
Embedded Communications

an example of an

xbee–computer wireless link

Jay Kickliter

jay.kickliter@gmail.com

2009

Engineering 428—Kickliter 1

I Introduction

When working with embedded electronics, in particular microcontroller based
systems, it’s often necessary to monitor their state remotely. Due to their
nature, microcontroller can be difficult to debug and monitor. They are
basically computers without peripherals. It is possible to permanently attach
a display and input device to a microcontroller, but it is usually impractical.
They are often embedded in hard to reach dynamic systems. In cases where
it is necessary to have the ability to monitor or reconfigure microcontroller
based systems, doing so through a wireless link can greatly simplify the
process. In the case of objects that move, like robots or unmanned-vehicles,
a wireless link might be the only option.

There are several ways a wireless link be established between two systems.
In this example, we’ll be establishing a link between a microcontroller on the
remote end, and monitoring the data it sends on a local computer. Although
almost any combination of microcontroller and computer could be used, this
example will use a Propeller Chip, an eight core microcontroller made my
Parallax, and an Apple laptop computer.

For a wireless link, we’ll use an XBee 900 module from Digi International.
XBee modules are a good choice for small systems, because they are relatively
cheap, and interchangeable. If for some reason you decide to replace a 900
MHz module with a 2.4 GHz module, minimal configurations changes are
needed. The reason for using a 900 MHz module in this example is range.
Digi makes 2.4 GHz modules that are a bit faster than the 900 MHz, but do
not have the range that comes with using 900 MHz.

XBee modules can be operated in two different modes: transparent and
API. Transparent mode is very convenient since the modules require no con-
figuration; every byte pushed into one module exits the other as though
there’s a serial cable connecting them. Despite the convince of using trans-
parent mode, we’ll be using API mode. It’s a bit more difficult to implement,
but the benefits outweigh the added complexity. API mode allows greater
control of the link, with the ability to send packets to an explicit address.
In contrast, when data in sent in transparent mode, it is sent to all modules
within range.

Engineering 428—Kickliter 2

II Protocol

In transparent mode, all that is required to transmit a byte is to send that
byte to the local XBee. After a certain timeout period, that XBee module
packetizes any bytes in its buffer and sends them to the remote XBee(s),
which output they bytes to whatever hardware is attached to them. API
mode is a bit different. Much of the data formatting that is done automati-
cally by the XBee in transparent mode needs to be performed before the user
can transmit. For instance, the procedure to transmit the byte value 0x7E
in transparent may look like this (in pseudo code):

serialTransmit(0x7E)

Sending data in API mode is not so simple. Before further discussion, it must
added that API mode has two sub-modes: escaped and unescaped. Escaped
mode requires that any data that can conflict with API control-characters
must be preceded with 0x7D and XOR’d with 0x20. That procedure ensures
that the XBee module won’t be confused with any user data that happens
to be same as any of the XBee control characters. This example will use
escaped mode. It has the added benefit of making it easier to program
receive routines.

Let’s revisit our earlier example of sending the byte 0x7E. All that was
required to send a byte was a single function call. In API mode several packet
formatting steps must first take place:

1. Create a temporary buffer guaranteed to be bigger than needed

2. Insert 0x7E into position 0, this is the XBee frame delimiter, indicating
the start of a new API packet

0
0x7E

3. Calculate the length of the packet, which in our case will be several
bytes longer than the single 0x7E we want to send. Put the upper
8 bits of that length into buffer position 1, and the lower 8 bits into
position 2

1 2
0x00 0x0F

Engineering 428—Kickliter 3

4. Add the XBee API identifier to position 3. There are several ID’s for
different purposes, but we are trying to send a packet to another XBee,
so we will use 0x10, which is the TX Request id

3
0x10

5. Insert a unique frame ID byte into position 4. This is not very im-
portant unless you want the module to respond with an acknowledge
packet that it received the transmit request, however a byte needs to
be here, so we’ll use 0x01

4
0x01

6. Insert the 64 bit address of the remote module into positions 5–12, send
most significant byte first, let’s assume the remote XBee’s address is
0x13A200404B2277

5 6 7 8 9 10 11 12
0x00 0x13 0xA2 0x00 0x40 0x4B 0x22 0x77

7. Insert the 16 bit address of the network you are operating on into
positions 13–14, MSB first. We’ll use the address 0xFFFE, since it is
the default

13 14
0xFF 0xFE

8. Insert 0x00 into both position 15 and 16, these fields have definitions,
but are not flexible, and serve no real purpose

15 16
0x00 0x00

9. Finally, staring at position 17, insert however many bytes you need to
send, in our case, just insert 0x7E into position 17

Engineering 428—Kickliter 4

17
0x7E

10. Calculate the checksum of the packet and insert it into position n,
which in our case is 18. To calculate checksum, we add all the bytes
from positions 3 to n-1, discarding any carry and keeping only the
bottom 8 bits. Subtract this number from 0xFF. What is left over is
our checksum.

