
Column #62: Menus Made Easy

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 235

Column #62, June 2000 by Jon Williams:

Menus Made Easy

When it comes right down to it, I’m a very lucky guy. Really. I have a wonderful
family, terrific friends, I live in one of the best cities in the world and I get to work with
some really bright people. Like my friend, Will, for example. Now this guy is definitely
one of the sharpest knives in the drawer. I love working with him; he inspires me on a
daily basis.

Will and I work for a company that manufactures water-pumping stations for golf
courses. Our big stations use off-the-shelf PLCs for control. The price of the PLC is
easy to justify due to the sophistication of control required and the volume of stations we
sell. But now that we’re moving into the simpler municipal water market, the PLC is just
a bit expensive.

That’s no longer a problem for us – thanks to Will. He spent the last year designing a
custom pumping station controller from the ground up. It’s a real beauty and has been a
big hit, inside the company and out. A very big reason, I believe, is the elegance and
simplicity of its user interface.

Column #62: Menus Made Easy

Page 236 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

I’ll admit that I’m biased here. When it comes to user interfaces, I have been justifiably
called anal-retentive. It’s a fair criticism – I’m a nut when it comes to UI design. I’m a
very big believer in UI standards, even if they’re only loosely defined. Nothing throws
me off about a piece of software more than a poorly designed or non-standard interface.

When it comes to the PC – especially in our “Windowed” world – designing to standard
is pretty easy since there are a lot of good examples. There’s even a set of written
guidelines, called the CUA. But what do we do when it comes to industrial controllers?

I’m not suggesting that all industrial controls should have a common interface. What I
am suggesting is that a simple and intuitive interface can be developed and applied to our
Stamp projects. That’s the goal here: apply Will’s great UI design to the BASIC Stamp,
creating a platform from which we can develop any number distinct control projects.
And just as we’re able to navigate any properly designed Windows program, we should
be able to easily navigate any of our control projects that follow the standard we develop
here.

Keeping It Simple

Yep, back to the KISS principal – keep it simple, silly. The user interface on Will’s
controller uses six buttons and a two-line LCD. With this simple interface, he created a
multi-level menu system that is intuitive and easy to navigate (our design goal). So how
do we duplicate that on a Stamp?

Using a conventional approach, connecting to six buttons would take six lines and
connecting to the LCD (assuming 4-bit mode) would take another six; twelve total lines.
Yikes – that doesn’t leave much left to connect to the outside world. There’s got to be
another way.

And there is. Using SHIFTIN and SHIFTOUT, we can add a couple of fifty-cent shift
registers to our project and reduce the I/O lines required for the interface to five. That’s
much better. The schematics for our demo project are shown in Figures 1 (LCD) and 2
(buttons).

Since I’ve covered the use of the 74HC595 with LCDs in past articles, I’m not going to
deal with it here except to say that with a little planning, you can easily cascade the
additional 75HC595s to create more outputs. You’ll need to connect the serial output
(pin 9) of one 74HC595 to the serial input (pin 14) of the next. The Clock (pin 11) and
Latch (pin 12) lines need to be tied together.

Column #62: Menus Made Easy

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 237

Figure 62.1: 74HC595 and LCD hookup

We’ll use the 74HC595’s compliment, the 74CH165 parallel-in/serial-out shift register to
read our buttons. Since we’re only using six inputs, the other two could be used as
configuration switches, additional buttons, anything the project requires. And like the
74HC595, the 74HC165 can be cascaded if we ever need additional inputs.

Column #62: Menus Made Easy

Page 238 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

Figure 62.2: 74HC165 and button hookups

Keyboard Debouncing

Debouncing one input with a Stamp is pretty easy with the BUTTON command, but what
happens when we want to debounce six inputs and do it simultaneously? As it turns out,
the solution is not particularly difficult and takes very little code. Take a look at Listing
1, down in the subroutines section. Look for the routine called GetKey.

