
Early Propeller Chip Documentation
Rev 0.1

© 2006 by Parallax, Inc.

Documentation

Hardware Description

Main Memory
 HUB
 Bus Access
 COG Control
 LOCK Control
 CLK Control
 Internal RC
 External XTAL
 PLL
 COG
 Register Map
 Peripheral Detail
 Instruction Set

Language Description

RESET Detail

Upon reset, all COGs are shut down, forcing all pins to float. Then, a single COG is booted with a startup program from the main
memory's ROM. This program checks for a serial host connection on P31 (RX). If a host is present, a conversation ensues via P30
(TX), and the host may load the main memory's RAM with high-level code. The host may also direct the code to be programmed into
an EEPROM before executing it. If no host is present, the startup program attempts to read and execute high-level code from a
24LC256 EEPROM on P28 (SCL) and P29 (SDA). If neither a serial host nor an EEPROM is present, the program will place the chip
in shutdown mode. Until a new reset occurs, power is minimized and all pins will be floating.

High-level code is what initially executes from the programmer's perspective. It is capable of booting extra cogs with either other
high-level tasks or assembly-language programs. In the case of high-level code execution, a COG is loaded with an interpreter
program from the main memory's ROM which executes the high-level code residing in the main memory's RAM.

COG Detail

Each COG has its own private 512 x 32-bit register space. These 512 registers are all RAM, except for the last 16 which are special-
purpose registers. The RAM space is for executable code, data, and variables. The last 16 locations serve as interfaces to the HUB, I/O
pins, and local COG peripherals.

When a COG is booted, its RAM locations are loaded sequentially from main memory and its special-purpose registers are cleared to
zero. After loading, the COG begins executing instructions, starting at location $000. It will continue to execute code until it is
stopped or rebooted by either itself or another COG, or a reset occurs.

COG instructions are executed from the 512-register space, only. Though these registers are initially loaded when a COG is booted,

they can be reloaded under program control using RDLONG instructions so that extra code can be executed. This is not a

recommended practice, though. For that matter, program data could be loaded over I/O pins and executed. The programmer is in

control of what happens. Programming is very straightforward when COG programs are designed to fit entirely within the register

space, so that they are completely loaded during booting.

When a COG is stopped, that COG's I/O registers are instantaneously cleared to 0 and clocking ceases, canceling all influence that
COG had on I/O pins and power consumption. When a reset occurs, all COGs are stopped in this manner.

Here is a summary of the special registers within a COG:

COG Registers

Address Name Access Description
$000-$1EF - Read/Write General Purpose RAM

$1F0 PAR Read-Only * Long-address Parameter

$1F1 CNT Read-Only * System Counter

$1F2 INA Read-Only * Input States for P31..P0

$1F3 INB Read-Only * Input States for P63..P32 **

$1F4 OUTA Read/Write Output States for P31..P0

$1F5 OUTB Read/Write Output States for P63..P32 **

$1F6 DIRA Read/Write Direction States for P31..P0

$1F7 DIRB Read/Write Direction States for P63..P32 **

$1F8 CTRA Read/Write Counter A Control

$1F9 CTRB Read/Write Counter B Control

$1FA FRQA Read/Write Counter A Frequency

$1FB FRQB Read/Write Counter B Frequency

$1FC PHSA Read/Write Counter A Phase ***

$1FD PHSB Read/Write Counter B Phase ***

$1FE VCFG Read/Write Video Configuration

$1FF VSCL Read/Write Video Scale

* Only accessible as a Source Register (i.e. MOV DEST,SOURCE)
** Allocated for future use, but not currently implemented
*** Dynamic reading must be as a Source Register. Destination-read is always last-written value.

Counter Modules

Each COG has two identical counter modules. All these circuits do is gate the addition of register FRQ into register PHS on every
clock, according to the settings in register CTR, which might invoke up to two I/O pins for input, output, or feedback. This setup,
though meager, affords (at least) the following functions:

Pulse-width modulation (fixable frequency with variable duty cycle)
Delta modulation (pulse-density output for RC or LC filtering to get DAC function)
Sigma-delta ADC (requires two pins and an RC network, loads signal)
Numerically-controlled oscillator with PLL (DC to 128MHz frequency synthesis)
Frequency counter (counts up to clock/2 frequency)
State counter (any combination of up to two pins, useful for RC measurement)

Because of the counters' 32-bit resolutions, and the fact that they update every clock cycle, dynamic range is quite excessive in most
areas. For example, running the Propeller at 80MHz means that the update period for the counters will be 12.5ns. This results in a
12.5ns PWM resolution, an 80MHz delta modulation, a 0.149Hz step-resolution for synthesizing frequencies up to 128MHz, and
12.5ns sensitivity in capturing/measuring pulses. 32 bits also allows huge measurements to be taken without overflow concerns.

The two counter modules in each COG are named 'Counter A' and 'Counter B'. Their respective registers are CTRA/FRQA/PHSA and
CTRB/FRQB/PHSB. For documentation purposes, the register names CTR/FRQ/PHS will be used here. In practice, you would add
'A' or 'B' to specify the actual counter within the COG.

CTR Register

31 30 29 28 27 26 25 24 23 22..15 14 13 12 11 10 9 8..6 5 4 3 2 1 0

- M4 M3 M2 M1 M0 S2 S1 S0 - B5 B4 B3 B2 B1 B0 - A5 A4 A3 A2 A1 A0

COG Assembly Language

The COG executes 32-bit instructions from its 512-register space. The instruction codes contain several bit fields. The general format
for an assembly instruction is as follows:

{address label} {execution condition} instruction destination , {#}source {execution effects – comma separated}

Examples:

entry rdlong command,PAR wz 'wait for command (non-0)

 if_z jmp #entry

32-Bit Instruction Detail

Field Range Description

Operation Code 31..26 Perform ADD, SUB, AND, OR, JMP, etc.

Execution Effects

25..23 In conjunction with Controls writes to C Flag, Z Flag, and Destination Register:
If bit 25 is set, the Z Flag will be written
If bit 24 is set, the C Flag will be written
If bit 23 is set, the Destination Register will be written

Source Literal 22 If set, bits 8..0 will be zero-extended and used as a 32-bit constant

Execution Condition 21..18 C and Z flag condition upon which instruction will execute

Destination Register
17..9 Register which supplies the first 32-bit input to the instruction and/or

receives the effect of the operation

Source Register
or Literal

8..0 Register or constant which supplies the second 32-bit input to the
instruction

Source Register or Literal Value

This 9-bit field either selects a register (any of the 512) or provides a zero-extended literal value to be used as the source by the
instruction. Bit 22 controls how this field is used: 0 for register, 1 for literal. When entering assembly code, the # symbol sets literal
mode.

Destination Register

This 9-bit field selects which of the 512 registers will be used as the destination by the instruction.

