
Column #97: Keyboard Entry and Display

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 61

Column #97 May 2003 by Jon Williams:

Keyboard Entry and Display

I'm sure you've heard, perhaps many time, that "Imitation is the sincerest form of flattery." I
happen to agree with that assertion. What I've also found is that imitation is an excellent
opportunity for self-education. Let me explain.

I've been very fortunate in my career to be asked to provide training for those interested in
learning what I happen to know. For the last couple of years, I've been employed by Parallax and
have had the opportunity to teach many people [mostly teachers] how to program and use BASIC
Stamps. I am often asked what steps one can take to learn to program BASIC Stamps, and I
generally list three things:

1. Study the available documentation and examples
2. Solve a problem; yours or someone else's
3. Attempt to duplicate an existing device

Of course, for the purposes of this month's article, we're going to focus on suggestion #3.

The reason, honestly, has to do with a recent training session I conducted in the city of Utrecht,
located in western Holland, not too far from Amsterdam. At that meeting I met an engineer
named Wolter who showed me a really interesting project that he is working on and needing some
assistance with. The UI for the project consisted of a 4x4 matrix keyboard connected to the

Column #97: Keyboard Entry and Display

Page 62 • The Nuts and Volts of BASIC Stamps (Volume 4)

BASIC Stamp through a 74C922. His demo used the DEBUG window but ultimately he would
install an LCD for local display.

After returning to Texas I had a couple of idea exchanges with Wolter. His use of the 74C922 and
wanting to use an LCD tickled my interest. I remembered seeing this combination, and finally
found it by digging through my old documentation. Way back in the early days of the BASIC
Stamp, my buddy Scott Edwards (the creator of this column) had designed such a project with the
BS1, and very cleverly came up with a scheme that allowed the 74C922 and the LCD to share the
same IO pins. This makes perfect sense from a resource conservation point-of-view, since the
Stamp can't write to the LCD and read from the 74922 at the same time. So we're going to use
Scott's hardware design with a BS2 and imitate a controller that I recently encountered.

Okay, what am I imitating? Well, not long ago I needed some extra storage space so, like many
people, I went and rented a small room from on of those 24-hour-access storage companies. After
signing the paperwork I was asked to give them a 4-digit access code of my choosing. The
manager programmed the code into a computer then took me outside to the gate-access point to
show me what to do with the code.

Just before the entry gate was a small box with a telephone-style keypad and an LCD display. The
instructions were quite clear: Press the [*] key, enter your access code then press the [#] key. If
the code was correct and my bill paid up, I would be welcomed to come on in and have access to
my storage unit. The manager told me that if I ever had a problem with my bill, I'd get a small
message to see her. I assured her there would be no problem – and, of course, there hasn't been.

After unloading some boxes into my nice new storage room, I found the same type control box on
the exit of the facility. Getting out was the same as getting in and I had no problem. As I drove
away I thought, "You know, I could have done that with a BASIC Stamp." So now I will.

Share and Share Alike

As I already mentioned, the hardware we'll use here was designed by Scott Edwards and is typical
of his clever use of inexpensive components. Take a look at Figure 97.1. The outputs of the
74C922 are connected to the same pins used by the LCD buss and RS line through 10K resistors.
The way the 74C922 works is very simple: When a key has been pressed, the Data Available pin
goes high and the key value (0 – 15) is output from D0 – D3. When the Stamp pins are configured
as inputs, the 10K resistors simply act like pull-ups and pull-downs so the pins can be read without
any difficulty.

Column #97: Keyboard Entry and Display

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 63

Figure 97.1: Keypad and LCD Interface

But won't we have a problem when we want to write to the LCD? Nope. Let's say that we want to
send a high out to the LCD. If the associated 74C922 pin is also high then there is no issue (no
current flow between Stamp and 74C922). If the 74C922 pin happens to be low, the high from the
Stamp is felt across the 10K to the LCD. Again, no problem. Of course, the process is identical –
just flipped – if we want to send a low to the LCD. That Scott Edwards is a very clever guy, isn't
he?

From a software standpoint there is no real challenge; we simply need to remember to make the
buss pins inputs so we can read the 74C922 and make them outputs when we want to send data to
the LCD. We can do that with just one line of code in each section.

