
 Chapter #8: Tracking Distance Traveled

Tracking Distance Traveled

Earlier we mentioned that the J-

Bot wheel servo control operated

without feedback. The Javelin can

set the PWM object to generate

pulses to move the wheel but

sending the same pulse width to different servos will result in

slightly different rotation speeds. This shows up in forward

movements where the J-Bot drifts to one side or the other.

Normally the J-Bot will continue drifting to one side.

If you J-Bot runs straight and true then you are lucky. Try

running the J-Bot for fifteen or twenty feet to be sure. More

than likely the J-Bot will drift at least an inch to one side or

the other.

So what is a programmer to do? Resort to a closed feedback loop.

Actually, you have already encountered a closed feedback loop.

The use of various sensors provides a way for the J-Bot to get

feedback about its surroundings so the program can adjust the

movements of the J-Bot. This is the same thing that will be done

in this chapter except that the feedback is related to the wheel

rotation.

 Introduction to Encoders

You may have wondered why the J-Bot’s wheels are white and have

slots and spokes. It is not because they look nice. The color and

configuration allow the wheels to work with the QRB1113 infrared

reflective object sensors. The sensors consist of an infrared LED

and detector similar to the ones used in the prior chapter except

that these sensors do not need a modulated signal for the LED.

One reason this can be done is the way sensor is constructed.

The reflective sensors are designed to operate very close to the

object being detected, in this case the wheel. The distance

between the sensor and the wheel will be about ¼ inch. If you

look closely at the sensor you will see that the LED and detector

are angled towards each other. If you draw a triangle near the

tip with edges parallel to the edges of the sensor then endpoint

will be about ¼ inch away. Don’t know which is the LED and which

is the sensor? We’ll take a look at these details in the next

section.

The term encoder is used because the reflective sensors are used

to encode information about the wheel movement into a binary form

that the Javelin can use. Some wheel encoders can determine the

absolute wheel position but this is not required for our

application. We simply need to know the relative position so the

Chapter #8:

Tracking

Distance

Traveled

 Chapter #8: Tracking Distance Traveled

wheel rotation speed can be adjusted to keep both wheels moving

at the desired rate.

The sensors will keep track of the wheel rotation by tracking the

open slots in the wheels. The infrared LED light will be

reflected back to the detector when the spoke is in front of the

sensor. The light will not be reflected when a slot is in front

of the sensor.

A quadrature wheel encoder uses two sensors per wheel. This

architecture can determine direction in addition to position and

rotation. This is not necessary with the J-Bot because it

controls the direction of the wheel.

 Activity #1: Building and Testing the Encoders

The infrared reflective sensors are mounted on the J-Bot’s frame

underneath the JIDE as shown in Figure 8.1. To install the

sensors it is necessary to remove the board. It may also be

necessary to remove wheel servos as well. In this case, the

position of the sensors should be noted using a permanent marker

before removing the wheels and servos.

The sensors are delivered with four long leads that extend past

the end of the plastic housing. The leads should be cut so they

are about ½ inch long. The leads will then be in line with the

end of the plastic housing. The leads should now be the proper

length allowing the supplied cabling to be connected so most or

all of the lead is covered.

The sensors are mounted so the label information is face up. This

information will be needed when connecting the wires to the

sensors. The sensors are mounted using a single screw, a nut and

lock washer. The sensor should be placed close to the wheel but

not touching it. Note that the wheels have a ridge on the rim.

Try to place the edge of the sensor in line with the edge of the

rim.

 Chapter #8: Tracking Distance Traveled

Figure 8.1: Remove

the circuit board

from the J-Bot. It is

possible to assemble

the infrared

reflective sensors

without removing the

wheel servos but it

is easier to do with

the servos removed as

well. If the servos

will be removed then

mark where the

sensors will be

placed. Attach the

sensors to the J-Bot

frame using a nut,

lock washer and bolt.

The S and E labels on

the sensor should be

face up.

Figure 8.1

Figure 8.2a Figure 8.2b

The wheel encoder circuit always keeps the infrared LEDs on. This

conserves Javelin output pins. The LED will not interfere with

the other sensor because they are pointing in opposite

directions. Likewise, they cannot interfere with the IR range

finder that operates with a modulated 38.4 kHz infrared signal.

This reduces the number of I/O pins needed to two. One input pin

for each sensor, CPU.pin10 for the right wheel and CPU.pin11 for

the left.

FYI

It is possible to install the infrared reflective sensors when

initially building the J-Bot. They can be left disconnected

until the wheel encoder support needs to be activated. It is

relatively easy to install the wires on the sensors with the

JIDE removed.

