

Catalina

Catalyst Operating System

Reference Manual

Release 2.5

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 2 of 20

Table of Contents
WHAT IS CATALYST? ..3

STATUS .. 3
FEATURES .. 3
LICENSE ... 3

INSTALLING CATALYST...4
OVERVIEW .. 4
INSTALLING THE CATALYST BINARY RELEASE ... 4

Load the Catalyst binary into EEPROM ..4
Load the Catalyst programs onto an SD Card..4

INSTALLING THE CATALYST SOURCE RELEASE .. 5
Catalyst Directory Structure..5
Building Catalyst from source ...5
Compiling Programs for Catalyst ..6

Compiling C programs to run under Catalyst ...6
Compiling SPIN programs to run under Catalyst..6

USING CATALYST...7
USING THE CATALYST LOADER.. 7
CATALYST COMMANDS... 7

Catalyst Internal Commands ...7
DIR ..7
CLS..7
CAT ...7
HELP ...8

Catalyst External Commands...8
LS ..8
MV...8
RM...9
CP..9
MKDIR ..9
RMDIR ..10

Catalyst Optional Commands ..10
BOOT_n...10
RESET_n ...10

CATALYST APPLICATIONS ... 11
DUMBO BASIC...11
LUA...11
JZIP ...11
PASCAL ..12
SUPER STAR TREK..12
VI...12

PLATFORM-SPECIFIC NOTES..14
DRACBLADE ... 14
HYBRID .. 14
MORPHEUS... 15
RAMBLADE ... 17
TRIBLADEPROP... 17

CATALYST DEVELOPMENT...19
REPORTING BUGS ... 19
IF YOU WANT TO HELP DEVELOP CATALYST ... 19
OKAY, BUT WHY IS IT CALLED “CATALYST”? .. 19
ACKNOWLEDGMENTS ... 19

THE CURRENT CATALYST RELEASE ..20
WHAT’S NEW IN THIS RELEASE?... 20
WHAT’S DUE IN THE NEXT RELEASE?.. 20

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 3 of 20

What is Catalyst?
Catalina is an SD card-based program loader, plus a set of utility programs for the
Parallax Propeller.
When used as intended, Catalyst looks very much like a fully functional Propeller
operating system. However, strictly speaking, Catalyst is just a program loader - it is
not really a true operating system because it does no resource management -
however, it can be used to load programs that do perform various common resource
management tasks – it even comes with a few - e.g. various utilities for doing SD
card file management.
While it can be used with any Propeller programs, Catalyst is specifically intended to
facilitate loading and using programs compiled with the Catalina C compiler.
It is not currently possible to compile Catalina C programs on the Propeller, but
Catalyst comes with various other applications that can be used for self-hosted
Propeller development, including the vi text editor, and such tools as a BASIC
interpreter, a Pascal compiler and interpreter, and the Lua scripting language. It
could also be use to edit, compile and then run SPIN programs using with the Sphinx
SPIN compiler (not included – see http://www.sphinxcompiler.com/).

Status
Catalyst Release 2.5 is actually the first full release of Catalyst. It is numbered 2.5 to
coincide with Catalina 2.5, which is the release of Catalina that incorporates support
for some of the Catalyst specific features (such as the ability to accept command line
arguments).

Features
 Compatible with any Propeller platform that supports Catalina and has an SD

card;

 Provides familiar SD card file management (e.g. ls cp, mv, rm, mkdir, rmdir)

 Can be used with SPIN or Catalina LMM programs on any platform;

 Support for Catalina XMM programs on those platforms that have external
XMM RAM (e.g. Hybrid, TriBladeProp, RamBlade, Morpheus);

 Support for multi-CPU platforms (e.g. TriBladeProp, Morpheus);

 Supports self-hosted Propeller development (in Pascal, Basic and Lua).

 Supports passing command line parameters to both C and SPIN programs.

License
All components of Catalyst are free and open source. Many of the components are
licensed under the MIT license. Others are free but are licensed under the GNU
General Public License, or other terms and conditions. All licenses are open-source,
and free for non-commercial use – however, they are subject to various copyright
and other conditions and you should consider the license terms of each component
before using any of them in a commercial application.