Column #97: Keyboard Entry and Display

Page 64 • The Nuts and Volts of BASIC Stamps (Volume 4)

Keyboard Input

After deciding to imitate the gate-entry controller I popped over to Tanner Electronics in Dallas
and picked up a 74C922 and a Velleman 4x4 matrix keyboard. I put together a piece of test code
and ran into my first problem to solve when using the keyboard and 74C922.

If you look at Figure 97.2 you'll see how the keyboard is laid out, how the raw values are returned
and how I actually needed them to be (in order to match the keyboard). Thanks to the utility of the
PBASIC programming language, the translation is easily handled with one line of code, though, as
you'll see, I spread that single line across many to make it easier to read.

Figure 97.2: Keyboard, Raw Codes and Translated Codes

Let's go ahead and look at the code for reading a key. I made the decision that this subroutine
would actually wait for a key before returning. Obviously, waiting doesn't work for all
applications. In those cases where waiting is not possible, we'll simply check the Data Available
(aliased as KeyReady) line externally before calling this code.

Get_Key:
 DirL = DirL & KeyCfg
 DO : LOOP UNTIL (KeyReady = Yes)
 keyIn = KeyPad

 LOOKUP keyIn, [1, 2, 3, 10,
 4, 5, 6, 11,
 7, 8, 9, 12,
 14, 0, 15, 13], keyIn

 LOOKUP keyIn, ["0123456789ABCD*#"], char
 IF (showNum AND (keyIn < 10)) THEN

Column #97: Keyboard Entry and Display

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 65

 GOSUB Print_Char
 ENDIF
 IF (showExt AND (keyIn > 9)) THEN
 GOSUB Print_Char
 ENDIF
 IF (release = Yes) THEN
 DO
 PAUSE 5
 LOOP WHILE (KeyReady = Yes)
 ELSE
 PAUSE KeyDelay
 ENDIF
 RETURN

Before I get into a detailed explanation, let me just share some of my design decisions for this
routine: it had to work with shared LCD lines, it had to translate the key code to match the printing
on the keyboard, it had to translate the key to an ASCII character for display, it had to selectively
allow display of digit and non-digit keys and finally, it had to create a delay for a key being held
down or force the user to release the key before pressing it again.

Now that you know the design decision, the code will be even simpler to follow. We start by
making the associated IO lines inputs so they can be read by the Stamp. The first to be checked,
of course, is the Data Available output from the 74C922, which the program has aliased as
KeyReady. As you can see, the program will wait for a key to be ready using a DO-LOOP. Once
a key is detected, the raw key value is read from the keyboard buss.

Translating the raw key code to a value that matches the keyboard layout is a simple matter of
using LOOKUP. One of the new features of the PBASIC compiler is the ability to break long list
over multiple line (at the commas). We can take advantage of that feature with our translation
code and even format the line so that the translation table exactly matches the keyboard. Once we
have the translated key code, deriving the ASCII character for it is accomplished by using another
LOOKUP table.

This subroutine uses control variables to determine the rest of its behavior. The first is a bit called
showNum that when set to one (Yes), will allow the routine to print the ASCII value of the key
characters "0" to "9". The next control variable is called showExt (show extended); its purpose is
to allow the display of the characters beyond the numeric set. In the case of the keyboard I used in
my project, it has four hex characters, a star and the pound sign (it's a telephone keypad with "A" –
"D" added). Finally, the variable release controls key repeating. When release is set to one, the
user must release the key before the next can be read. In this case there is a short delay loop built
in to prevent accidental repeating. When release is set to zero, a PAUSE is used to create a repeat
delay for the key being held.

Column #97: Keyboard Entry and Display

Page 66 • The Nuts and Volts of BASIC Stamps (Volume 4)

As you can see, this is a very robust input routine; I designed it that way. Many applications will
have simpler requirements and you can strip away those things not needed in those applications.