 Chapter #8: Tracking Distance Traveled

Build It!

� Construct the circuit shown in Figure 8.2a.

� Connect the sensors to the wheel encoder circuit on the JIDE.

� Replace the JIDE board.

Programming the Wheel Encoder

Testing the wheel encoders is relatively easy. Turn the wheels

and check the inputs. The inputs should change as the path of the

infrared light changes from being reflected by a spoke to not

being reflected by an open slot. We use the FixedMovementJBot

object to drive the wheels. In theory, this class was modified so

the J-Bot should move forward in a straight line. We will take

advantage of this in the next test.

� Enter WheelEncoderTest1 program.

� Lift the J-Bot so the wheels are not touching the ground.

� Run WheelEncoderTest1 program.

� This program makes use of the Message window, so leave the

serial cable connected to the JIDE while program is running.

 Chapter #8: Tracking Distance Traveled

How the Wheel Encoder Program Works

The jbot object will start the wheels running when the forward

method is called. They run continuously until the Javelin is

reset using the Reset button in the debugger or the power is

removed from the J-Bot.

As the wheels turn, the slots and spokes move past the reflective

sensors. The sensor outputs will be low, a logical 0, if light is

detected as when the spoke is in front of the sensor. The value

will be high, a logical 1, if no light is detected as when the

slot is in front of the sensor.

The sensors and the Javelin operate faster than the wheels move.

This means the numbers printed on the Message window will not

toggle between 1 and 0 on every line but every few lines. Also,

the left and right wheels are independent so the transitions will

probably not be in synch.

Your Turn

� If the wheels are turning but the output values for one or

both sensors remain constant then check the sensor position,

wiring, and circuitry. A typical problem is the connections to

the sensors.

� See if the transitions between 0 and 1 are occurring at

regular intervals. The difference should be one or two

iterations at most.

Seeing If Wheels Are Going Straight

The last program shows that the sensors and circuitry are working

properly. A few minor changes to the program allows the Javelin

to count the number of transitions. If the values remain in synch

then the J-Bot will be moving forward. If one side is going

faster then its count will be higher and the J-Bot will drift to

the opposite side assuming the J-Bot is placed on the ground.

The following program counts the number transitions that are

detected on both wheels.

The state of each pin is recorded and the counter associated with

the pin is incremented when a change is detected.

Your Turn

 Chapter #8: Tracking Distance Traveled

� The output may be scrolling too quickly to recognize the

numbers. The output on the Message window can be stopped but

it can be reduced in the program as well. Modify the program

so it prints the counters every 10th count on the right wheel.

� Check and see if the wheels are moving consistently. Reset the

counters when the left counter hits 100. Is the right counter

value the same each time? Is it 100? If not, which way will

the J-Bot drift?

 Chapter #8: Tracking Distance Traveled

Activity #2: Going Straight

The prior activity shows how the wheel encoder hardware is used

to track the movement of the J-Bot. It is now possible to

numerically determine how straight the J-Bot will go using the

non-feedback settings. In this case, the rightCount and leftCount

values can be compared. These are essentially odometer values

indicating the distance traveled.

FYI

Keep in mind that the odometer values are only as accurate as

the wheel rotation is with respect to the surface it is running

on. If the wheels slip then the odometer readings will be more

than the actual distance traveled. This can occur if the J-Bot

is running on a thick carpet where the wheels do not have good

traction. This is no different than a moving car slipping on a

gravel road. Still, overall, the car’s odometer is a fairly good

approximation of the distance the car is driven.

In this activity the information from the wheel encoder hardware

is used to keep the J-Bot moving in a straight line. This is done

by comparing the distance traveled by each wheel based on the

wheel encoder result. The speed of the wheels is adjusted if one

is covering more distance than the other.

Compare this to the way a person keeps a car going straight. In

this case, the wheels can be turned which has the effect of

making the car turn as it moves forward. The J-Bot’s wheels do

not turn but as we have seen in prior chapters the same effect

occurs by using different speeds for each wheel. Therefore,

changing the speed of the J-Bot’s wheels in response to changes

in the distance traveled, courtesy of the wheel encoder feedback,

results in the J-Bot making a very minute turn.

The end result is a J-Bot that moves forward in a relatively

straight line. In actuality, it is weaving side to side but the

turns are difficult to see. If the J-Bot winds up going perfectly

straight then the adjustments will not have to be made and the J-

Bot will not weave. In practice, the J-Bot will always deviate

but the amount of deviation will vary based on the initial

estimates made in driving the servos. The advantage of the

feedback system is the J-Bot will go relatively straight even if

the initial values are off considerably. Of course, excessive

differences, such as using pivot values instead of forward

movement values, will be very difficult if not impossible to

correct using the program presented here.

