
© Parallax, Inc. • StrobeLED-DBM (2007.08.17) Page 8 of 13

 IF (pixels(i) = which) THEN

 sum = sum + i

 cnt = cnt + 1

 ENDIF

 NEXT

 IF (cnt) THEN sum = sum / cnt

 RETURN

To use this program, set the values for which and line according to the color and size of your tape.

Unscrew the lens until there’s a 3mm gap between the underside of the lens bezel and the top of the lens
holder. Place the BOE-Bot on the line, and then turn it on. It should be able to follow the line quite

smoothly, strobing the LEDs as it goes. If it wanders off the line, you may need to readjust the line

constant, or you may just not have enough contrast between the line and your floor.

Operation with a Parallax Motherboard

When used in conjunction with a Parallax motherboard, operation of the StrobeLED-DBM takes place

automatically with the provided software/firmware. Consult either the TSL1401-DB or the PropCAM-DB

manual for details on how to set the strobe intensity and timing.

One possible application for the StrobeLED in this context is to illuminate barcodes for a TSL1401-DB-
centric barcode reader. Since the resolution of the TSL1401R is limited, we shouldn’t expect to read UPC

codes; but it’s simple enough to create our own, simpler barcodes to read and identify. A barcode
consists of black bars separated by white bars, each of varying widths. There are always an odd number

of bars, since both outside bars have to be black. The relative widths of the bars determine the code that

the barcode reader reads. It’s always nice to know when a barcode is being read upside down, so the
directionality needs to be encoded as well. Finally, to keep the overall width of each barcode constant,

the number of wide bars and the number of narrow bars has to be kept constant over the entire range of
codes.

Let’s create a barcode defined as follows:

• At each end will be black bar two units wide.

• The second bar will be a white bar three units wide.

• The second-to-last bar will be a white bar one unit wide.

• In between will be a code area consisting of four black bars and three white bars, each either

three units wide or one unit wide, such that there are always four narrow bars and three wide
bars.

• Wide bars will be assigned a binary “1”; narrow bars, a “0”.

With this definition, every barcode will total 2 + 3 + (4 × 1) + (3 × 3) + 1 + 2 = 21 units wide. The bars

on the end give us a threshold width with which to compare the other bars. Anything wider is a “1”;

narrower, a “0”. So the codes we read will look like these four examples:

1 0000 1 1 1 0 1 000 1 0 1 1 0

1 00 1 00 1 1 0 1 00 1 1 0 1 0

© Parallax, Inc. • StrobeLED-DBM (2007.08.17) Page 9 of 13

Notice that the first bit is always a “1” and the last bit a “0”. These correspond to the second bar and

second-to-last bar, which are always wide and narrow, respectively. If we read a code where this
situation is reversed, we will know it’s upside down, so we can reverse the bits.

Because the actual code consists of seven bits, four of which have to be zeroes, there are 7! / (4! × 3!) =

35 possible combinations. All 35, with their binary equivalents, appear at the end of this section. These

can be printed out and used to test the barcode reader.

To read a barcode, we shall first assume (for pedantic purposes) that nothing but the barcode we want
to read appears in the field of view. In the real world, this is almost never the case, and most barcode

specs include a figure for “guard bands”, which are the minimum white areas which must appear on
either side of the barcode to render it readable. Eventually, to make our code useful, one would want to

include guard band detection, so extraneous stuff could be included in the field of view. But for right

now, it complicates things more than it is useful to consider.

Every barcode in our definition has twelve edges, starting with a light-to-dark transition. This amounts to
six dark edges and six bright edges. So this is the first thing we will check to see if a barcode is valid.

Here is the total list of things to check:

• Total number of dark edges and bright edges (must be six apiece).

• Sizes of first and last bars (must be roughly equal).

• Leading bit of nine (if 0, reverse the bits).

• First and last bits (must now be 1 and 0, respectively).

• Number of 1 bits, not including the leading 1 (three).

• Resulting code is different from previous code (to eliminate extraneous beeps).

Here is the meat of the PBASIC that performs the barcode reading. It is inserted into the “Program Code”
space of the file “TSL1401_template.bpe”, which can be downloaded from the Parallax website.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

cnta VAR Byte 'General holders for counts and widths.

cntb VAR Byte

edga VAR Byte 'Edge location variables.

edgb VAR Byte

edgc VAR Byte

edgd VAR Byte

code VAR Word 'Holds the result code.

pcode VAR Word 'Holds the previous result code.

exp VAR Byte 'Current exposure time.

maxbrt VAR code 'Maximum brightness measured by firmware.

exp = 30

OWOUT owio, 1, [SETEXP, exp, SETBIN, 128, 5, FIXED, SETLED, 127]

DO

 OWOUT owio, 1, ["<", ACQBIN, CNTNXT|DRKEDG, CNTNXT|BRTEDG,

 FNDNXT|FWD|DRKEDG, FNDNXT|FWD|BRTEDG,

 FNDNXT|BKWD|DRKEDG, FNDNXT|BKWD|BRTEDG, ">"]

 GOSUB Ready

 OWOUT owio, 0, [DUMPADR, MAXPIX]