Numeric Input

A frequent question on the BASIC Stamps mailing list is "How can I enter a number using a
keyboard." Since my little gate control application needs this, I have created a fairly full-featured
routine to accept numeric input from the keyboard. It also allows the user to escape without
making the entry. As with the Get_Key subroutine, the Get_Number subroutine uses control
variables and even affects bit flags. Let's take a look at the code:

Get_Number:
 number = 0
 inDigits = 0
 hasNum = No
 showNum = No
 showExt = No
 DO
 GOSUB Get_Key
 IF (keyIn < 10) THEN
 IF (inDigits < maxDigits) THEN
 GOSUB Print_Char
 number = number * 10 + keyIn
 inDigits = inDigits + 1
 hasNum = Yes
 ENDIF
 ELSE
 IF (keyIn = StarKey) THEN
 hasNum = No
 EXIT
 ENDIF
 ENDIF
 LOOP UNTIL (keyIn = PoundKey)
 RETURN

The subroutine starts by clearing the return value (number), the number of digits entered (inDigits)
and the flag indicating a valid entry (hasNum). It also clears the external display control variables,
since the routine will want to examine the returned key before displaying it.

One of the control variables used is called maxDigits. This value will cause the routine to stop
accepting value keys after a specified number of digits have been entered. Of course, the
maximum digits that can be entered is five, but we must be careful entering numbers like 99999
will cause a rollover error since it's greater than the 16-bit maximum value of 65,536.

Column #97: Keyboard Entry and Display

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 67

What the routine does, then, is wait for a key, check to see if it's a digit (0 – 9), then checks to see
if there are digits left in our entry field. If this is the case, the character is printed and the key
added to the return variable. A flag variable, hasNum, is set to indicate that we have in fact
entered a number

To add the new key to our numeric value, what we need to do is a decimal left shift of the current
value, and then add the new digit to the one's column. Doing the decimal left shift accomplished
by multiplying the current numeric value by 10. This process moves the previously-entered digits
to the left.

Once we've entered enough digits to fill the entry field, the routine will simply ignore any key
except the star key which is used for escape, or the pound key which is used to accept the value. If
the star key is pressed, you'll notice that the hasNum flag is cleared and the key input DO-LOOP is
terminated with EXIT. Another way to end the entry loop is to press the pound key.

Advance Use of Conditional Compilation

Back in March I introduced you to another new Stamp compiler feature: conditional compilation.
Most of the time I use this to set constants based on the connected Stamp, but we can also use it to
determine code sections to compile based on our own settings.

Let's say, for example, that we didn't have a 4x20 LCD handy but wanted to get started on the
code while we waited for the good folks at Digi-Key to ship out our order. The Stamp compiler
has a display feature built in (the DEBUG window) … can we use it to prove our program while
waiting on the display? Yes. Let me show you how.

Remember that conditional compilation control symbols are defined as either true (not zero) or
false (zero). If the compiler encounters a symbol that has not been defined, it is assigned a value
of false. I prefer to be very explicit in my declarations using zero and one. Like this:

#DEFINE __LCD = 1

I've made the decision to precede conditional compilation symbols with two underscore
characters; this isn't a requirement, just the convention I've selected for myself. While I'm waiting
for my LCD to arrive, I'll change the definition to this:

#DEFINE __LCD = 0

Column #97: Keyboard Entry and Display

Page 68 • The Nuts and Volts of BASIC Stamps (Volume 4)

Note that we can't use the constants Yes (1) and No (0) in our conditional compilation symbol
definitions because conditional compilation directives are evaluated before anything else in the
program, including constants definitions.

If you look back in the Get_Key subroutine, you'll see a call to a subroutine called Print_Char.
Here it is:

Print_Char:
 #IF __LCD #THEN
 GOTO LCD_Write
 #ELSE
 DEBUG char
 RETURN
 #ENDIF

When the LCD is selected, the character (passed in char) to the LCD_Write subroutine. Also note
that GOTO is used here since there a RETURN at the end of LCD_Write. What Print_Char
becomes, in this case, is an entry to the subroutine LCD_Write. If the LCD is not selected then
the DEBUG window is used. What this means is you can run the program with or without the
LCD. Likewise, one could develop a program that used either a standard LCD or serial LCD.

One last note on conditional compilation: The directives actually control which lines of code are
compiled and downloaded to the BASIC Stamp. Keep this is mind, since code compiled under
one condition may need considerably more EEPROM space than under another. Remember that
you can keep track of compiled code space with the Memory Map function in the editor.