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 4 of 20

Installing Catalyst

Overview
There are two mandatory parts to Catalyst, and one optional part that may need to
be installed:
From the binary release:

 The main Catalyst binary. This should be programmed into the EEPROM of
the propeller. There will be a different version for each platform, and is
distributed as part of the binary release for each specific propeller platform.

 The Catalyst external command and application program binaries. These
programs should be loaded onto an SD card. They are distributed as part of a
binary release for a specific propeller platform.

From the source release (optional):

 The Catalyst source code. This is distributed as part of the normal Catalina
source release. It may also be distributed separately. In either case, it should
be installed in the normal Catalina program directory.

Installing the Catalyst Binary Release

Load the Catalyst binary into EEPROM
The main Catalyst binary (catalyst.binary) is called catalyst.bin in the binary
release. This should be programmed into the EEPROM of the propeller. This can be
done using the Catalina payload program if the Propeller is connected and turned
on, using a command like:

payload –e catalyst.bin

Load the Catalyst programs onto an SD Card
The remaining contents of the binary release must be copied an SD card (or micro
SD card) that is inserted into the Propeller.
This SD card must be formatted with a FAT file system. However, neither Catalyst
nor Catalina support long file names, so all .binary file names must be renamed to
be no longer than 8 characters, and have an extension of .bin.
Catalyst allows binary programs to be stored in a /bin directory on the SD card. If the
program to be loaded exists in the root directory of the SD card then that version is
loaded, otherwise Catalyst attempts to load the program from the bin directory (if it
exists).
When copying the .bin binary files to an SD card, binary files can be either in the
root directory, or within a bin directory. The rest of the files in the binary release
should be copied to the root directory of the SD card.

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 5 of 20

Installing the Catalyst Source Release
There is no installer for the Catalyst source release. If Catalyst is distributed
separately from Catalina, simply use unzip (Windows version) or gzip/tar1 (Linux
version) to extract the source distribution into the folder in which Catalina is to be
installed.
Under Windows, Catalyst should be installed in C:\Program Files\Catalina\catalyst
and under Linux it should be installed in \usr\local\lib\catalina\catalyst.
Installing to a directory other then the default location is possible, but it means that
some additional options will need to be specified (or some scripts modified) when
compiling Catalyst.
Note that Catalyst 2.5 requires Catalina 2.5 – it should not be used with earlier
versions of Catalina.

Catalyst Directory Structure
When Catalyst is installed, the directory structure should be as follows:

Catalina
 |
 +--- catalyst
 | |
 . +--- bin
 . |
 . +--- core
 |
 +--- dumbo_basic
 |
 +--- jzip
 | |
 | +--- doc
 |
 +--- lua-5.1.4
 | |
 | +--- doc
 | +--- etc
 | +--- src
 | +--- test
 |
 +--- pascal
 | |
 | +--- p5_c
 | +--- p5_pascal
 | +--- ptoc
 |
 +--- demo
 |
 +--- sst
 |
 +--- xvi-2.47
 |
 +--- doc
 +--- src

Building Catalyst from source
The catalyst directory contains a build_all script that can be used to build all
platforms except MORPHEUS – for that platform there is a special build_morpheus
script. For example, some commands to build Catalyst would be:

build_all HYBRID

build_all TRIBLADEPROP CPU_2 PC VT100

1 Note that when using tar, the –p tar option should be specified to preserve file permissions.

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 6 of 20

build_morpheus

To build Catalyst you will require Catalina, MinGW and MSYS installed. Refer to the
Catalina reference manual for more details on MinGW and MSYS.
See the README.TXT file in the catalyst directory for more details, and also the
README files in each of the application directories.

Compiling Programs for Catalyst
The main features Catalyst adds to existing programs is the ability to invoke them to
run from the SD card, and accept command line parameters. This functionality is
available both to Catalina C programs as well as SPIN programs.