Execution Condition

This 4-bit field selects the condition upon which the instruction will execute. The condition is a logical combination of the C and Z
flags. If the conditional is false at execution-time, the instruction is effectively converted to a NOP. Condition codes may precede any
instruction and are as follows:

Execution
Condition

Instruction
Prefix

Instruction
Prefix

Instruction
Prefix

1111 ALWAYS *

1100 IF_C IF_B

0011 IF_NC IF_AE

1010 IF_Z IF_E

0101 IF_NZ IF_NE

1000 IF_C_AND_Z IF_Z_AND_C

0100 IF_C_AND_NZ IF_NZ_AND_C

0010 IF_NC_AND_Z IF_Z_AND_NC

0001 IF_NC_AND_NZ IF_NZ_AND_NC IF_A

1110 IF_C_OR_Z IF_Z_OR_C IF_BE

Operation
Code

Update
Z Flag

Update
C Flag

Update
Result

Source

Execution
Condition

Destination
Register

Source
Register / #

31..26 25 24 23 22 21..18 17..9 8..0
iiiiii z c r i cccc ddddddddd sssssssss

1101 IF_C_OR_NZ IF_NZ_OR_C

1011 IF_NC_OR_Z IF_Z_OR_NC

0111 IF_NC_OR_NZ IF_NZ_OR_NC

1001 IF_C_EQ_Z IF_Z_EQ_C

0110 IF_C_NE_Z IF_Z_NE_C

0000 NEVER

* ALWAYS is the default, in case no condition is specified.

Execution Effects

After the instruction and destination/source are specified, you may specify any desired execution effect(s). These are two-character
symbols that gate the updating of C, Z and D, assuming the instruction executed. The C and/or Z flags will only be affected if 'WC'
and/or 'WZ' follow an instruction. While no instruction will automatically write C or Z, each instruction has some default write-D
behavior which can be overridden by 'WR' or 'NR'. If multiple execution effects are specified after an instruction, they must be
separated by commas. Only whitespace is required to separate instruction arguments from the postfixes.

Instruction Postfix Effect

WC Write C

WZ Write Z

WR Write D

NR Don't Write D

Propeller Assembly Language Instruction Set
iiiiii zcri cccc ddddddddd sssssssss Instruction Description Z out C out r Clocks
000000 000i 1111 ddddddddd sssssssss WRBYTE D,S Write D[7..0] to main memory byte S[15..0] - - 0 7..22 *

000000 001i 1111 ddddddddd sssssssss RDBYTE D,S Read main memory byte S[15..0] into D (0-ext'd) Result = 0 - 1 7..22 *
000001 000i 1111 ddddddddd sssssssss WRWORD D,S Write D[15..0] to main memory word S[15..1] - - 0 7..22 *
000001 001i 1111 ddddddddd sssssssss RDWORD D,S Read main memory word S[15..1] into D (0-ext'd) Result = 0 - 1 7..22 *
000010 000i 1111 ddddddddd sssssssss WRLONG D,S Write D to main memory long S[15..2] - - 0 7..22 *

000010 001i 1111 ddddddddd sssssssss RDLONG D,S Read main memory long S[15..2] into D Result = 0 - 1 7..22 *
000011 000i 1111 ddddddddd sssssssss HUBOP D,S Perform hub operation according to S Result = 0 - 0 7..22 *
000011 0001 1111 ddddddddd ------000 CLKSET D Set the global CLK register to D[7..0] - - 0 7..22 *
000011 0011 1111 ddddddddd ------001 COGID D Get this COG number (0..7) into D Result = 0 - 1 7..22 *

000011 0001 1111 ddddddddd ------010 COGINIT D Initialize a COG according to D Result = 0 No COG free 0 7..22 *
000011 0001 1111 ddddddddd ------011 COGSTOP D Stop COG number D[2..0] - - 0 7..22 *
000011 0011 1111 ddddddddd ------100 LOCKNEW D Checkout a new LOCK number (0..7) into D Result = 0 No LOCK free 1 7..22 *
000011 0001 1111 ddddddddd ------101 LOCKRET D Return LOCK number D[2..0] - - 0 7..22 *

000011 0001 1111 ddddddddd ------110 LOCKSET D Set LOCK number D[2..0] - Prior LOCK state 0 7..22 *
000011 0001 1111 ddddddddd ------111 LOCKCLR D Clear LOCK number D[2..0] - Prior LOCK state 0 7..22 *
000100 001i 1111 ddddddddd sssssssss MUL D,S Multiply unsigned D[15..0] by S[15..0] Result = 0 - 1 future
000101 001i 1111 ddddddddd sssssssss MULS D,S Multiply signed D[15..0] by S[15..0] Result = 0 - 1 future

000110 001i 1111 ddddddddd sssssssss ENC D,S Encode magnitude of S into D, result = 0..31 Result = 0 - 1 future
000111 001i 1111 ddddddddd sssssssss ONES D,S Get number of 1's in S into D, result = 0..31 Result = 0 - 1 future
001000 001i 1111 ddddddddd sssssssss ROR D,S Rotate D right by S[4..0] bits Result = 0 D[0] 1 4
001001 001i 1111 ddddddddd sssssssss ROL D,S Rotate D left by S[4..0] bits Result = 0 D[31] 1 4

001010 001i 1111 ddddddddd sssssssss SHR D,S Shift D right by S[4..0] bits Result = 0 D[0] 1 4
001011 001i 1111 ddddddddd sssssssss SHL D,S Shift D left by S[4..0] bits Result = 0 D[31] 1 4
001100 001i 1111 ddddddddd sssssssss RCR D,S Rotate carry right into D by S[4..0] bits Result = 0 D[0] 1 4
001101 001i 1111 ddddddddd sssssssss RCL D,S Rotate carry left into D by S[4..0] bits Result = 0 D[31] 1 4

001110 001i 1111 ddddddddd sssssssss SAR D,S Shift D arithmetically right by S[4..0] bits Result = 0 D[0] 1 4
001111 001i 1111 ddddddddd sssssssss REV D,S Reverse 32–S[4..0] bottom bits in D and 0-extend Result = 0 D[0] 1 4
010000 001i 1111 ddddddddd sssssssss MINS D,S Set D to S if signed (D < S) D = S Signed (D < S) 1 4
010001 001i 1111 ddddddddd sssssssss MAXS D,S Set D to S if signed (D => S) D = S Signed (D < S) 1 4
010010 001i 1111 ddddddddd sssssssss MIN D,S Set D to S if unsigned (D < S) D = S Unsigned (D < S) 1 4

010011 001i 1111 ddddddddd sssssssss MAX D,S Set D to S if unsigned (D => S) D = S Unsigned (D < S) 1 4
010100 001i 1111 ddddddddd sssssssss MOVS D,S Insert S[8..0] into D[8..0] Result = 0 - 1 4
010101 001i 1111 ddddddddd sssssssss MOVD D,S Insert S[8..0] into D[17..9] Result = 0 - 1 4
010110 001i 1111 ddddddddd sssssssss MOVI D,S Insert S[8..0] into D[31..23] Result = 0 - 1 4

010111 001i 1111 ddddddddd sssssssss JMPRET D,S Insert PC+1 into D[8..0] and set PC to S[8..0] Result = 0 - 1 4
010111 000i 1111 --------- sssssssss JMP S Set PC to S[8..0] Result = 0 - 0 4
010111 0011 1111 ????????? sssssssss CALL #S Like JMPRET, but assembler handles details Result = 0 - 1 4
010111 0001 1111 --------- --------- RET Like JMP, but assembler handles details Result = 0 - 0 4