With the grunt work out of the way, the rest of the gate-control code is fairly simple:

1. Display menu
2. Wait for code
3. Check code against known codes
4. Open gate if code is valid.

The program takes advantage of techniques we've used in the past, including last month's
suggestion to store strings in EEPROM. This is, of course, is a demonstration program but could
certainly be developed into a full-fledged application using past projects, including the serial
interface for updating the customer database, and a real-time-clock to log entry and exit times.

Have fun with it, and Happy Stamping!

Column #97: Keyboard Entry and Display

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 69

' ===
'
' File...... Security_Gate.BS2
' Purpose... Security gate entry controller and message display
' Author.... Jon Williams, Parallax
' E-mail.... jwilliams@parallax.com
' Started...
' Updated... 22 MAR 2003
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' Provides entry control for a security gate or similar security system.
' The purpose of the program is to demonstrate keyboard input using the
' 74C922 and the conservation of Stamp IO resources by sharing buss lines
' with an LCD (hardware design by Scott Edwards).
'
' The (Velleman) keyboard used for this program is layed out like this:
'
' --- --- --- ---
' | 1 | 2 | 3 | A | R1
' --- --- --- ---
' | 4 | 5 | 6 | B | R2
' --- --- --- ---
' | 7 | 8 | 9 | C | R3
' --- --- --- ---
' | * | 0 | # | D | R4
' --- --- --- ---
'
' C C C C
' 1 2 3 4

' -----[Revision History]--

' -----[I/O Definitions]---

LcdE PIN 0 ' LCD Enable pin
LcdRs PIN 3 ' Register Select
LcdBuss VAR OUTB ' 4-bit LCD data bus

KeyReady PIN 3 ' high when key available
KeyPad VAR INB ' keys on pins 4 - 7

Column #97: Keyboard Entry and Display

Page 70 • The Nuts and Volts of BASIC Stamps (Volume 4)

GateCtrl PIN 15 ' use LED to indicate

' -----[Conditional Compilation]---

#DEFINE __LCD = 1 ' use LCD (otherwise DEBUG)

' -----[Constants]---

Yes CON 1 ' input or output high
No CON 0 ' input or output low

KeyCfg CON %00000111 ' keyboard port config

KeyDelay CON 250 ' auto-repeat delay
StarKey CON 14 ' [*] key
PoundKey CON 15 ' [#] key

ClrLCD CON $01 ' clear the LCD
CrsrHm CON $02 ' move cursor to home
DDRam CON $80 ' Display Data RAM control
CGRam CON $40 ' Custom character RAM
Line0 CON DDRam + 0 ' DDRAM address of line 1
Line1 CON DDRam + 64 ' DDRAM address of line 2
Line2 CON DDRam + 20 ' DDRAM address of line 3
Line3 CON DDRam + 84 ' DDRAM address of line 4

LcdCfg CON %11111001 ' LCD port config

MsgPause CON 1500 ' delay for message display

' -----[Variables]---

keyIn VAR Byte ' returned by Get_Key
showNum VAR Bit ' show number keys?
showExt VAR Bit ' show extended keys?
release VAR Bit ' force key release

number VAR Word ' returned by Get_Number
hasNum VAR Bit ' was number accepted?
inDigits VAR Nib ' input digits
maxDigits VAR Nib ' max digits to enter

char VAR Byte ' ASCII char to display
eeAddr VAR Word ' address of char in EE

lineNum VAR Nib ' display line; 0 to 3
colNum VAR Byte ' column; 0 to 19

Column #97: Keyboard Entry and Display

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 71

records VAR Byte ' number of user records
pcode VAR Word ' passcode from db
msgNum VAR Nib ' message to display
idx VAR Byte ' general purpose var

' -----[EEPROM Data]---

Menu1 DATA "JONNY'S STORAGE", 0
Menu2 DATA "1. Press *", 0
Menu3 DATA "2. Enter passcode", 0
Menu4 DATA "3. Press #", 0

EnterPC DATA "Passcode: ", 0
WaitPlease DATA "Please wait... ", 0

Msg0 DATA "Invalid passcode ", 0
Msg1 DATA "Access granted ", 0
Msg2 DATA "Access denied ", 0
Msg3 DATA "Please see manager ", 0