GetKey returns inputs that have been held stable for about 25 milliseconds. That should
be enough time to validate the button press and we can easily adjust the debounce timing
if required. Here’s how GetKey works: On entry to the routine we assume that all the
buttons are pressed (this may seem odd, but will make sense in just a second). Then we
scan the inputs and logically AND them with the current value. If a button has released
due to contact-bounce, it will have a bit-value of zero. Zero ANDed with one is zero and
will remain at zero through the remainder of the routine. Only a button that stays down

Column #62: Menus Made Easy

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 239

(bit value of 1) during the entire loop will return as a valid input. This technique can be
used with nibbles, bytes or words – up to 16 inputs can be simultaneously debounced.

Sharp readers (that’s all of you) are probably asking, “Wait, Jon, how can the inputs
return a value of one when pressed if we’ve connect the buttons between the shift register
inputs and ground?” Good catch. Look again at the schematic in Figure 62.2. We’re
using the inverted serial output from the 74HC165 to restore the positive logic for us. If
we ever want to modify GetKey to deal with direct inputs, we would change the test line
to look like this:

 key = key & ~tempB

The tilde (~) in front of tempB inverts the bits for us.

In this program GetKey uses the SHIFTIN function to retrieve the buttons from the
75HC165. Before we can use SHIFTIN, however, we have to pulse the Shift/Load line
from high-to-low, then back to high. This action “grabs” the buttons and holds them
while we do the shifting. If any of the inputs change while we’re shifting the data, we
won’t see it until the next scan.

Menu, Please

Last month we talked about project planning and that certainly applies here. In addition
to any control functionality, we need to define our menu structure so that it makes sense
to the user and is easy to navigate.

The goal of our demo program is to allow the user to set the time and day. To that end,
we’ve set up three operational modes: display current time and day (mode 0), set time
(mode 1) and set day (mode 2). Since setting the time is easier to do by individually
setting the hours and the minutes, the set time mode has two levels. Note that zero is
always used to indicate the topmost element in either structure. Mode 0, then, is our
“normal” operational display. A level of zero indicates a menu display only. Once we
get into actual value editing, we indicate the element to change with a non-zero level
value.

Both mode and level are defined as nibbles, allow up to 15 menu items (beyond the
normal display) and 15 levels within each menu. Our program is much simpler than that.
Here’s how the menu for our demo program is mapped:

Column #62: Menus Made Easy

Page 240 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

mode level

0 : display time and day

1 : SET TIME

 1 : set hours
 2 : set minutes

2 : SET DAY

 1 : set day of week

Navigation Rules

With our menu structure in place, we need to define the rules by which we’ll navigate
through it. As we stated earlier, there are six buttons. Here’s how they’ll work:

Set Enter menus or editing within a menu
OK Move up one level
Up Previous menu item or increment value
Down Next menu item or decrement value
Right Move to next field
Left Move to previous field

As you can see, things get started by pressing the “Set” button. This will take us from
our normal (“run”) display into the menus. We will use “Up” and “Down” to select a
specific menu item. With the desired menu item displayed, we’ll press “Set” again. This
will put us into edit mode (level one for the selected menu). We can change a value in
edit mode by using “Up” and “Down.” If there are multiple fields to edit for the selected
menu item, we can move through the fields by pressing “Left” and “Right.” Pressing
“OK” in edit mode takes us back up to the menu so that we can select another. Finally,
pressing “OK” while in the menu takes us back to the “run” display.

Putting It All Together

Okay, we know what we want to do and how our program should behave, so let’s put it
all together. We’ll start, as always, by defining CONstants that will help make the code
self-documenting. We use quite a few in this program and they really do help.

Column #62: Menus Made Easy

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 241

Operationally, we kick off the program by initializing the LCD and program variables.
Since we only have eight bits available from the 75HC595, we’ll use the 4-bit interface to
the LCD as this mode requires only six lines. This LCD is also initialized to use multiple
lines. The same initialization sequence will work with two- or four-line LCDs.