Checksum = 0xFF - ((0x00 + 0x01 + 0x00 + 0x13 + 0xA2 + 0x00 +
0x40 + 0x4B + 0x22 + 0x77 + 0xFF + 0xFE + 0x00 + 0x00 +

0x7E) & 0xFF)
Checksum = 0xAA

11. Our (almost) completed packet looks like:

0 1 2 3 4 5 6 7 8 9
0x7E 0x00 0x0F 0x10 0x01 0x00 0x13 0xA2 0x00 0x40

10 11 12 13 14 15 16 17 18
0x4B 0x22 0x77 0xFF 0xFE 0x00 0x00 0x7E 0xAA

12. Starting at byte 1, we must enumerate through the whole packet and
escape any control characters. Any byte with the vale 0x7E, 0x7D,
0x11, 0x13 must be replaced with 0x7D, and be followed by that byte’s
value XOR’d with 0x20. Since our packet has a 0x13 at index 6, and a
0x7E at index 17, we will have to do two escapes. After escaping those
two bytes, our packet will look like:

0 1 2 3 4 5 6 7
0x7E 0x00 0x0F 0x10 0x01 0x00 0x7D 0x33

8 9 10 11 12 13 14
0xA2 0x00 0x40 0x4B 0x22 0x77 0xFF

15 16 17 18 19 20
0xFE 0x00 0x00 0x7D 0x5E 0xAA

13. Lastly, all that is left to send the packet is to transmit bytes to the
XBee module over the serial line

Engineering 428—Kickliter 5

III Implementation

Since a link is no good unless there is something on both ends to process
the data it carries, we’ll have to implement the XBee packet processing on
both the remote and local ends. In this case, the remote end is a Propeller
Chip, and the local end is an Apple MacBook computer. Since they both use
different programming languages, and have different functionality, we’ll have
to create send an receive functionality twice. The Propeller Chip is a 32-bit 8
core microcontroller, has no operating system, and is programmed in a quasi
object-orientated language called Spin. The MacBook is programmed with
the NeXTstep API, which was acquired by Apple Computer and renamed
Cocoa. Cocoa is programmed in Objectective-C, and plain ANSI C.

III.1 Propeller Chip

Because the Propeller Chip is muli-cored, it is actually quite easy to imple-
ment XBee send and receive functionality.

Receive Function

PUB receivePacket(_escaped) | char, index, length, checksum

’clear lenght and checksum to 0

length~

checksum~

’receive bytes until we get a 0x7E

repeat until (char := uarts.rx(port)) == $7E

’get a byte, escape it if needed, and make it the first length

’word by shifting it 8 bits to the left

char := uarts.rxtime(port, 1)

if char == $7D AND _escaped

length |= (uarts.rx(port) ^ $20) << 8

else

length |= char << 8

’do the same, but don’t shift this time, since the next byte

’is the lowsest signifigant byte of the length word

char := uarts.rxtime(port, 1)

if char == $7D AND _escaped

length |= (uarts.rx(port) ^ $20)

Engineering 428—Kickliter 6

else

length |= char

’clear index to 0

index~

’repeat length times

repeat while index < length + 1

char := uarts.rx(port)

’need to un-escape it

’0x7D indicates that the next byte is the actual byte

’we ignore the 0x7D and use the next byte

if char == $7D

’XOR the char with 0x20

receiveBuffer[index] := uarts.rx(port) ^ $20

’not an escaped byte, take it as is

else

receiveBuffer[index] := char

’calculate checksun with every iteration of the loop

’advance the index variable by 1

checksum += receiveBuffer[index++]

’AND checksum with 0xFF do keep only the lower 8 bits

checksum &= $FF

’if we have a valid packet, all the bytes after lenght, including

’the last byte, checksum, added together equal 0xFF

if checksum <> $FF

’checksum didn’t check out, return -1 to the caller

return -1

’so far, this receive method only accounts for packets

’sent from other XBee modules, not acknowlege packets

’or various status packets

case receiveBuffer[0]

’if the first byte after length is 0x90, we are dealing

’with received packet from another XBee module

’subtract 12 from length, since the user is only concerned with

’the length of the meaningful data in the packet, not addresses

’and such, since they are static, and always the same length

$90: rxLength := length-12

’shift then AND bytes 1..4 to get the upper 32 bit address

’of the sending module

Engineering 428—Kickliter 7

rxRemoteAddressUpper32 := receiveBuffer[1] << 24

| receiveBuffer[2] << 16

| receiveBuffer[3] << 8

| receiveBuffer[4]