Compiling C programs to run under Catalyst
Nothing special is required to make C programs run under Catalyst. Any parameters
specified on the Catalyst command line will be available to the C program in the
normal argc and argv parameters.
An example program (demo.c) is contained in the demo directory. To compile it, use
a command like:

catalina demo.c –lc –D HYBRID

Compiling SPIN programs to run under Catalyst
To enable SPIN programs to interpret command line parameters, a special SPIN
module is provided Catalyst_Arguments.spin.
An example program (demo.spin) is contained in the demo directory. To compile it,
use any SPIN compiler to produce a binary output. For example, to use homespun:

homespun demo.spin –b

Note that the example program must be manually modified to suit the platform on
which you intend to run it – by default it is configured to run on a HYBRID. The clock
speed, pins and perhaps the TV and video drivers will need to be modified to suit
other platforms.
The Catalyst_Arguments module provides three methods:
init(buffer) buffer must point to a buffer of 1200 bytes (300 longs). This method

must be called before any of the other argument methods.
argc this function returns the number of arguments (which may be zero).
argv(i) this function returns a pointer to a zero terminated string that contains

the ith command line argument.

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 7 of 20

Using Catalyst

Using the Catalyst Loader
The main Catalyst binary is executed whenever the propeller is reset. It should
display a simple banner line similar to the following:

Catalyst v1.1
>

Where this prompt appears will differ depending on the Propeller platform. For
example, on the RAMBLADE the Catalyst HMI uses a serial terminal emulator (e.g.
on a PC), whereas on the HYBRID Catalyst will a local TV display and PS/2
keyboard. On other platforms, Catalyst may use either a serial terminal, or a local TV
or VGA display and keyboard depending on the configuration parameters used when
Catalyst is compiled. See the notes on each supported platform given later in this
document.
When Catalyst is configured to use the PC serial terminal emulator HMI option, some
of the commands expect a VT100 compatible terminal emulator. The recommend
terminal emulator is putty - it is free, and versions for Windows are available from:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

At this point, Catalyst commands can be entered. Catalyst contains a few simple
internal commands (e.g. dir, cat, help) described below, but most of the Catalyst
commands are external commands, loaded from the SD card.
Note that whenever the SD Card is removed and re-inserted, Catalyst must be reset.
Otherwise the SD file system access will not work correctly.

Catalyst Commands

Catalyst Internal Commands
The internal commands are built into the Catalyst loader. They will work on any
Propeller platform supported by Catalina.
Note that when using a local display and keyboard, all the internal commands will
pause after each screen full of information has been displayed, and require you to
press a key to continue. This is not the case when using the PC terminal HMI.

DIR
Display the files in the SD card root directory. This command does not accept
any parameters, so only files in the root directory are displayed. For a more
comprehensive display, see the LS command.

CLS
Clear the screen.
For CLS to work correctly when using a PC HMI, a VT100 compatible terminal
emulator (such as putty) must be used.

CAT
Display a text file. On platforms that use a local display, the file is displayed
one page at a time. The ESC key can be used to exit at each pause.

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 8 of 20

HELP
Display some simple help about the various internal commands.

Catalyst External Commands
The external commands may be normal SPIN programs or LMM C programs. They
will work on any Propeller platform supported by Catalina. They do not require XMM
RAM, but they depend on being loaded by Catalyst so that command line arguments
can be entered.

LS
list the details of a file or the contents of a directory.
syntax:

ls [options] [directory]

options:
-h or -? print help

-l long format listing

-r recursively list subdirectories

e.g. to list the current (top level) directory:
ls

or
ls .