Like our exercise timer last month, this program runs in a continuous loop. Each pass
through the loop scans the buttons then BRANCHes to the handler for the current mode
and level. It is within the menus or edit code that we will process any button inputs.
Let’s follow the program from startup though setting the time. Along the way we’ll try
every possible button press so that the program is understood.

The program loop starts by scanning the buttons and placing the result in a variable
named key. With level set to zero, the program BRANCHes to the line labeled
Run_Mode. Since the flag variable updtLCD was initialize to Yes (1), the code drops
through the IF...THEN and prints the time and day on line one of the LCD. Keep in mind
that this is just a demonstration program and that the time and date are not automatically
updated.

You might wonder why we go through the trouble to keep track of when the LCD needs
to be updated. The reason is two-fold: we can save a little time by not writing to the LCD
when there are no changes to be displayed and we keep the display “clean” as constant
updates to the LCD can cause an annoying flash.

We’ve simplified the program by printing the time and day from subroutines (PrintTime
and PrintDay). These subroutines allow us to print at the current cursor position of the
LCD. PrintTime calls a neat little routine called LCDdec2. This routine is similar to the
DEC2 modifier for DEBUG or SEROUT. Look closely at the code. Just above is an
entry point called LCDhex2. This works like the HEX2 modifier. Both LCDdec2 and
LCDhex2 set the base value for the working section of code, LCDnum2. This bit of code
will print a two-digit number at the current cursor position of the LCD. Notice that we
don’t actually calculate the character to print (as we typically do), but instead, we
calculate the character’s position in a EEPROM table. Then we read it from the
EEPROM and print it. This is how the same code can be used to print decimal or hex
numbers. In fact, by setting the variable base to eight, we could print a two-digit octal
number as well.

PrintDay also takes advantage of data stored in the EEPROM, in this case, zero-
terminated strings. By storing our strings in the EEPROM, we can easily make changes –
even change the language of our displays should we ever decide to internationalize the

Column #62: Menus Made Easy

Page 242 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

project. The routine that puts the string on the LCD is called LCDprint. What we have to
do is set the variable addr to the first character of the string to print. LCDprint will loop
through the EEPROM from that point, printing the characters it reads until it encounters a
zero. So we have to make sure that we end our strings with zero, otherwise we’ll end up
with a corrupted display.

Okay, the time and date is displayed and the program is waiting for an input. The only
button that does anything from the top level is “Set,” so let’s press it. When we do, the
mode variable is set to MNU_Tm (1) and level is cleared to zero. Since we’re going to
change to a new display, we tell the program by setting updtLCD to Yes. We exit the
current action by jumping to LoopPad250. This label finishes the loop and gives us a
250-millisecond delay – enough time to release the button. In other cases, we’ll use a
100-millisecond loop delay by jumping to LoopPad100.

On our next pass through the main loop we will BRANCH to line labeled Mode_Time.
As with Mode_Run, we will update the display and wait for a valid button. Again, we’ll
use the routine LCDprint to send a string (“SET TIME”) to the display. Pressing “OK” at
this level causes us to return to the top. This is achieved by setting the variable state to
RunMode. If you look carefully through the variable definitions, you’ll see that our
variables mode and level are actually aliased elements of state. Setting state to zero
(RunMode) clears mode and level at the same time.

Let’s return to the “SET TIME” menu and then press “Set.” This causes us to enter the
editing mode by setting level to SET_Hr (1). On the next pass through the program loop,
we will end up at the label called Time_Hours. This bit of code will put the current time
on line two and place a visible cursor under the hours value.

In hours editing mode, more buttons are used. Pressing “OK” clears level to zero and
returns us to the menu where we can make another selection. We can change the hours
value by pressing either “Up” or “Down.” Both routines keep the hours value within
range by using the modulus (//) operator. I find this technique easier (less code) and
more user-friendly for interfaces like we’re designing. Pressing “Up” or “Down”
necessitates a display change so we’ll set updtLCD to Yes.