’shift then AND bytes 5..8 to get the lower 32 bit address

’of the sending module

rxRemoteAddressLower32 := receiveBuffer[5] << 24

| receiveBuffer[6] << 16

| receiveBuffer[7] << 8

| receiveBuffer[8]

’shift then AND bytes 10..11 to get the 16 bit network address

rxNetworkAddress16 := receiveBuffer[10] << 8

| receiveBuffer[11]

’move the important data from receiveBuffer[] to rxData[]

’so the caller can access it

bytemove(@rxData, @receiveBuffer[12], rxLength)

’return 0x90 to the caller, so it knows an rx packet was

’received

return $90

Send Function

pub apiArray(_64BitDestinationAddressUpper, _64BitDestinationAddressLower, _16BitNetworkAddress,

’clear the index

ptr := 0

’add 0x7E to byte 0 of array

dataSet[ptr++] := $7E

’_arraySize is set by caller, we have to add 14 to it

’to account for the added bytes API mode requires

Length := 14 + _arraySize

’add MSB of length to array

’add LSB of length to array

dataSet[ptr++] := Length >> 8

dataSet[ptr++] := Length

’add 0x10 to indicade a TX request API packet

dataSet[ptr++] := $10

’add frame id, value passed in but isn’t important

dataSet[ptr++] := _FrameID

Engineering 428—Kickliter 8

’the remote 64 bit address is passed by caller

’in two longs, we need to split up those 2 longs

’into 8 bytes and add them to the array

dataSet[ptr++] := _64BitDestinationAddressUpper >>24

dataSet[ptr++] := _64BitDestinationAddressUpper >>16

dataSet[ptr++] := _64BitDestinationAddressUpper >>8

dataSet[ptr++] := _64BitDestinationAddressUpper

dataSet[ptr++] := _64BitDestinationAddressLower >>24

dataSet[ptr++] := _64BitDestinationAddressLower >>16

dataSet[ptr++] := _64BitDestinationAddressLower >>8

dataSet[ptr++] := _64BitDestinationAddressLower

’the 16 bit network address is passed by caller

’as a word, we need to split it into 2 bytes

dataSet[ptr++] := _16BitNetworkAddress >>8

dataSet[ptr++] := _16BitNetworkAddress

’unimportant, but the XBee expects these two bytes

dataSet[ptr++] := $00

dataSet[ptr++] := $00

’the caller passed us the address to a byte array

’that is in HUB memory, the caller also passed

’in _arraySize, so we know how many bytes from that

’array to read. Jut loop until we have read all the

’bytes and written them into our array

repeat sourceArrayPtr from 0 to _arraySize - 1

dataSet[ptr++] := byte[_arrayAddress++]

’start with checksum equals 0xFF, then we subtract all

’the bytes we encounter in our outgoing packet until

’we reach the end

checkSum := $FF

Repeat chars from 3 to ptr-1

checkSum := checkSum - dataSet[chars]

’add our calculated checksum to the end off the array

dataSet[ptr] := checkSum

’if in escaped mode, loop through our outgoing

’array and escape any characters as necessary

’send them on the fly to the XBEee module

’there’s no need to store them in memory first

if (_escaped)

Engineering 428—Kickliter 9

tx(dataSet[0])

Repeat chars from 1 to ptr

if (dataSet[chars] == $7E OR

dataSet[chars] == $7D OR

dataSet[chars] == $11 or

dataSet[chars] == $13)

tx($7D)

tx(dataSet[chars] ^ $20)

else

tx(dataSet[chars])

’if not escaped mode, send the bytes as they are

else

Repeat chars from 0 to ptr

tx(dataSet[chars])

III.2 Computer

Due to the nature of event driven Objective-c, the computer code is a bit
fragmented and spans many more lines and several files. It’s a bit out of scope
to print it inline in this paper, but source will be available for download.

IV Conclusions

Implementing a protocol can seem like a daunting challenge at first. The trick
is it take it step by step. Add functionality incrementally. The code in this
paper stared off very simple, if perhaps a little too hard-coded. This code
is actually not even complete, and probably never will be. To implement
all the features XBee modules would take a lot of time. But, due to the
modular nature of the base code shown here, the added effort is logarithmic,
not linear. The basic send and receive functions documented here would be
the basis for any added features, such as reading and setting parameters of
the XBee module on the fly.

One important lesson learned during the process of building this code is
to write the functions in natural language before writing any actual code. It’s
one of those things you always hear you should do, but it takes experience
to learn it is something you need to do.