011000 000i 1111 ddddddddd sssssssss TEST D,S AND S with D to affect flags only Result = 0 Parity of Result 0 4
011000 001i 1111 ddddddddd sssssssss AND D,S AND S into D Result = 0 Parity of Result 1 4
011001 001i 1111 ddddddddd sssssssss ANDN D,S AND !S into D Result = 0 Parity of Result 1 4
011010 001i 1111 ddddddddd sssssssss OR D,S OR S into D Result = 0 Parity of Result 1 4

011011 001i 1111 ddddddddd sssssssss XOR D,S XOR S into D Result = 0 Parity of Result 1 4
011100 001i 1111 ddddddddd sssssssss MUXC D,S Copy C to bits in D using S as mask Result = 0 Parity of Result 1 4
011101 001i 1111 ddddddddd sssssssss MUXNC D,S Copy !C to bits in D using S as mask Result = 0 Parity of Result 1 4
011110 001i 1111 ddddddddd sssssssss MUXZ D,S Copy Z to bits in D using S as mask Result = 0 Parity of Result 1 4

011111 001i 1111 ddddddddd sssssssss MUXNZ D,S Copy !Z to bits in D using S as mask Result = 0 Parity of Result 1 4
100000 001i 1111 ddddddddd sssssssss ADD D,S Add S into D Result = 0 Unsigned Carry 1 4
100001 001i 1111 ddddddddd sssssssss SUB D,S Subtract S from D Result = 0 Unsigned Borrow 1 4
100001 000i 1111 ddddddddd sssssssss CMP D,S Compare D to S Result = 0 Unsigned Borrow 0 4

100010 001i 1111 ddddddddd sssssssss ADDABS D,S Add absolute S into D Result = 0 Unsigned Carry 1 4
100011 001i 1111 ddddddddd sssssssss SUBABS D,S Subtract absolute S from D Result = 0 Unsigned Borrow 1 4
100100 001i 1111 ddddddddd sssssssss SUMC D,S Sum either –S if C or S if !C into D Result = 0 Signed Overflow 1 4
100101 001i 1111 ddddddddd sssssssss SUMNC D,S Sum either S if C or –S if !C into D Result = 0 Signed Overflow 1 4

100110 001i 1111 ddddddddd sssssssss SUMZ D,S Sum either –S if Z or S if !Z into D Result = 0 Signed Overflow 1 4
100111 001i 1111 ddddddddd sssssssss SUMNZ D,S Sum either S if Z or –S if !Z into D Result = 0 Signed Overflow 1 4
101000 001i 1111 ddddddddd sssssssss MOV D,S Set D to S Result = 0 S[31] 1 4
101001 001i 1111 ddddddddd sssssssss NEG D,S Set D to –S Result = 0 S[31] 1 4

101010 001i 1111 ddddddddd sssssssss ABS D,S Set D to absolute S Result = 0 S[31] 1 4
101011 001i 1111 ddddddddd sssssssss ABSNEG D,S Set D to –absolute S Result = 0 S[31] 1 4
101100 001i 1111 ddddddddd sssssssss NEGC D,S Set D to either –S if C or S if !C Result = 0 S[31] 1 4
101101 001i 1111 ddddddddd sssssssss NEGNC D,S Set D to either S if C or –S if !C Result = 0 S[31] 1 4

101110 001i 1111 ddddddddd sssssssss NEGZ D,S Set D to either –S if Z or S if !Z Result = 0 S[31] 1 4
101111 001i 1111 ddddddddd sssssssss NEGNZ D,S Set D to either S if Z or –S if !Z Result = 0 S[31] 1 4
110000 000i 1111 ddddddddd sssssssss CMPS D,S Compare-signed D to S Result = 0 Signed Borrow 0 4
110001 000i 1111 ddddddddd sssssssss CMPSX D,S Compare-signed-extended D to S+C Z & (Result = 0) Signed Borrow 0 4

110010 001i 1111 ddddddddd sssssssss ADDX D,S Add-extended S+C into D Z & (Result = 0) Unsigned Carry 1 4
110011 001i 1111 ddddddddd sssssssss SUBX D,S Subtract-extended S+C from D Z & (Result = 0) Unsigned Borrow 1 4
110011 000i 1111 ddddddddd sssssssss CMPX D,S Compare-extended D to S+C Z & (Result = 0) Unsigned Borrow 0 4
110100 001i 1111 ddddddddd sssssssss ADDS D,S Add-signed S into D Result = 0 Signed Overflow 1 4

110101 001i 1111 ddddddddd sssssssss SUBS D,S Subtract-signed S from D Result = 0 Signed Overflow 1 4
110110 001i 1111 ddddddddd sssssssss ADDSX D,S Add-signed-extended S+C into D Z & (Result = 0) Signed Overflow 1 4
110111 001i 1111 ddddddddd sssssssss SUBSX D,S Subtract-signed-extended S+C from D Z & (Result = 0) Signed Overflow 1 4
111000 000i 1111 ddddddddd sssssssss CMPSUB D,S Subtract S from D if D => S D = S Unsigned (D => S) 0 4
111001 001i 1111 ddddddddd sssssssss DJNZ D,S Dec D, jump if not zero to S (no jump = 8 clocks) Result = 0 Unsigned Borrow 1 4 or 8

111010 000i 1111 ddddddddd sssssssss TJNZ D,S Test D, jump if not zero to S (no jump = 8 clocks) Result = 0 0 0 4 or 8
111011 000i 1111 ddddddddd sssssssss TJZ D,S Test D, jump if zero to S (no jump = 8 clocks) Result = 0 0 0 4 or 8
111100 000i 1111 ddddddddd sssssssss WAITPEQ D,S Wait for pins equal - (INA & S) = D - - 0 5+
111101 000i 1111 ddddddddd sssssssss WAITPNE D,S Wait for pins not equal - (INA & S) != D - - 0 5+

111110 001i 1111 ddddddddd sssssssss WAITCNT D,S Wait for CNT = D, then add S into D - Unsigned Carry 1 5+
111111 000i 1111 ddddddddd sssssssss WAITVID D,S Wait for video peripheral to grab D and S - - 0 5+
------ ---- 0000 --------- --------- NOP No operation, just elapses 4 clocks - - - 4

* The HUB allows each COG an opportunity to execute a HUB instruction every 16 clocks. Because each COG runs independently of the HUB, each COG must sync to the HUB when executing a HUB instruction. This will
cause a HUB instruction to take between 7 and 22 clocks. Afterwards, there will be 9 free clocks before a subsequent HUB instruction can execute and take the minimal 7 clocks. This is enough time to execute two 4-clock
instructions without missing the next sync. So, to minimize clock waste, you can insert two normal instructions between any two otherwise-contiguous HUB instructions, without any increase in execution time. Beware that
HUB instructions can cause execution timing to appear indeterminate - particularly, the first HUB instruction in a sequence.