With the hours set, we move to the minutes field by pressing the “Right” button. This
causes level to be set to SET_Min (2), forcing the program to move to the minutes editing
routines. As before, we indicate that we’re editing by placing the cursor under the
minutes value. Button processing is identical to setting the hours. Once we’re satisfied,
pressing “OK” twice will return us to our topmost display.

Column #62: Menus Made Easy

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 243

And we’re done. The “run” display will now show the new time. Setting the day works
the same, but only requires one edit level. In an operational program we would use our
new to update a real-time-clock.

Wrap Up

Another one of those sharp guys I know in Dallas is Roger Arrick, the owner of Arrick
Robotics (check out Roger’s Stamp-controlled ARobot at www. robotics.com). Roger’s
e-mail tag line is, “It’s Harder Than It Looks.” That was the case with this menu system.
Now, I don’t want you to be put off by this, I’m just warning you to take your time with
your menu design and program development, lest your project take off to la-la land. It is
a bit of work and yet, I think you’ll agree – and your customer’s will agree -- that the
result is well worth the effort. Happy Stamping.

Column #62: Menus Made Easy

Page 244 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

' Nuts & Volts "Stamp Applications" - June 2000
' Program Listing 62.1

'===
' Program... STAMPUI.BS2
' Purpose... Stamp User-Interface for general control applications
' Author.... Jon Williams
' E-mail.... jonwms@aol.com
'===

' ----[Program Description]---
'
' This program demonstrates a multi-level menu system using a keypad input
' and LCD output. Stamp pins are conserved by using shift registers for
' the keys and LCD.

' ----[Revision History]--
'

' ----[I/O Definitions]---
'
Clock CON 0 ' shared clock line
SL_165 CON 1 ' shift/load of 74HC165
DI_165 CON 2 ' serial data from 74HC165
L_595 CON 3 ' 74HC595 output latch
DO_595 CON 4 ' serial data to 74HC595

' ----[Constants]---
'
ClrLCD CON $01 ' clear the LCD
CrsrHm CON $02 ' move cursor home
CrsrLf CON $10 ' move cursor left
CrsrRt CON $14 ' move cursor right
DispLf CON $18 ' shift chars left
DispRt CON $1C ' shift chars right

Crsr1 CON %00001110 ' underline cursor on
Crsr0 CON %00001100 ' underline cursor off

DDRam CON $80 ' Display Data RAM control
CGRam CON $40 ' Char Gen RAM control

Line1 CON $00 ' line 1, column 0
Line2 CON $40
Line3 CON $14
Line4 CON $54

Column #62: Menus Made Easy

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 245

Key_Up CON %000001 ' input keys
Key_Dn CON %000010
Key_Lf CON %000100
Key_Rt CON %001000
Key_OK CON %010000
Key_Set CON %100000

RunMode CON 0 ' menu displays
MNU_Tm CON 1
MNU_Day CON 2

SET_Hr CON 1 ' setting hours
SET_Min CON 2 ' setting minutes
SET_Day CON 1 ' setting day

D_Sun CON 0 ' days of week
D_Mon CON 1
D_Tue CON 2
D_Wed CON 3
D_Thu CON 4
D_Fri CON 5
D_Sat CON 6

Yes CON 1
No CON 0

' ----[Variables]---
'
key VAR Byte ' key input
char VAR Byte ' character out to LCD
temp VAR Byte ' work variable for LCD
lcd_E VAR temp.Bit2 ' LCD Enable pin
lcd_RS VAR temp.Bit3 ' Reg Select (1 = char)
addr VAR Byte ' EE address for LCDprint
base VAR Byte ' base for display

hrs VAR Byte ' hours
mins VAR Byte ' minutes
day VAR Nib ' day of week, 0 to 6

state VAR Byte ' program state
mode VAR state.HighNib ' menu mode
level VAR state.LowNib ' edit level

tempW VAR Word ' general purpose word
temp1 VAR tempW.HighByte
temp2 VAR tempW.LowByte
tempB VAR Byte ' general purpose byte
loop VAR Byte ' loop counter