 OWIN owio, 2, [maxbrt, cnta, cnta, cnta, cntb, edga, edgb, edgd, edgc]

 exp = $E000 / (maxbrt / $FF + 1 * maxbrt) */ exp MAX 255 MIN 1

 OWOUT owio, 0, [$EE, exp]

 IF (cnta = 6 AND cntb = 6 AND ABS(edgb - edga - (edgd - edgc)) < 5) THEN

 cnta = edgb - edga + edgd - edgc >> 1

 code = 0

© Parallax, Inc. • StrobeLED-DBM (2007.08.17) Page 10 of 13

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

 OWOUT owio, 0, ["<", FNDNXT|FWD|DRKEDG, FNDNXT|FWD|BRTEDG,

 FNDNXT|FWD|DRKEDG, FNDNXT|FWD|BRTEDG,

 FNDNXT|FWD|DRKEDG, FNDNXT|FWD|BRTEDG,

 FNDNXT|FWD|DRKEDG, FNDNXT|FWD|BRTEDG, ">"]

 GOSUB Ready

 OWOUT owio, 0, [DUMPADR, RESULTS]

 FOR cntb = 1 TO 8

 OWIN owio, 0, [edga]

 IF (edga - edgb > cnta) THEN code = code | 1

 edgb = edga

 code = code << 1

 NEXT

 IF (edgc - edgb > cnta) THEN

 code = code | 1

 code = code REV 9

 ENDIF

 IF (code & 1 = 0 AND code & 256 AND code <> pcode) THEN

 cntb = 0

 FOR cnta = 1 TO 7

 IF (code & (1 << cnta)) THEN cntb = cntb + 1

 NEXT

 IF (cntb = 3) THEN

 pcode = code

 DEBUG BIN9 code, BELL, CR

 ENDIF

 ENDIF

 ENDIF

LOOP

Here’s the explanation:

Line Description

1-10 Some variables that aren’t included in the template are defined here.

12 Initial exposure time is set to 30.

13
Set exposure time; binary acquisition parameters: FIXED threshold = 128, Hysteresis = 5; and
LED brightness = 127 (50% brightness for duration of exposure).

15 Beginning of the main program loop.

16-18
Queue up and execute as a block: Binary acquisition, count dark edges and bright edges, find

the first and last pair of edges. Note: The reset at the beginning terminates the reads at the
end of the DO loop.

19 Wait for everything that’s been queued up to finish.

20 Start dumping memory at MAXPIX, the value of the brightest pixel.

21
Read the maximum brightness and the results of the counts and finds. cnta gets read

multiple times. The first two are just dummy reads to skip over MAXLOC and AVGPIX.

22-23 Adjust the exposure time, based on the value of maxbrt.

24
Check to see if the edge counts are both six and that the widths of the first and last bars are

roughly equal.

25
Set the width threshold for wide vs. narrow bars/spaces to the average of the first and last
bar widths.

26 Initialize the code variable to zero.

27-30 Queue up and execute as a block: find all the remaining edges.

31 Wait until all the buffered commands have executed.

32 Start dumping the edge locations.

33 There are eight edges to read.

34 Read the next edge location.

35
Width of the bar is new edge location minus prior edge location. If it’s greater than the
threshold width, it’s a 1, so add one to code.

© Parallax, Inc. • StrobeLED-DBM (2007.08.17) Page 11 of 13

36 Save current edge location in previous location.

37 Shift code to the left by one.

38 Repeat for the other edges.

39
The last bit is the white bar separating the end bar from the prior edge. Check to see if it’s a

wide one.

40 It’s a wide one, so stick in a 1 bit.

41 This also means we’ve read the barcode upside down, perhaps, so reverse the bits.

43
Check to see if the last bit is now a 0, the first bit a 1, and if this is a new barcode, rather

than still hovering over the one we just read.

44-47 It is, so count the wide bars from bits one to seven.

48 Check to make sure that that count is three.

49 If it is, save the new code in pcode.

50
Send the results in binary to the DEBUG screen and beep the beeper – just like a real barcode
reader!

54 Go back and do it all over...

When you run this program, you can hold the motherboard/imager/illuminator stack by hand over the
barcode(s) being scanned. The LEDs will be strobing continuously – albeit annoyingly. Whenever a new,

properly-formed barcode is encountered, its value will be displayed in the DEBUG screen, and the PC will
beep. You may need to vary the subject distance as you scan to get good reads. However, you should

virtually never get an erroneous read. There are just too many tests for validity for that to happen with
more than miniscule probability.

© Parallax, Inc. • StrobeLED-DBM (2007.08.17) Page 12 of 13

100001110 (7) 100010110 (11) 100011010 (13)

100011100 (14) 100100110 (19) 100101010 (21)

100101100 (22) 100110010 (25) 100110100 (26)

100111000 (28) 101000110 (35) 101001010 (37)

101001100 (38) 101010010 (41) 101010100 (42)

101011000 (44) 101100010 (49) 101100100 (50)

101101000 (52) 101110000 (56) 110000110 (67)

110001010 (69) 110001100 (70) 110010010 (73)

110010100 (74) 110011000 (76) 110100010 (81)

110100100 (82) 110101000 (84) 110110000 (88)

111000010 (97) 111000100 (98) 111001000 (100)

111010000 (104) 111100000 (112)

All 35 barcode combinations (with decimal values that exclude the first and last bits).