To list directory a/b/c:
ls a/b/c

MV
Move one file to another, or one or more files to a directory. If there are only
two arguments, and the target does not exist, you must tell mv whether the
target is supposed to be a file or a directory.
NOTE: mv is essentially a cp followed by an rm - with the rm only performed if
the copy suceeds. This means that there must be enough free space to hold
two complete copies of the file.
syntax:

mv [options] src_file [src_file ...] target_file_or_directory

options:
-h or -? print help

-f force overwrite (if target is read-only)

-I interactive (prompt for each move)

-t target is a directory

-T target is a file

e.g:
mv a.txt b.txt c.txt my_dir

mv a.txt b.txt

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 9 of 20

RM
Remove one or more files, optionally also removing directories (provided they
are empty).
syntax:

rm [options] file_or_directory ...

options:
-h or -? print help

-f remove empty directories

e.g:
rm a/b.txt

rm a.txt b.txt

CP
Copy one file to another, or one or more files to a directory. If there are only
two arguments, and the target does not exist, you must tell cp whether the
target is supposed to be a file or a directory.
syntax:

cp [options] src_file [src_file ...] target_file_or_directory

options:
-h or -? print help

-f force overwrite (if target is read-only)

-I interactive (prompt for each copy)

-t target is a directory

-T target is a file

e.g:
cp a.txt b.txt c.txt my_dir

cp a.txt b.txt

MKDIR
Make one or more directories, optionally making each parent directory in turn
if they do not exist.
syntax:

mkdir [options] directory ...

options:
-h or -? print help

-p create parent directories if required

e.g:
mkdir a/b/c <- will make directory c only if a/b exists

mkdir -p a/b/c <- will make directories a, then a/b,
then a/b/c if they do not already exist

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 10 of 20

RMDIR
Remove one or more directories, optionally removing each parent directory
recursively (if they are empty).
syntax:

rmdir [options] directory ...

options:
-h or -? print help

-p remove parent directories if empty

e.g. to remove directory c (but leave a and b intact):
rmdir a/b/c

To remove directory a/b/c, then a/b, then a (provided they are empty):
rmdir -p a/b/c

Catalyst Optional Commands
On platforms that contain multiple CPUs (such as the TRIBLADEPROP, or
MORPHEUS) it may be convenient to have the normal Catalina multi-CPU utilities
loaded onto the Catalyst SD card.
Note that the relevant Catalina utilities are called CPU_n_Boot.spin and
CPU_n_Reset.spin, and when compiled they may be called something like
BOOTn.m (e.g. BOOT2.1) - but for Catalyst they should be renamed to simply
BOOT_n.bin or RESET_n.bin when the compiled binaries are copied to the SD card
(this is not absolutely required, but convention Catalyst uses .bin as and executable
file name extension).

BOOT_n
Reboot the specified Propeller, loading the Catalina Generic SIO Binary
Loader so that another program can be loaded.
syntax:

boot_1 (TRIBLADEPROP only)

boot_2 (MORPHEUS only)

boot_3 (TRIBLADEPROP only)

RESET_n
Just reset the specified Propeller. Whatever program is loaded into EEPROM
will be run.
syntax:

reset_1 (TRIBLADEPROP only)

reset_2 (MORPHEUS only)

reset_3 (TRIBLADEPROP only)

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 11 of 20

Catalyst Applications
Catalyst provides a rich set of application programs. All the example applications
provided require at least 512k of XMM RAM to be installed.
This section does not describe each application in detail – it only describes how to
run the application programs from the Catalyst command line. See the individual
application program documentation for more details on the application itself.

DUMBO BASIC
Load the Dumbo BASIC interpreter. Note that Dumbo BASIC is just an
interpreter – the programs must be created externally (e.g. using the vi text
editor).
syntax:

dbasic [basic_program.bas]

e.g:
dbasic eliza.bas

If no parameter is specified, dbasic will prompt for the name of the basic file to
execute.

LUA
Load the Lua interpreter (lua), or run the Lua compiler (luac).
syntax:

lua [script.lua]

luac –o output_filename script.lua

e.g:
lua fact.lua

luac –o f.lua fact.lua

If no file is specified to the lua command, commands can be entered directly
on the terminal.
The Lua compiler (luac) compiles a Lua program to byte code, which speeds
up loading – but the resulting file must still be executed with lua.
NOTE: when using luac, do not omit the –o parameter, or lua will output the
binary result to the terminal.