Column #62: Menus Made Easy

Page 246 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

flags VAR Nib
updtLCD VAR flags.Bit0 ' update LCD flag

' ----[EEPROM Data]---
'
Digits DATA "0123456789ABCDEF" ' digits for LCDnum2 sub

Days DATA "SUN", 0 ' day strings
 DATA "MON", 0
 DATA "TUE", 0
 DATA "WED", 0
 DATA "THU", 0
 DATA "FRI", 0
 DATA "SAT", 0

LCD_ST DATA "SET TIME", 0 ' menu strings
LCD_SD DATA "SET DAY", 0

' ----[Initialization]--
'
' Initialize the LCD (Hitachi HD44780 controller)
'
LCDinit:
 PAUSE 500 ' let the LCD settle
 char = %0011 ' 8-bit mode
 GOSUB LCDcmd
 PAUSE 5
 GOSUB LCDcmd
 GOSUB LCDcmd
 char = %0010 ' put in 4-bit mode
 GOSUB LCDcmd
 char = %00101000 ' 2-line mode
 GOSUB LCDcmd
 char = %00001100 ' disp on, crsr off
 GOSUB LCDcmd
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCDcmd
 char = ClrLCD
 GOSUB LCDcmd

Initialize:
 updtLCD = Yes ' refresh the LCD
 state = RunMode ' top menu

 hrs = 12
 mins = 34

Column #62: Menus Made Easy

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 247

 day = D_Sun

' ----[Main]--
'
Main:
 GOSUB GetKey
 BRANCH mode, [Mode_Run, Mode_Time, Mode_Day]
 GOTO LoopPad100

' =========================
' Run Display (top level)
' =========================

Mode_Run:
 IF updtLCD = No THEN Mode_Run2 ' no update, check key
 char = Crsr0 ' clear cursor frome edit
 GOSUB LCDcmd
 char = ClrLCD ' clear the LCD
 GOSUB LCDcmd
 GOSUB PrintTime ' print the time
 char = DDRam + Line1 + 6 ' move to position 6
 GOSUB LCDcmd
 GOSUB PrintDay ' print the day
 updtLCD = No ' LCD updated

Mode_Run2:
 IF key <> Key_Set THEN LoopPad100 ' "Set" not pressed
 mode = MNU_Tm ' "Set" pressed, Time menu
 level = 0 ' menu level
 updtLCD = Yes ' update the LCD
 GOTO LoopPad250 ' allow key release

' ==============
' Time Display
' ==============

Mode_Time:
 ' branch to current mode level
 BRANCH level, [Time_Menu, Time_Hours, Time_Mins]
 GOTO LoopPad100

Time_Menu: ' display "SET TIME"
 IF updtLCD = No THEN Time_Menu2 ' update on if required
 char = Crsr0
 GOSUB LCDcmd
 char = ClrLCD
 GOSUB LCDcmd
 addr = LCD_ST
 GOSUB LCDprint

Column #62: Menus Made Easy

Page 248 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

 updtLCD = No

Time_Menu2:
 IF key <> Key_OK THEN Time_Menu2a ' check "OK"
 state = RunMode ' - pressed; up to top
 updtLCD = Yes
 GOTO LoopPad100

Time_Menu2a:
 IF key <> Key_Set THEN Time_Menu2b ' check "Set"
 level = SET_Hr ' - pressed; set hours
 updtLCD = Yes
 GOTO LoopPad250

Time_Menu2b:
 IF key <> Key_Dn THEN LoopPad100 ' check "Down"
 mode = MNU_Day ' - move to day menu
 updtLCD = Yes
 GOTO LoopPad250