HUB Instructions

The instructions which access main memory, the global CLK register, the COGs, and the LOCKs are all 'HUB' instructions. What
critically transpires during their execution is a function of the central HUB, which coordinates chip-wide operations.

The HUB runs at half the COGs' clock frequency, serving each of the eight COGs, in turn, with each subsequent clock. From the
COGs' perspectives, this is once every 16 clocks. Because the HUB runs steadily, dedicating a clock cycle to each COG, and because
the COGs run independently, taking various numbers of clocks for different instructions, each COG must re-sync to the HUB
whenever it executes a HUB instruction. This results in execution times ranging from 7 to 22 clocks for each hub instruction. Once a
HUB instruction has executed, there will be 9 free clocks before another HUB instruction could execute and take the minimal 7
clocks. Nine clocks is enough time for two 4-clock instructions to execute before another HUB instruction would take 8 clocks. So, to
minimize clock waste, you can insert two 4-clock instructions between any two otherwise-contiguous HUB instructions without any
increase in execution time. Beware that HUB instructions can inject jitter into your execution schedule – particularly the first one in a
sequence. For deterministic timing, you might want to place them outside of time-critical code sequences in which the HUB-sync is
unknown.

The following sub-sections elaborate on different HUB instruction groups.

Main memory access

The HUB instructions which access main memory are:

 RDBYTE D,S 'Read byte at S into D and zero-extend

 RDWORD D,S 'Read word at S into D and zero-extend

 RDLONG D,S 'Read long at S into D

 WRBYTE D,S 'Write D into byte at S

 WRWORD D,S 'Write D into word at S

 WRLONG D,S 'Write D into long at S

The main memory is 64K bytes in size and can be accessed from any COG. It is accessible as 64K bytes, 32K words, or 16K longs.

All accesses are aligned according to data size. Words can only begin at even addresses and longs can only begin at even-even
addresses. Of course, the programmer can arrange his data any way he wants, but to take advantage of efficient word and long
accesses, he must pay attention to alignment.

CLK register write

Inside the HUB is a global CLK register which selects the master clock. A single HUB instruction used to set this register:

 CLKSET D 'Write D[7..0] into the global CLK register

See the documentation on the Global CLK Register for a detailed description of its function.

COG control

There are three HUB instructions which govern the starting and stopping of COGs:

 COGID D 'Get *this* COG number into D

 COGINIT D 'Init a COG according to D

 COGSTOP D 'Stop COG number D

COGID writes the executing COG number into D. This instruction is used when a COG needs to know 'who' it is, among the eight,
usually for the purpose of stopping or restarting itself.

COGINIT is the instruction used to start or restart a COG. The D register has three fields within it that determine which COG gets
started, where its program begins in main memory, and what its PAR register will contain.

D[31..18] will be written to bits [15..2] of the started COG's PAR register. By this mechanism, a long address parameter can be
conveyed to a COG at start-time. This parameter is intended to be used as a pointer to some agreed-upon structure in main
memory via which communication with another COG (or COGs) may take place.

D[17..4] specifies the long address in main memory of the COG program to be loaded. COG registers $000..$1EF will be
loaded sequentially, starting at this address. The writable COG registers $1F4..$1FF will be initialized to 0. When the loading
and initializing are complete, the started COG will begin executing from register $000.

D[3] determines whether a new COG or a specified COG will be started.

If D[3] is '1', the HUB will start the lowest-numbered inactive COG and return that COG's number (0..7) into D. The C
flag will also be used to convey whether or not there was an inactive COG available. A '0' in C indicates that the
operation was successful. A '1' indicates that no COG was available and none was started. Be sure to put both the 'WR'
and 'WC' modifiers after the COGINIT instruction so that these results will be written into D and C. Starting COGs in
this fashion means that you will never have to plan which COG will run what program. The HUB, which knows the
instantaneous state of all COGs, will do the picking for you.

If D[3] is '0', the HUB will start the COG numbered in D[2..0]. This is useful for restarting active COGs. To start a new
COG, it is recommended that you use the D[3] = '1' approach, detailed above.

COGSTOP simply stops the COG numbered in D[2..0]. When a COG is stopped, it receives no clock and consumes no power. It will
be held in an inactive reset state until started by a COGINIT instruction.

LOCK usage

LOCKs are special global bits which can be utilized to solve the problem of multiple-access contention, or cross-COG clobbering.

Imagine you have an area in main memory which holds some data that is to be accessed by more than one COG. If the elemental data
exceeds a long, in size, it will take multiple reads or writes for any COG to access it. It would be necessary to avoid the possibility of
one or more COGs reading data while one or more other COGs are writing (or think they are writing) the same data. Access needs to
be limited to one COG at a time, in order to avoid misreads and miswrites. Such exclusive access control can be achieved by using a
LOCK.

A LOCK is a global bit that can be set or cleared by any COG through certain HUB instructions. At the time a COG sets or clears a
LOCK, it can also learn the prior state of that LOCK. The fact that the HUB allows only one COG at a time to set or clear a LOCK,
makes this an effective access control mechanism.

To use a LOCK, all COGs which intend to share some resource must agree on a LOCK number and its initial state. For our discussion,
let's make the LOCK's initial state '0'. Now, for any COG to gain exclusive access to the shared resource, it must keep setting the
LOCK until it sees that its prior state was '0'. After this, all other COGs will get only '1's back. The winning COG now has exclusive
access to the resource. When it is done accessing the resource, it must clear the LOCK so that another COG can gain access. LOCKs
may be used creatively for many such purposes.

The HUB maintains an inventory of eight LOCKs. It keeps track of which LOCKs are available for check-out and notes when a
LOCK is returned. On reset, all LOCKs are 'returned' and ready for check-out. Though it's possible to set or clear any arbitrary LOCK,
it is recommended that you check-out a LOCK, so that the HUB will know that it is in use and will not grant it to some other COG. It's
also critical to return the LOCK when you are through with it, so that it may be checked out again.

There are four HUB instructions used to manipulate LOCKs:

 LOCKNEW D wc 'Check-out a new LOCK number into D, C=1 if none

 LOCKRET D 'Return LOCK number D

 LOCKSET D wc 'Set LOCK number D, C=prior LOCK state

 LOCKCLR D wc 'Clear LOCK number D, C=prior LOCK state

LOCKNEW checks out a new LOCK from the HUB and puts its number (0..7) into D. The C flag is used to convey whether or not the
operation was successful. A '0' indicates success, while a '1' indicates that no free LOCK was available. Be sure to put a 'WC' modifier
after the instruction, so that C will be written.

LOCKRET returns the LOCK numbered in D[2..0] to the HUB's inventory.

LOCKSET sets the LOCK numbered in D[2..0] and, if 'WC' is after the instruction, writes the LOCK's prior state into the C flag.

LOCKCLR clears the LOCK numbered in D[2..0] and, if 'WC' is after the instruction, writes the LOCK's prior state into the C flag.

Branching Instructions

Branching instructions are used to alter the course of the COG's program counter, or PC. The PC is a 9-bit counter that tracks the
program's execution address. It normally increments with each instruction, but it can be loaded with an arbitrary value via branching
instructions.

