from the drop-down menu.

Mode Example

SL SW 0470: L $044C0011 W 0011 044cC

SL dec 0470: L $044C0011 dec 72089617

$SB ‘B 0470: $B 11 00 4C 04 ‘B 1...

SL 0470: L %00000100010011000000000000010001

To change the base address of the memory display, enter the
new base address into the edit box, in hex, and press
“Update”. You can also specify “PAR” to view the contents of

Main RAM pointed to by the target COG’s PAR (Cog Boot
Parameter) register.

To move backward or forward 128 longwords use the
backward “<” or forward “>” button.

PASD User’s Manual

5.4. Pin Viewer

The Pin Viewer window shows the current state of all

Propeller pins. Pins in a “High” (i.e. “I”) state are shown in
dark red. Pins in a “Low” (i.e. “0”) state are shown in pink.
High, “1”
' Low, “0”
'@ I IEwWET! a__']m—i
PO O P8 PIEC P240
Pl % PI® PI70 P20
P2 & P10 P182 P260
P3 & PI1® P92 P270
P4 & P122 P202 P23
P & PI138% P21C P298
P6e O P14 P20 P30%
P7 & PI15® P23C P11 @

The pin viewer window is updated every time code execution
is halted for a breakpoint or a single-step execution request,
and is updated continuously whenever code is running (i.e.
when the “Run” command has been issued, and a breakpoint
has not yet been reached).

5.5. Keyboard Shortcuts

The following keyboard commands can be used to control

PASD:
Key Function
F2 Get Asm Code
F5 Run
Fé6 Stop
F7 Step Over
F8 Step
F9 Toggle Breakpoint
FII Upload Code

PASD User’s Manual 12

6. Under The Hood

2\

The Propeller chip does not contain hardware to specifically
support breakpoints. Instead, it is necessary to simulate
breakpoints by temporarily modifying target instructions.

When you set a breakpoint, PASD replaces the target
instruction with a jump to the PASD debugging kernel, and
stores the original instruction in the Windows PASD
Application. Whenever you clear a breakpoint, the original
instruction is restored.

In the main PASD source-code window you will always be
shown the “orginal” source code instruction even though it
may have been temporarily replaced. In the PASD COG RAM
Viewer you will be able to see the substituted jump
instruction, and the line will be highlighted in red to indicate
that it is a breakpoint.

PASD User’s Manual

PASD is not able to support breaking on instructions which
are modified at run-time (such as the “RET” instruction)
because in order to establish the breakpoint the instruction
has to be temporarily replaced with a jump, and the run-time
instruction modification would be made to the jump instead of
the intended original instruction, which would corrupt the
jump and cause unpredictable operation.

Single step execution for opcodes other than JUMP is
simulated by copying the next instruction to the PASD Kernel
and executing it there. Single step execution for JUMP
opcodes is performed by setting two temporary breakpoints;
one at the instruction following the JUMP and one at the
JUMP location. This is necessary to support stepping through
either branch of a conditional JUMP.

7. Limitations

2\

7.1. Number of COGs

PASD currently only supports debugging a single assembly
module executing in a single COG.

7.2. Runtime Modified Instructions

PASD cannot generally support breakpoints on instructions
which may be programmatically modified. This includes self-
modifying code, and the “RET” instruction.

You can let PASD know that an instruction will be modified at
runtime by using “0-0” as the instruction’s source or
destination field (or both). If you attempt to set a breakpoint
on an instruction designated “0-0” PASD will warn you and
highlight the line in red.

The Propeller architecture is designed to support the RET
instruction by modifying the return address contained in the
RET opcode whenever it's associated CALL or JMPRET
opcode is executed. [f you attempt to set a breakpoint on a
RET instruction PASD will warn you and highlight the line in
red.

PASD User’s Manual

7.3. WAITCNT and WAITVID

PASD ignores (i.e. does not execute) WAITCNT and
WAITVID instructions when single stepping for two reasons:

) These commands are meant to synchronize precise
timings and are not applicable when single stepping.

2) The system counter (CNT) runs freely when PASD is
single stepping even though the target code is “halted”
between steps, so executing a WAITCNT instruction
would very likely cause the Propeller to wait until the
specified count value (if missed) came around again,
which could take about 50 seconds.

7.4. Repeated Definitions

Repeated long/word/byte definitions like:

| long value[size]

are not currently recognized by the parser, and cannot be
used with PASD.

8. About Insonix

Insonix specializes in both hardware and software
development

We have many years of experience developing electronics.
Our main areas of expertise are digital, microprocessor and
DSP based designs for the consumer and medical technology
industries.

After gathering your ideas and product requirement
specifications we provide placement, routing, layout, board
design, software and prototypes (and sometimes small
production runs). Our strength lies in finding the simplest and
most favorable solution in the shortest time, which minimizes
development costs.

PASD User’s Manual 15