Time_Hours: ' display hours with cursor
 IF updtLCD = No THEN Time_Hours1 ' - if refresh required
 char = Crsr0 ' no cursor during refresh
 GOSUB LCDcmd
 char = DDRam + Line2 ' time on Line 2
 GOSUB LCDcmd
 GOSUB PrintTime
 char = DDRam + Line2 + 1 ' cursor under hours
 GOSUB LCDcmd
 char = Crsr1
 GOSUB LCDcmd
 updtLCD = No

Time_Hours1:
 IF key <> Key_OK THEN Time_Hours1a ' check "OK"
 level = 0 ' - back to menu
 updtLCD = Yes
 GOTO LoopPad250

Time_Hours1a:
 IF key <> Key_Up THEN Time_Hours1b ' check "Up"
 hrs = hrs + 1 // 24 ' - increment with rollover
 updtLCD = Yes
 GOTO LoopPad250

Time_Hours1b:
 IF key <> Key_Dn THEN Time_Hours1c ' check "Down"
 hrs = hrs + 23 // 24 ' - dec with rollunder
 updtLCD = Yes
 GOTO LoopPad250

Column #62: Menus Made Easy

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 249

Time_Hours1c:
 IF key <> Key_Rt THEN LoopPad100 ' check "Right"
 level = SET_Min ' - set minutes
 updtLCD = Yes
 GOTO LoopPad100

Time_Mins: ' display mins with cursor
 IF updtLCD = No THEN Time_Mins1 ' - if refresh required
 char = Crsr0
 GOSUB LCDcmd
 char = DDRam + Line2
 GOSUB LCDcmd
 GOSUB PrintTime
 char = DDRam + Line2 + 4 ' cursor under minutes
 GOSUB LCDcmd
 char = Crsr1
 GOSUB LCDcmd
 updtLCD = No
 GOTO LoopPad100

Time_Mins1:
 IF key <> Key_OK THEN Time_Mins1a ' check "OK"
 level = 0 ' - back to menu
 updtLCD = Yes
 GOTO LoopPad100

Time_Mins1a:
 IF key <> Key_Up THEN Time_Mins1b ' check "Up"
 mins = mins + 1 // 60 ' - inc with rollover
 updtLCD = Yes
 GOTO LoopPad100

Time_Mins1b:
 IF key <> Key_Dn THEN Time_Mins1c ' check "Down"
 mins = mins + 59 // 60 ' - dec with rollunder
 updtLCD = Yes
 GOTO LoopPad100

Time_Mins1c:
 IF key <> Key_Lf THEN LoopPad100 ' check "Left"
 level = SET_Hr ' - set hours
 updtLCD = Yes
 GOTO LoopPad100

' =============
' Day Display
' =============

Mode_Day:
 ' branch to current mode level

Column #62: Menus Made Easy

Page 250 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

 BRANCH level, [Day_Menu, Day_Set]
 GOTO LoopPad100

Day_Menu: ' display "SET DAY"
 IF updtLCD = No THEN Day_Menu2 ' - if refresh required
 char = Crsr0
 GOSUB LCDcmd
 char = ClrLCD
 GOSUB LCDcmd
 addr = LCD_SD
 GOSUB LCDprint
 updtLCD = No

Day_Menu2:
 IF key <> Key_OK THEN Day_Menu2a ' check "OK"
 state = RunMode ' - back to top
 updtLCD = Yes
 GOTO LoopPad100

Day_Menu2a:
 IF key <> Key_Set THEN Day_Menu2b ' check "Set"
 level = SET_Day ' - set day
 updtLCD = Yes
 GOTO LoopPad250

Day_Menu2b:
 IF key <> Key_Up THEN LoopPad100 ' check "Up"
 mode = MNU_Tm ' - back to time menu
 level = 0
 updtLCD = Yes
 GOTO LoopPad100