Important note: All the branching instructions (except 'RET') use S to specify the branch address. Always remember to put '#' in front
of the S expression when you intend to jump to a constant address. This will almost always be the case in your code. If you don't use
the '#', you will be specifying a register's contents as your branch address. Sometimes, you may want to do this, but most often your
intent will be to branch to a constant address and you must remember to use '#'. For the applicable instructions cited in this section,
both forms will be shown to keep you mindful of this critical issue.

Important note #2: Remember, like all other instructions, these branches can be preceded by conditionals, making them into
conditional branches.

The simplest branch instruction is 'JMP S'. This simply sets the PC to S[8..0]:

 JMP #S 'Jump to the constant address S

 JMP S 'Jump to where register S points

The most complex branch instruction is 'JMPRET D,S'. This is like 'JMP S' but has the additional effect of writing PC+1 (what would
have been the next execution address) into bits 8..0 of D. The purpose of that extra action is to insert a 'return address' into a 'JMP #S'
instruction's sssssssss bit field. This way, if the code branched to by 'JMPRET D,S' ends with a 'JMP #S' instruction at the D address,
that segment of code effectively becomes a subroutine that many identical 'JMPRET D,S' instructions could branch to, and then return
from.

Here is 'JMPRET':

 JMPRET D,#S 'Jump to the constant address S and set D[8..0] to PC+1

 JMPRET D,S 'Jump to where register S points and set D[8..0] to PC+1

To keep you sane, the assembler provides special 'CALL' and 'RET' instructions which form 'JMPRET D,#S' and 'JMP #S'
instructions, respectively. This makes it easy to realize the subroutine scheme described above. These special instructions must be
used with coordinated symbol names that you make up. To use the 'CALL' instruction, you must specify a '#' followed by the symbolic
name of the subroutine you are calling. There must be, somewhere in your program, an identical symbol name which ends with '_ret'
and precedes a 'RET' instruction. The assembler uses the address of the +'_ret' symbol as the D in the 'JMPRET D,#S', or 'CALL'
instruction; the S comes from the subroutine's start symbol. The 'RET' instruction is assembled as 'JMP #0', but gets modified at run-
time. Here is a contextual example of these instructions:

 CALL #sub1 'Call to the constant address "sub1"

 '…and set the sssssssss bit field of "sub1_ret" to PC+1

'--

sub1 <code> 'Start of "sub1" subroutine

sub1_ret RET 'Return to caller (sssssssss modified, jump to #S)

Note that the COG has no call stack. It uses end-of-subroutine jumps to return to callers. For this reason, subroutines cannot be called
recursively. However, there is no 'depth' limit.

Finally, there are three conditional branching instructions which branch according to D:

 DJNZ D,#S 'Decrement D, jump to constant address S if D is not 0

 DJNZ D,S 'Decrement D, jump to where register S points if D is not 0

 TJNZ D,#S 'Test D, jump to constant address S if D is not 0

 TJNZ D,S 'Test D, jump to where register S points if D is not 0

 TJZ D,#S 'Test D, jump to constant address S if D is 0

 TJZ D,S 'Test D, jump to where register S points if D is 0

These D-dependent branches are very useful for fast looping. They take 4 clocks when they branch, and 8 clocks when they don't.

Add, Subtract, and Compare Instructions

There is a variety of add, subtract, and compare instructions which warrants elaboration. Some instructions perform unsigned math,
while others perform signed math. Some perform base-long operations, while others perform extended-long operations. The
differences lie in how the Z and C flags are treated, particularly the C flag. By having several adder-based instructions that treat the C
flag differently, the need for separate overflow and sign flags is gotten around. This two-flag system allows for a compact, but
complete 4-bit condition code to gate the execution of each instruction.

Below is a table of the basic math instructions:

ADD/SUB/CMP Base Extended

Unsigned
ADD D,S

SUB D,S

CMP D,S

ADDX D,S

SUBX D,S

CMPX D,S

Signed
ADDS D,S

SUBS D,S

CMPS D,S

ADDSX D,S

SUBSX D,S

CMPSX D,S

Here are the unsigned base instructions, shown with both flags written:

 ADD D,S wz,wc 'Add S into D, Z=1 if 0, C=1 if carry

 SUB D,S wz,wc 'Subtract S from D, Z=1 if 0, C=1 if borrow

 CMP D,S wz,wc 'Compare D to S, Z=1 if 0, C=1 if borrow

The 'ADD' instruction produces a carry, or C=1, if the addition of S into D causes a roll-over in D. In other words, the result is greater
than $FFFFFFFF. The 'SUB' instruction produces a borrow, or C=1, if the subtraction of S from D causes a roll-under in D. Or, in
other words, the result is less than 0 (S is greater than D). The 'SUB' and 'CMP' instructions are the same, except that 'CMP' does not
store the result – it only indicates through the Z and C flags if D is above, below, or equal to S.

Next are the signed base instructions, shown with both flags written:

 ADDS D,S wz,wc 'Add-signed S into D, Z=1 if 0, C=1 if overflow

 SUBS D,S wz,wc 'Subtract-signed S from D, Z=1 if 0, C=1 if overflow

 CMPS D,S wz,wc 'Compare-signed D to S, Z=1 if 0, C=1 if borrow

In the signed 'ADDS' and 'SUBS' instructions, an overflow, or C=1, occurs when the result is either above $7FFFFFFF or below
$80000000 – the range of signed long values. The signed 'CMPS' instruction, however, produces a signed borrow, or C=1, if S is
greater than D, signs considered.

The unsigned and extended instructions are shown below with both flags written:

 ADDX D,S wz,wc 'Add-extended S+C into D, AND Z, C=1 if carry

 SUBX D,S wz,wc 'Subtract-extended S+C from D, AND Z, C=1 if borrow

 CMPX D,S wz,wc 'Compare-extended D to S+C, AND Z, C=1 if borrow

These instructions differ from 'ADD', 'SUB', and 'CMP' by incorporating C into the computation, and by AND'ing the old Z with what
would have been the new Z. These extra qualities make these instructions chainable. For example, the following double-long
operations wind up with Z and C valid for the entire 64-bit operation:

 ADD D0,S0 wz,wc 'Add lower longs, affect flags

 ADDX D1,S1 wz,wc 'Add upper longs, Z=1 if 0, C=1 if carry

 SUB D0,S0 wz,wc 'Subtract lower longs, affect flags

 SUBX D1,S1 wz,wc 'Subtract upper longs, Z=1 if 0, C=1 if borrow

 CMP D0,S0 wz,wc 'Compare lower longs, affect flags

 CMPX D1,S1 wz,wc 'Compare upper longs, Z=1 if 0, C=1 if borrow

These operations could be further extended by adding an extra 'ADDX', 'SUBX', or 'CMPX' for every additional long pair to be
operated on.