' Keep customer database after messages to allow for growth
' via external serial interface (not included here)
'
' Each record consists of the passcode and display message pointer

Customers DATA 3 ' number of customers
Passcodes DATA Word 1234, 1 ' customer passcodes, msgs
 DATA Word 0725, 1
 DATA Word 0319, 2

' -----[Initialization]--

Initialize:
#IF __LCD #THEN
 PAUSE 500 ' let the LCD settle
 DirL = LcdCfg
 LcdBuss = %0011 ' 8-bit mode
 PULSOUT LcdE, 1 : PAUSE 5
 PULSOUT LcdE, 1 : PAUSE 0
 PULSOUT LcdE, 1 : PAUSE 0
 LcdBuss = %0010 ' 4-bit mode
 PULSOUT LcdE, 1
 char = %00101000 ' 2-line mode
 GOSUB LCD_Command
 char = %00001100 ' no crsr, no blink
 GOSUB LCD_Command
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCD_Command
#ENDIF

Column #97: Keyboard Entry and Display

Page 72 • The Nuts and Volts of BASIC Stamps (Volume 4)

' -----[Program Code]--

Main:
 DO
 GOSUB Show_Menu
 DO
 GOSUB Get_Key
 LOOP UNTIL (keyIn = StarKey) ' wait for [*]
 GOSUB Get_Passcode ' get code from customer
 IF (hasNum = Yes) THEN ' code entered?
 GOSUB Check_Passcode ' check database
 GOSUB Print_Customer_Message ' print message
 PAUSE MsgPause ' time for message
 IF (msgNum = 1) THEN ' valid code?
 GOSUB Access_Granded
 ELSE
 IF (msgNum = 2) THEN ' two-part message?
 msgNum = 3
 GOSUB Print_Customer_Message ' print second part
 PAUSE MsgPause
 ENDIF
 ENDIF
 ENDIF
 LOOP

 END

' -----[Subroutines]---

' Display menu strings stored in DATA table

Show_Menu:
 GOSUB Clear_Display
 colNum = 0
 FOR lineNum = 0 TO 3
 LOOKUP lineNum, [Menu1, Menu2, Menu3, Menu4], eeAddr
 GOSUB Move_To_XY
 GOSUB Print_String
 NEXT
 RETURN

' Get passcode from customer -- user numeric input

Get_Passcode:
 GOSUB Clear_Display
 eeAddr = Menu1 ' reprint company name
 GOSUB Print_String

Column #97: Keyboard Entry and Display

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 73

 lineNum = 3 : colNum = 0
 GOSUB Move_To_XY
 eeAddr = EnterPC ' print entry prompt
 GOSUB Print_String
 maxDigits = 4
 GOSUB Get_Number ' enter passcode
 RETURN

' Compare user-entered passcode against database

Check_Passcode: ' check for valid pc
 lineNum = 3 : colNum = 0 ' wait msg on line 3
 GOSUB Move_To_XY
 eeAddr = WaitPlease
 GOSUB Print_String
 msgNum = 0 ' default to "Invalid"
 READ Customers, records ' get number of customers
 FOR idx = 0 TO (records - 1) ' loop through all
 eeAddr = Passcodes + (3 * idx) ' point to passcode
 READ eeAddr, Word pCode ' read it
 IF (number = pCode) THEN ' same as entry?
 eeAddr = eeAddr + 2 ' - point to message num
 READ eeAddr, msgNum ' - read message num
 EXIT ' - break out of loop
 ENDIF
 NEXT
 RETURN

' Print message in msgNum on Line 3

Print_Customer_Message:
 lineNum = 3 : colNum = 0
 GOSUB Move_To_XY
 LOOKUP msgNum, [Msg0, Msg1, Msg2, Msg3], eeAddr
 GOSUB Print_String
 RETURN

' Allow access to facility

Access_Granded:
 HIGH GateCtrl ' - raise gate
 PAUSE 2500
 LOW GateCtrl
 RETURN

' Wait for key to be pressed, then return its value to caller
' -- can translate and display ASCII char of key