Day_Set:
 IF updtLCD = No THEN Day_Set1
 char = Crsr0
 GOSUB LCDcmd
 char = DDRam+ Line2
 GOSUB LCDcmd
 GOSUB PrintDay
 char = DDRam + Line2
 GOSUB LCDcmd
 char = Crsr1
 GOSUB LCDcmd
 updtLCD = No
 GOTO LoopPad100

Day_Set1:
 IF key <> Key_OK THEN Day_Set1a ' check "OK"
 level = 0 ' - back up to menu
 updtLCD = Yes
 GOTO LoopPad100

Column #62: Menus Made Easy

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 251

Day_Set1a:
 IF key <> Key_Up THEN Day_Set1b ' check "Up"
 day = day + 1 // 7 ' - inc with rollover
 updtLCD = Yes
 GOTO LoopPad250

Day_Set1b:
 IF key <> Key_Dn THEN LoopPad100 ' check "Down"
 day = day + 6 // 7 ' - dec with rollunder
 updtLCD = Yes
 GOTO LoopPad250

' ==================
' End of Main Loop
' ==================

LoopPad250: ' 250 ms pad
 PAUSE 150

LoopPad100: ' 100 ms pad
 PAUSE 100
 GOTO Main

' ----[Subroutines]---
'

' Send command to the LCD
'
LCDcmd:
 lcd_RS = 0 ' command mode
 GOTO LCDout

' Write ASCII char to LCD
'
LCDputc:
 lcd_RS = 1 ' character mode
 GOTO LCDout

' send char to LCD
'
LCDout:
 temp.HIGHNIB = char.HIGHNIB ' get high nibble
 lcd_E = 1
 SHIFTOUT DO_595, Clock, MSBFIRST, [temp]
 PULSOUT L_595, 1
 lcd_E = 0 ' drop Enable line low

Column #62: Menus Made Easy

Page 252 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

 SHIFTOUT DO_595, Clock, MSBFIRST, [temp]
 PULSOUT L_595, 1
 temp.HIGHNIB = char.LOWNIB ' get low nibble
 lcd_E = 1
 SHIFTOUT DO_595, Clock, MSBFIRST, [temp]
 PULSOUT L_595, 1
 lcd_E = 0
 SHIFTOUT DO_595, Clock, MSBFIRST, [temp]
 PULSOUT L_595, 1
 RETURN

' send EE string to LCD
' - string starts at addr and ends with zero
'
LCDprint:
 READ addr, char ' get character from EE
 IF char = 0 THEN LCDprintX ' if 0, we're done
 GOSUB LCDputc ' write the character
 addr = addr + 1 ' point to next character
 GOTO LCDprint

LCDprintX:
 RETURN

' print 2-digit number on LCD
'
LCDdec2:
 base = 10 ' display number as decimal
 GOTO LCDnum2

LCDhex2:
 base = 16 ' display number as hex

LCDnum2:
 READ Digits + (tempB / base), char ' high digit
 GOSUB LCDputc
 READ Digits + (tempB // base), char ' low digit
 GOSUB LCDputc
 RETURN

GetKey:
 key = %00111111 ' assume all pressed
 FOR loop = 1 TO 5 ' test five times
 LOW SL_165 ' load data from keys
 PAUSE 1
 HIGH SL_165 ' allow data to shift in

 SHIFTIN DI_165, CLOCK, MSBPRE, [tempB\8]

Column #62: Menus Made Easy

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 253

 key = key & ~tempB ' test against new input
 PAUSE 5 ' wait 5 ms between tests
 NEXT
 RETURN

PrintTime:
 tempB = hrs
 GOSUB LCDdec2
 char = ":"
 GOSUB LCDputc
 tempB = mins
 GOSUB LCDdec2
 RETURN

PrintDay:
 addr = Days + (day * 4) ' point to day string
 GOSUB LCDprint ' print it
 RETURN