The signed and extended instructions are as follows, shown with both flags written:

 ADDSX D,S wz,wc 'Add-signed-extended S+C into D, AND Z, C=overflow

 SUBSX D,S wz,wc 'Sub-signed-extended S+C from D, AND Z, C=overflow

 CMPSX D,S wz,wc 'Compare-signed-extended D to S+C, AND Z, C=borrow

Like 'ADDX', 'SUBX', and 'CMPX', these instructions incorporate C into the operation, and AND the old Z with what would have
been the new Z. The difference is in their C flag output, which is signed. Here they are, used in double-long operations, with both Z
and C valid afterwards for the entire 64-bit operation:

 ADD D0,S0 wz,wc 'Add lower longs, then signed-extended uppers

 ADDSX D1,S1 wz,wc 'Z=1 if 0, C=1 if overflow

 SUB D0,S0 wz,wc 'Subtract lower longs, then signed-extended uppers

 SUBSX D1,S1 wz,wc 'Z=1 if 0, C=1 if overflow

 CMP D0,S0 wz,wc 'Compare lower longs, then signed-extended uppers

 CMPSX D1,S1 wz,wc 'Z=1 if 0, C=1 if signed borrow

To extend these further, 'ADDX', 'SUBX', and 'CMPX' instructions may be inserted between the shown pairs to handle any middle-
longs. In a multiple-long signed operation, the beginning instruction is unsigned, any middle instructions are unsigned-extended, and
the last instruction is signed-extended.

All these add, subtract, and compare instructions are quite similar. The differences lie in whether they are signed (C indicates overflow
or signed borrow) and whether they are extended (C flag incorporated into operation, and Z flag AND'd).

Multiplication, Division, and Square Root

Multiplication, division, and square root can be computed by using add, subtract, and shift instructions.

Here is an unsigned multiplier routine that multiplies two 16-bit values to yield a 32-bit product:

'

' Multiply x[15..0] by y[15..0] (y[31..16] must be 0)

' on exit, product in y[31..0]

'

multiply shl x,#16 'get multiplicand into x[31..16]

 mov t,#16 'ready for 16 multiplier bits

 shr y,#1 wc 'get initial multiplier bit into c

:loop if_c add y,x wc 'if c set, add multiplicand into product

 rcr y,#1 wc 'get next multiplier bit into c, shift product

 djnz t,#:loop 'loop until done

multiply_ret ret 'return with product in y[31..0]

The above routine's execution time could be cut by ~1/3 if the loop was unrolled, repeating the 'add'/'rcr' sequence 16 times and
getting rid of the 'DJNZ' instruction.

Division is like multiplication, but backwards. It is potentially more complex, though, because a comparison test must be performed
before a subtraction can take place. To remedy this, there is a special 'CMPSUB D,S' instructions which tests to see if a subtraction
can be performed without causing an underflow. If no underflow would occur, the subtraction takes place and the C output is 1. If an
underflow would occur, D is left alone and the C output is 0.

Here is an unsigned divider routine that divides a 32-bit value by a 16-bit value to yield a 16-bit quotient and a 16-bit remainder:

'

' Divide x[31..0] by y[15..0] (y[16] must be 0)

' on exit, quotient is in x[15..0] and remainder is in x[31..16]

'

divide shl y,#15 'get divisor into y[30..15]

 mov t,#16 'ready for 16 quotient bits

:loop cmpsub x,y wc 'if y =< x then subtract it, quotient bit into c

 rcl x,#1 'rotate c into quotient, shift dividend

 djnz t,#:loop 'loop until done

divide_ret ret 'quotient in x[15..0], remainder in x[31..16]

Like the multiplier routine, this divider routine could be recoded with a sequence of 16 'CMPSUB'+'RCL' instruction pairs to get rid of
the 'DJNZ' and cut execution time by ~1/3. By making such changes, speed can often be gained at the expense of code size.

Here is a square-root routine that uses the 'CMPSUB' instruction:

'

' Compute square-root of y[31..0] into x[15..0]

'

root mov a,#0 'reset accumulator

 mov x,#0 'reset root

 mov t,#16 'ready for 16 root bits

:loop shl y,#1 wc 'rotate top two bits of y into accumulator

 rcl a,#1

 shl y,#1 wc

 rcl a,#1

 shl x,#2 'determine next bit of root

 or x,#1

 cmpsub a,x wc

 shr x,#2

 rcl x,#1

 djnz t,#:loop 'loop until done

root_ret ret 'square root in x[15..0]

Many complex math functions can be realized by additions, subtractions, and shifts. Though specific examples were given here, these
types of algorithms may be coded in many different ways to best suit the application.

WAIT Instructions

The 'wait' instructions are used to stall the COG until some target condition is met. Once a wait instruction is engaged, the target
condition is re-checked every clock cycle. Once the condition is met, the instruction finishes and the next instruction executes. During
the wait, COG power consumption is reduced. These instructions are mainly used to align a COG's execution timing with some event.

The first two wait instructions deal with the I/O pins' input states. They wait for some set of pins to either equal, or not equal, some set
of states. The S operand is used as a mask to isolate the pins of importance, while the D operand is the value to compare the isolated
pins to. These instructions are as follows:

 WAITPEQ D,S 'Wait for (INA & S) to equal D

 WAITPNE D,S 'Wait for (INA & S) to not equal D

The 'WAITCNT D,S' instruction waits for the global free-running 32-bit counter to equal some value. The global counter increments
at the COG clock rate and can be read via the CNT register in each COG. Keep in mind that 32 bits can take a long time to wrap
around if you miss the mark. This instruction is:

 WAITCNT D,S 'Wait for CNT to equal D, then add S into D

By adding S into D, this instruction can singly serve as a synchronization mechanism to align execution to a fixed period. Here is an
example of this:

 mov dira,#1 'Make P0 an output

 add time,cnt 'Add cnt into time to accommodate the initial sync

:loop waitcnt time,period '(re)sync to cnt, adding in the period afterwards

 xor outa,#1 'toggle P0 – always on the same relative clock

 <code> 'put non-deterministic code after time-critical code

 jmp #:loop 'loop to re-sync to the next period

time long 3 'cnt-tracking variable, initial 3 accommodates sync

period long 100 '100 clocks per period

Lastly, there is the 'WAITVID D,S' instruction which passes color and pixel data to the video peripheral. The video peripheral must be
running for this instruction not to hang:

 WAITVID D,S 'Hand off colors in D, pixels in S

When the video peripheral is ready for its next set of color and pixel data, it grabs D and S, regardless of what instruction the COG is
currently executing. It is critical that the COG be waiting in a 'WAITVID D,S' instruction when this happens – otherwise, the video
peripheral picks up indeterminate data and displays it. You have to make sure your program beats the video peripheral to the pickup.

Main Memory

Address Range Memory Type Contents
$0000-$7FFF RAM User Memory – 8,192 longs / 16,384 words / 32,768 bytes
$8000-$BFFF ROM Character Definitions – 4,096 longs define 256 different 16 x 32-pixel characters
$C000-$CFFF ROM Log Table – 2,048 words of fractional exponents
$D000-$DFFF ROM Anti-Log Table – 2,048 words of top-bit-set 17-bit mantissas
$E000-$F001 ROM Sine Table – 2,049 unsigned words cover 0° to 90° of sine, inclusively
$F002-$FFFF ROM Booter and Interpreter programs

The tables in ROM are intended to facilitate real-time signal processing by high-speed assembly language programs. High-level
programs may not find much direct use for this data, though they may leverage objects which take advantage of it.