Column #97: Keyboard Entry and Display

Page 74 • The Nuts and Volts of BASIC Stamps (Volume 4)

' -- can force user to release or use timed debounce

Get_Key:
 DirL = DirL & KeyCfg ' configure for kbd inputs
 DO : LOOP UNTIL (KeyReady = Yes) ' wait for key
 keyIn = KeyPad ' retrieve key value

 LOOKUP keyIn, [1, 2, 3, 10,
 4, 5, 6, 11,
 7, 8, 9, 12,
 14, 0, 15, 13], keyIn ' translate kbd matrix

 LOOKUP keyIn, ["0123456789ABCD*#"], char ' translate key to ASCII
 IF (showNum AND (keyIn < 10)) THEN ' show numbers?
 GOSUB Print_Char
 ENDIF
 IF (showExt AND (keyIn > 9)) THEN ' show extended chars?
 GOSUB Print_Char
 ENDIF
 IF (release = Yes) THEN ' force release?
 DO
 PAUSE 5 ' short debounce
 LOOP WHILE (KeyReady = Yes) ' wait for release
 ELSE
 PAUSE KeyDelay ' delay between keys
 ENDIF
 RETURN

' Get a number of 1 to 5 digits
' -- character display is handled here
' -- [*] terminates input without accepting value
' -- [#] terminates input and accepts value
'
' NOTE: No error checking for 5-digit numbers greater than 65535

Get_Number:
 number = 0 ' clear work variable
 inDigits = 0 ' digits entered
 hasNum = No ' nothing entered yet
 showNum = No ' control display here
 showExt = No
 DO
 GOSUB Get_Key ' wait for new key
 IF (keyIn < 10) THEN ' number key?
 IF (inDigits < maxDigits) THEN ' room for entry?
 GOSUB Print_Char ' - show the key
 number = number * 10 + keyIn ' - add key to number
 inDigits = inDigits + 1 ' - update digit count
 hasNum = Yes ' - mark entry
 ENDIF

Column #97: Keyboard Entry and Display

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 75

 ELSE
 IF (keyIn = StarKey) THEN ' [*] = escape
 hasNum = No
 EXIT
 ENDIF
 ENDIF
 LOOP UNTIL (keyIn = PoundKey) ' wait for [#]
 RETURN

' Print string on display device at current position
' -- point to string by placing address in eeAddr

Print_String:
 DO
 READ eeAddr, char ' get character from EE
 IF (char = 0) THEN EXIT ' check end
 GOSUB Print_Char ' print it
 eeAddr = eeAddr + 1 ' point to next
 LOOP
 RETURN

' Print character in char at current display position

Print_Char:
 #IF __LCD #THEN
 GOTO LCD_Write
 #ELSE
 DEBUG char
 RETURN
 #ENDIF

' Clear the display (moves cursor Home)

Clear_Display:
 #IF __LCD #THEN
 char = ClrLCD
 GOTO LCD_Command
 #ELSE
 DEBUG CLS
 RETURN
 #ENDIF

' Move display cursor to column 0 on line 0

Home_Cursor:
 #IF __LCD #THEN
 char = CrsrHm

Column #97: Keyboard Entry and Display

Page 76 • The Nuts and Volts of BASIC Stamps (Volume 4)

 GOTO LCD_Command
 #ELSE
 DEBUG Home
 RETURN
 #ENDIF

' Move display cursor to lineNum, colNum

Move_To_XY:
 #IF __LCD #THEN
 LOOKUP lineNum, [Line0, Line1, Line2, Line3], char
 char = char + (colNum // 20)
 GOTO LCD_Command
 #ELSE
 DEBUG CrsrXY, colNum, lineNum
 RETURN
 #ENDIF

' LCD output routines

#IF __LCD #THEN

LCD_Command:
 LOW LcdRs ' enter command mode

LCD_Write:
 DirL = DirL | LcdCfg ' make LCD buss outputs
 LcdBuss = char.HighNib ' output high nibble
 PULSOUT LcdE, 1 ' strobe the Enable line
 LcdBuss = char.LowNib ' output low nibble
 PULSOUT LcdE, 1
 HIGH LcdRs ' back to character mode
 RETURN

#ENDIF