JZIP
Load the JZIP Infocom game interpreter. The number of rows and columns to
use for the screen size can be specified on the command line, but the game
will detect the actual screen size when local devices are used, and assume
80x24 when using the PC HMI option.
syntax:

jzip [-ccols] [-lrows] [game.dat]

e.g:
jzip zork1.dat

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 12 of 20

If no parameter is specified, jzip will prompt for the name of the game file to
execute.

PASCAL
Load the Pascal interpreter (pint), or run the Pascal compiler (pcom).
syntax:

pint [compiled_program]

pcom [program_to_compile [compiled_program]]

e.g:
pint startrek.p5

pcom startrek.pas startrek.p5

The output files from the compiler must be executed with the interpreter.
If no file is specified to the pcom or pint commands, the programs will prompt
for a file name.
By convention, the compiled version of the Pascal program prog.pas is
normally called prog.p5
In addition to a few sample programs, two precompiled programs are provided
– startrek.p5 and basics.p5. The first is yet another version of the classic
Start Trek game and the second is a basic interpreter. These programs are
provided compiled because they can each take several hours to compile on
the Propeller – even loading the precompiled programs can take a minute or
two.

SUPER STAR TREK
Play a game of Super Star Trek.
syntax:

sst

There are no parameters to this command. See the document sst.doc for
help.

VI
Load the XVI text editor (the binary renamed to vi for convenience). The
program accepts various options – see the xvi documentation for more
details.
syntax:

vi [options] [filename ...]

e.g:
vi sample1.txt

A common option to specify is –s format=msdos or –s format=unix to
specify whether msdos or unix line termination is to be used (the default is
unis, so if you open an msdos file you may see extraneous ^M characters at
the end of each line).

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 13 of 20

If more than one filename is specified, vi will open the first two in separate
windows. After that, use :n (i.e. colon n) to move to the next file.

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 14 of 20

Platform-specific Notes

DracBlade
On the DracBlade, all the Catalyst binaries are built to use a High resolution VGA
HMI plugin, which uses the display and keyboard connected to the Propeller.
Note: After each external command or demo program is run, the screen is cleared.
Catalyst will usually ask you to enter a key to continue so that you can read the
output of the command.
Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file

pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program

pint SAMPLE.P% <---- run the compiled program

vi CATALYST.TXT <---- edit a text file

dbasic STARTREK.BAS <---- run a basic program

mkdir my_dir <---- make a directory

vi my_dir/my_file.txt <---- edit a file in a directory

ls my_dir <---- list the contents of a directory

rm my_dir/my_file.txt <---- remove a file from a directory

jzip ZORK3.DAT <---- play a game of Zork

sst <---- play a game of Super Star Trek

dbasic ELIZA.BAS <---- get some psychiatric help

On the DracBlade, it is possible to recompile Catalyst (or some parts of Catalyst) to
use a PC HMI option (or a low resolution VGA option). This may be required to run
some large applications (such as the Pascal compiler) since the High Resolution
VGA driver consumes a large amount of Hub RAM space, which limits the stack
space available to other programs.

Hybrid
All the binaries in this release (as well as Catalyst itself) are built to use a High
resolution NTSC TV and keyboard connected to the Propeller emulator.
Note: After each external command or demo program is run, the screen is cleared.
Catalyst will usually ask you to enter a key to continue so that you can read the
output of the command.
Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file

pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program

pint SAMPLE.P% <---- run the compiled program

vi CATALYST.TXT <---- edit a text file

dbasic STARTREK.BAS <---- run a basic program

mkdir my_dir <---- make a directory

vi my_dir/my_file.txt <---- edit a file in a directory

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 15 of 20

ls my_dir <---- list the contents of a directory

rm my_dir/my_file.txt <---- remove a file from a directory

jzip ZORK3.DAT <---- play a game of Zork

sst <---- play a game of Super Star Trek

dbasic ELIZA.BAS <---- get some psychiatric help

On the Hybrid, it is NOT possible to recompile Catalyst to use a PC HMI option if the
XMM RAM is being used – the HX512 does not allow the serial port to be used at the
same time.