User Memory ($0000-$7FFF)

The first half of main memory is all RAM. This space is used for your program, variables, and stack(s).

When a program is loaded into the chip, either serially or from an external EEPROM, this entire memory space is written. Your
program will begin at $0010 and extend for some number of longs. The area after your program, extending to $7FFF, is used as stack
space. Data spanning from $0000 to $000F is used mainly to hold the initial interpreter pointers. However, there are two values stored
here that might be of interest to your program: a long at $0000 contains the initial master clock frequency, in Hertz, and a byte at
$000F contains the initial value written into the global CLK register. If you change the global CLK register, you will need to update
these two variables so that objects which reference them will have current information. The master clock frequency can be read as
'FREQ' in the high-level language. It can also be read and written as 'LONG[0]'. The global CLK register copy can be read and written
as 'BYTE[15]'.

Character Definitions ($8000-$BFFF)

The first half of ROM is dedicated to a set of 256 character definitions. Each character definition is 16 pixels wide by 32 pixels tall.
These character definitions can be used for video generation, graphical LCD's, printing, etc.

The character set is based on a North American / Western European layout, with many specialized characters added and inserted.
There are connecting waveform and schematic building-block characters, Greek characters commonly used in electronics, and several
arrows and bullets.

The character definitions are numbered 0 to 255 from left-to-right, then top-to-bottom, per the diagram below. They are arranged as
follows: Each pair of adjacent even-odd characters is merged together to form 32 longs. The first character pair is located in $8000-
$807F. The second pair occupies $8080-$80FF, and so on, until the last pair fills $BF80-$BFFF. The character pairs are merged such
that each character's 16 horizontal pixels (per row) are spaced apart and interleaved with their neighbors' such that the even character
takes bits 0, 2, 4, ...30, and the odd character takes bits 1, 3, 5, ...31. The leftmost pixels are in the lowest bits, while the rightmost
pixels are in the highest bits. This forms a long for each row of pixels in the character pair. 32 such longs, building from top row down
to bottom, make up the complete merged-pair definition. The definitions are encoded in this manner so that a COG video peripheral
can handle the merged longs directly, using color selection to display either the even or the odd character.

Some character codes have inescapable
meanings, such as 9 for Tab, 10 for Line Feed,
and 13 for Carriage Return (0 can also be
touchy). These character codes invoke actions
and do not equate to static character definitions.
For this reason, their character definitions have
been used for special four-color characters. These
four-color characters are used for drawing 3-D
box edges at run-time and are implemented as 16
x 16 pixel cells, as opposed to the normal 16 x 32
pixel cells. They occupy even-odd character pairs
0-1, 8-9, 10-11, and 12-13.

Log and Anti-Log Tables ($C000-DFFF)

The log and anti-log tables are useful for converting values between their number form and exponent form.

When numbers are encoded into exponent form, simple math operations take on more complex effects. For example 'add' and
'subtract' become 'multiply' and 'divide'. 'Shift-left' becomes 'square' and 'shift-right' becomes 'square-root'. 'Divide by 3' will produce
'cube root'. Once the exponent is converted back to a number, the result will be apparent. This process is imperfect, but quite fast.

For applications where many multiplies and divides must be performed in the absence of many additions and subtractions, exponential
encoding can greatly speed things up. Exponential encoding is also useful for compressing numbers into fewer bits – sacrificing
resolution at higher magnitude. In many applications, such as audio synthesis, the nature of signals is logarithmic in both frequency
and magnitude. Processing such data in exponent form is quite natural and efficient, as it lends a 'linear' simplicity to what is actually
logarithmic.

The code examples given below use each table's samples verbatim. Higher resolution could be achieved by linearly interpolating
between table samples, since the slope changes very slightly from sample to sample. The cost, though, would be larger code and lower
execution speed.

Log Table ($C000-$CFFF)

The log table contains data used to convert unsigned numbers into base-2 exponents.

The log table is comprised of 2,048 unsigned words which make up the base-2 fractional exponents of numbers. To use this table, you
must first determine the integer portion of the exponent of the number you are converting. This is simply the leading bit position. For
$60000000 this would be 30 ($1E). This integer portion will always fit within 5 bits. Isolate these 5 bits into the result so that they
occupy bit positions 20..16. In our case of $60000000, we would now have a partial result of $001E0000. Next, top-justify and isolate
the first 11 bits below the leading bit into positions 11..1. This would be $0800 for our example. Add $C000 for the log table base and
you now have the actual word address of the fractional exponent. By reading the word at $C800, we get the value $95C0. Adding this
into the partial result yields $001E95C0 – that's $60000000 in exponent form. Note that bits 20..16 make up the integer portion of the
exponent, while bits 15..0 make up the fractional portion, with bit 15 being the ½, bit 14 being the ¼, and so on, down to bit 0. The
exponent can now be manipulated by adding, subtracting, and shifting. Always insure that your math operations will never drive the
exponent below 0 or cause it to overflow bit 20. Otherwise, it may not convert back to a number correctly.

Here is a routine that will convert an unsigned number into its base-2 exponent using the log table:

'

' Convert number to exponent

'

' on entry: num holds 32-bit unsigned value

' on exit: exp holds 21-bit exponent with 5 integer bits and 16 fractional bits

'

numexp mov exp,#0 'clear exponent

 test num,num4 wz 'get integer portion of exponent

 muxnz exp,exp4 'while top-justifying number

 if_z shl num,#16

 test num,num3 wz

 muxnz exp,exp3

 if_z shl num,#8

 test num,num2 wz

 muxnz exp,exp2

 if_z shl num,#4

 test num,num1 wz

 muxnz exp,exp1

 if_z shl num,#2

 test num,num0 wz

 muxnz exp,exp0

 if_z shl num,#1

 shr num,#30-11 'justify sub-leading bits as word offset

 and num,table_mask 'isolate table offset bits

 add num,table_log 'add log table address

 rdword num,num 'read fractional portion of exponent

 or exp,num 'combine fractional and integer portions

numexp_ret ret '91..106 clocks

 '(variance is due to HUB sync on RDWORD)

num4 long $FFFF0000

num3 long $FF000000

num2 long $F0000000

num1 long $C0000000

num0 long $80000000
exp4 long $00100000

exp3 long $00080000

exp2 long $00040000

exp1 long $00020000

exp0 long $00010000

table_mask long $0FFE 'table offset mask

table_log long $C000 'log table base

num long 0 'input

exp long 0 'output

Anti-Log Table ($D000-$DFFF)

The anti-log table contains data used to convert base 2 exponents into unsigned numbers.

The anti-log table is comprised of 2,048 unsigned words which are each the lower 16-bits of a 17-bit mantissa (the 17th bit is implied
and must be set separately). To use this table, shift the top 11 bits of the exponent fraction (bits 15..5) into bits 11..1 and isolate. Add
$D000 for the anti-log table base. Read the word at that location into the result – this is the mantissa. Next, shift the mantissa left to
bits 30..15 and set bit 31 – the missing 17th bit of the mantissa. The last step is to shift the result right by 31 minus the exponent integer
in bits 20..16. The exponent is now converted to an unsigned number.