Morpheus
On Morpheus, Catalyst is configured to use the PC HMI option, and some programs
expect a VT100 compatible PC Terminal emulator (such as putty).
On Morpheus, running the external commands often results in rubbish being
displayed on the screen at the end of each command - this is because each external
command resets the Propeller at the end. This means you may need to scroll the
putty screen up to see the output of the command. While this is a little annoying, i t
does not really affect the operation of Catalyst.
What does makes thing complex on Morpheus is that Catalyst runs on CPU #1, but
the demo programs must be run on CPU #2 since they all require access to XMM
RAM. They must use Catalina proxy drivers since they need access to both the XMM
RAM and the SD Card.
The binary distribution of Catalyst also includes the normal Catalina multi-cpu utilities
for Morpheus (renamed to be a bit more user-friendly):

BOOT_2.BIN - start a boot loader program running on CPU #2

RESET_2.BIN - reset CPU #2

LOAD_2.BIN – SIO Loader (can be programmed into EEPROM on CPU #2)

The following explains how to run each Catalyst demo program:
vi - the client executable runs on CPU_2, using the SD card on CPU_1. This can
make editing a bit slow on large files! To run it, you need to load both the client and
the server. If you have not already done so, you also first need to load the boot
loader into CPU #2:

boot_2 <- load the boot loader into CPU #2

@ <- to select CPU #2 for next load

vi <- load the client into CPU #2

proxy <- load the server into CPU #1

There are a few things to note about loading/running this program:
1. If you program the Generic SIO program loader (load_2.bin) into the eeprom

of CPU #2, you do not need to enter any of the boot_2 commands – loading
the SIO loader into CPU #2 is really all the boot_2 program does.

2. You will see progress messages displayed on the PC as the client program is
loaded.

3. You may see rubbish on the screen when the client program starts up (and
before you get a chance to start the proxy server) – this occurs when the

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 16 of 20

program loader restarts the Propeller to run the loaded program. In some
cases, these rubbish characters can cause the terminal emulator program (e.g.
putty) to lock up – just restart the terminal emulator and everything should be
ok.

4. You cannot currently use command line parameters for programs loaded into
another CPU - e.g. you cannot pass parameters to the vi client. Instead, to edit
a particular file, once vi starts you can enter the command:

:e filename

5. Just because you quit a demo client program (i.e. vi) does not mean you will
return to the Catalyst prompt. This is because the proxy program is still
running. Since there is currently no way to tell the proxy program to terminate,
to return to the Catalyst prompt you must manually reset the Propeller.

6. If you accidentally try to run the vi client on CPU #1, you will see a series of
ÿÿÿÿ characters - this is the client program polling for the proxy server. You
will have to manually reset the prop.

sst -you must run the client on CPU #2, and the proxy server on CPU #1:
boot_2 <- load the boot loader into CPU #2

@ <- to select CPU #2 for next load

sst <- load the client into CPU #2

proxy <- load the server into CPU #1

The same provisos apply as above - i.e. you cannot enter command line arguments
to the client, and you must reboot the Propeller to return to the Catalyst prompt.
jzip - you must run the client on CPU #2, and the proxy server on CPU #1:

boot_2 <- load the boot loader into CPU #2

@ <- to select CPU #2 for next load

jzip <- load the client into CPU #2

proxy <- load the proxy server into CPU #1

The same provisos apply as above - i.e. you cannot enter command line arguments
to the client, and you must reboot the Propeller to return to the Catalyst prompt. The
program will prompt you for a game file to run.
dbasic - you must run the client on CPU #2, and the proxy server on CPU #1:

boot_2 <- load the boot loader into CPU #2

@ <- to select CPU #2 for next load

dbasic <- load the client into CPU #2

proxy <- load the proxy server into CPU #1

The same provisos apply as above - i.e. you cannot enter command line arguments
to the client, and you must reboot the Propeller to return to the Catalyst prompt. The
program will prompt you for a basic file to run.
pcom/pint - you must run the clients on CPU#2, and the proxy server on CPU #1:

boot_2 <- load the boot loader into CPU #2

@ <- to select CPU #2 for next load

pcom <- load the compiler client into CPU #2

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 17 of 20

proxy <- load the proxy server into CPU #1

 or
boot_2 <- load the boot loader into CPU #2

@ <- to select CPU #2 for next load

pint <- load the interpreter client into CPU #2

proxy <- load the proxy server into CPU #1

The same provisos apply as above - i.e. you cannot enter command line arguments
to the client, and you must reboot the Propeller to return to the Catalyst prompt. The
program will prompt you for a Pascal file to compiler or interpret.
lua -you must run the client on CPU #2, and the proxy server on CPU #1:

boot_2 <- load the boot loader into CPU #2

@ <- to select CPU #2 for next load

lua <- load the client into CPU #2

proxy <- load the server into CPU #1

The same provisos apply as above - i.e. you cannot enter command line arguments
to the client, and you must reboot the Propeller to return to the Catalyst prompt. Use
must use the Lua dofile command to get lua to execute a script (e.g. enter
dofile(“hello.lua”) - see the Lua documentation, or the README.Lua file for more
details.

RamBlade
On the RamBlade, Catalyst is configured to use the PC HMI option, and some
programs expect a VT100 compatible PC Terminal emulator (such as putty).
Here are some example commands you could try:

cat SAMPLE.PAS <---- list a text file

pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program

pint SAMPLE.P% <---- run the compiled program

vi CATALYST.TXT <---- edit a text file

dbasic STARTREK.BAS <---- run a basic program

mkdir my_dir <---- make a directory

vi my_dir/my_file.txt <---- edit a file in a directory

ls my_dir <---- list the contents of a directory

rm my_dir/my_file.txt <---- remove a file from a directory

jzip ZORK3.DAT <---- play a game of Zork

sst <---- play a game of Super Star Trek

dbasic ELIZA.BAS <---- get some psychiatric help

TriBladeProp
On the TriBladeProp, Catalyst is configured to use the PC HMI option, and some
programs expect a VT100 compatible PC Terminal emulator (such as putty).

Here are some example commands you could try:
cat SAMPLE.PAS <---- list a text file

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 18 of 20

pcom SAMPLE.PAS SAMPLE.P5 <---- compile a pascal program

pint SAMPLE.P% <---- run the compiled program

vi CATALYST.TXT <---- edit a text file

dbasic STARTREK.BAS <---- run a basic program

mkdir my_dir <---- make a directory

vi my_dir/my_file.txt <---- edit a file in a directory

ls my_dir <---- list the contents of a directory

rm my_dir/my_file.txt <---- remove a file from a directory

jzip ZORK3.DAT <---- play a game of Zork

sst <---- play a game of Super Star Trek

dbasic ELIZA.BAS <---- get some psychiatric help

It would be possible to recompile Catalyst to use the local display and keyboard on
CPU #1, via a proxy driver from CPU #2 (which has access to the SD card). The
various build_morpheus scripts show this can be accomplished using proxy
devices.

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 19 of 20

Catalyst Development

Reporting Bugs
Please report all Catalyst bugs to ross@thevastydeep.com.
Where possible, please include a brief example that demonstrates the problem.

If you want to help develop Catalyst
Anyone who has ideas or wants to assist in the development of Catalyst should
contact Ross Higson at ross@thevastydeep.com

Okay, but why is it called “Catalyst”?
In chemistry a catalyst is a substance that facilitates a chemical reaction, but is not
itself consumed. Catalyst is intended to facilitate the use of Catalina on the Propeller,
but it does not itself consume any Propeller resources.

Acknowledgments
Kye, for his FATEngine module.

Catalyst O/S Reference Manual

Copyright 2010 Ross Higson Page 20 of 20

The Current Catalyst Release

What’s new in this release?
 Everything is new - this is the first release!

What’s due in the next release?
 Add wildcard support to ls, cp, mv and rm

 Add 'flush' so that we don't have to wait for a fixed duration after each
command when using the PC HMI option.

 Add a way to exit from the proxy program, so we don’t always have to reset
the propeller after each proxied command.