Here is a routine that will convert a base-2 exponent into an unsigned number using the anti-log table:

'

' Convert exponent to number

'

' on entry: exp holds 21-bit exponent with 5 integer bits and 16 fraction bits

' on exit: num holds 32-bit unsigned value

'

expnum mov num,exp 'get exponent into number

 shr num,#15-11 'justify exponent fraction as word offset

 and num,table_mask 'isolate table offset bits

 or num,table_antilog 'add anti-log table address

 rdword num,num 'read mantissa word into number

 shl num,#15 'shift mantissa into bits 30..15

 or num,num0 'set top bit (17th bit of mantissa)

 shr exp,#20-4 'shift exponent integer into bits 4..0

 xor exp,#$1F 'inverse bits to get shift count

 shr num,exp 'shift number into final position

expnum_ret ret '47..62 clocks

 '(variance is due to HUB sync on RDWORD)

num0 long $80000000 '17th bit of the mantissa

table_mask long $0FFE 'table offset mask

table_antilog long $C000 'anti-log table base

exp long 0 'input

num long 0 'output

Sine Table ($E000-$F001)

The sine table provides 2,049 unsigned 16-bit sine samples spanning from 0° to 90°, inclusively (0.0439° resolution).

A small amount of assembly code can mirror and flip the sine table samples to create a full-cycle sine/cosine lookup routine which has
13-bit angle resolution, 17-bit sample resolution, and perfectly-centered minimum, maximum, and zero points, so that full-cycle
integration always yields zero (critical for correlators):

'

' Get sine/cosine

'

' quadrant: 1 2 3 4

' angle: $0000..$07FF $0800..$0FFF $1000..$17FF $1800..$1FFF

' table index: $0000..$07FF $0800..$0001 $0000..$07FF $0800..$0001

' mirror: +offset -offset +offset -offset

' flip: +sample +sample -sample -sample

'

' on entry: sin[12..0] holds angle (0° to just under 360°)

' on exit: sin holds signed value ranging from $0000FFFF ('1') to $FFFF0001 ('-1')

'

getcos add sin,sin_90 'for cosine, add 90°

getsin test sin,sin_90 wc 'get quadrant 2|4 into c

 test sin_sin_180 wz 'get quadrant 3|4 into nz

 negc sin,sin 'if quadrant 2|4, negate offset

 or sin,sin_table 'or in sin table address >> 1

 shl sin,#1 'shift left to get final word address

 rdword sin,sin 'read word sample from $E000 to $F000

 negnz sin,sin 'if quadrant 3|4, negate sample

getsin_ret

getcos_ret ret '39..54 clocks

 '(variance is due to HUB sync on RDWORD)

sin_90 long $0800

sin_180 long $1000

sin_table long $E000 >> 1 'sine table base shifted right

sin long 0

As with the log and anti-log tables, linear interpolation could be applied to the sine table to achieve higher resolution.

Booter and Interpreter ($F002-$FFFF)

The last part of ROM contains the booter and the interpreter. These are assembly language programs which are critical to the operation
of the chip.

The booter program runs automatically on reset and is responsible for booting the chip. The booter begins its job by waiting briefly to
see if a host is attempting to connect serially on P31 and P30. If a host is present, it can receive a high-level program into RAM. It
may then program that data into an external EEPROM and/or launch the interpreter to execute it. If no serial host is present, the booter
will attempt to load a high-level program into RAM from an external EEPROM on P29 and P28. If successful, the interpreter will be

launched to execute it. If no EEPROM is present, or the high-level program was corrupted, the booter will shut down the chip to
conserve power.

The interpreter program's job is to execute high-level programs. It is initially launched by the booter, in the same COG that the booter
was running in. As the interpreter executes a high-level program, it may be directed to re-launch itself into other COGs, so that other
high-level programs can run concurrently.

The Global CLK Register

The global CLK register controls the chip's master clock source. It is writable from the high-level 'CLKSET(value)' instruction or the
assembly language 'CLKSET D' instruction. Whenever the CLK register is written, a global delay of ~100us will occur as the clock-
switchover circuit transitions from potentially one clock source to another.

Whenever this register is changed, a copy of the value written should be placed in BYTE[4]. Also, LONG[0] should be updated with
the resulting master clock frequency. This is done so that objects which reference these data will have current information upon which
to base their timing calculations.

The CLK register is composed as follows:

Bit 7 6 5 4 3 2 1 0

Name RESET PLLENA OSCENA OSCM1 OSCM0 CLKSEL2 CLKSEL1 CLKSEL0

RESET Effect

0 Always write '0' here unless you intend to reset the chip.

1 Same as a hardware reset – reboots the chip.

PLLENA Effect

0 Disables the PLL circuit.

1

Enables the PLL circuit. The PLL internally multiplies the XIN pin frequency by 16. OSCENA must be '1' to
propagate the XIN signal to the PLL. The PLL's internal frequency must be kept within 64MHz to 128MHz – this
translates to an XIN frequency range of 4.00MHz to 8.00MHz. Allow 100µs for the PLL to stabilize before switching
to one of its outputs via the CLKSEL bits. Once the OSC and PLL circuits are enabled and stabilized, you can switch
freely among all clock sources by changing the CLKSEL bits.

OSCENA Effect

0 Disables the OSC circuit.

1

Enables the OSC circuit so that a clock signal can be input to XIN, or so that XIN and XOUT can function together
as a feedback oscillator. The OSCM bits select the operating mode of the OSC circuit. Note that no external resistors
or capacitors are required for crystals and resonators. Allow a crystal or resonator 10ms to stabilize before switching
to an OSC or PLL output via the CLKSEL bits. When enabling the OSC circuit, the PLL may be enabled at the same
time so that they can share the stabilization period.

OSCM1 OSCM0 XOUT Resistance XIN/XOUT Capacitance Frequency Range

0 0 Infinite 6pF (pad only) DC to 80MHz Input

0 1 2000 Ohms 36pF 4MHz to 16MHz Crystal/Resonator

1 0 1000 Ohms 26pF 8MHz to 32MHz Crystal/Resonator

1 1 500 Ohms 16pF 20MHz to 60MHz Crystal/Resonator

CLKSEL2 CLKSEL1 CLKSEL0 Master Clock Source Notes

0 0 0 ~12MHz Internal No external parts. May range from 8MHz to 20MHz.

0 0 1 ~20KHz Internal Very low power. May range from 13KHz to 33KHz.

0 1 0 XIN OSC OSCENA must be '1'.

0 1 1 XIN x 1 OSC+PLL OSCENA and PLLENA must be '1'.

1 0 0 XIN x 2 OSC+PLL OSCENA and PLLENA must be '1'.

1 0 1 XIN x 4 OSC+PLL OSCENA and PLLENA must be '1'.

1 1 0 XIN x 8 OSC+PLL OSCENA and PLLENA must be '1'.

1 1 1 XIN x 16 OSC+PLL OSCENA and PLLENA must be '1'.