We start with a relatively complete implementation instead of

making incremental improvements. Instead, you can experiment by

modifying the program to disable or adjust various parameters and

algorithms to see how they affect the operation of the system.

� Enter the WheelEncoderTest3 program shown below.

 Chapter #8: Tracking Distance Traveled

Before getting into the algorithm, we take a look at the

variables used as shown in the following table.

Variables Description

transition Indicates that an encoder

transition has occured

leftState,

rightState

Last input values from wheel

encoder hardware

leftCount,

rightCount

Wheel encoder counters

leftRatio,

rightRatio

Number of steps that should be

taken with respect to the other

side

leftSpeed,

rightSpeed

Speed percentage (-100% to

100%)

leftAdjust,

rightAdjust

Speed adjustments

LeftStep,

rightStep

Increment for speed adjustments

leftLimit,

rightLimit

Maximum speed adjustments

leftOdometer,

rightOdometer

Odometer counters

The odometer counters keep track of the distance actually

traveled by each while the leftCount and rightCount variables

keep track of the relative difference in the distance traveled.

The actually values are controlled by the leftRatio and

rightRatio and the wheel encoder hardware input. The values in

the leftCount and rightCount variables are relative odometer

readings. Their use will become more apparent in the algorithm

description.

The leftSpeed and rightSpeed values are the desired speed in

percentages used in prior J-Bot wheel control classes. The

leftAdjust and rightAdjust variables keep track of any percentage

changes that should be made to the full speed settings. These

values are changed when either the left or right wheel is falling

behind. The values in these variables are changed in increments

of leftStep and rightStep respectively. The maximum values for

the adjustment variables are in the leftLimit and rightLimit

variables.

The algorithm is implemented in the runTest method. The method

keeps track of the number of transitions and exits when a limit,

200 in the listing, is exceeded. This will allow us to examine

the output of the test that otherwise would continue forever.

 Chapter #8: Tracking Distance Traveled

This number of transitions is usually sufficient to show how the

algorithm works. In a more practical implementation, movement

would be stopped or changed when an external event occurred, such

as the detection of an obstacle, or after a certain amount of

time has elapsed or a specified distance covered as noted by the

odometer values.

The main loop starts with a check of the right and left wheel

encoder output pins as shown below.

if (rightState != CPU.readPin(rightPin)) {

 transition = true ;

 rightState = ! rightState ;

 -- rightCount ;

 ++ rightOdometer;

}

The condition compares the current wheel encoder output with the

prior state. This allows the J-Bot to detect both edges of a

spoke or hole in the wheel. This doubles the number of

transitions detected compared to just checking for a spoke or

hole. The transition variable is set so that both wheel encoder

outputs can be checked. The loop continues if a transition is not

detected on either input.

The state variable is toggled each time using !, the logical NOT

operator. The rightCount value is decremented while the odometer

variable is incremented.

The method behind this madness is that the rightCount and

leftCount variables track the relative difference between number

of transitions that are detected on each wheel. We could use the

odometer variables but there is a drawback. First, the odometer

values have an upper limit. It is large but it can affect

calculations that would be necessary to compare the values.

Second, the calculations are more complex and this takes time.

The operations performed on the counter variables are simple

comparisons, assignments and decrement operations. It is also

easier to see the algorithm works.

If you look at the code before the main loop you will see that

the rightCount and leftCount are set to the rightRatio and

leftRatio respectively. These are positive values so eventually

one of the two counters will be decremented to zero.

Things happen when one or both of the counters hit zero. Although

it happens at then end of the code block, the one thing you can

count on is the counters will be reset. In essence, both counters

have their respective ratio values added to them but because the

programmer already knows that one of the values will be zero a

more efficient assignment statement can be used instead.

 Chapter #8: Tracking Distance Traveled

The reason the updates occur at the end is because the values

need to be compared against the ratio values as shown in the next

code snippet.

 // Left side may be behind right

 if (leftCount >= leftRatio) {

 // Adjust: left wheel is behind

 if (leftAdjust == 0) {

 // No left adjustment. Slow right wheel

 if (rightAdjust < rightLimit) {

 rightAdjust += rightStep ;

 }

 } else {

 // Left wheel has adjustment. Reduce it

 leftAdjust -= leftStep ;

 }

 // Set new speed

 }

 setSpeed (leftSpeed - leftAdjust, rightSpeed - rightAdjust) ;

 // Reset counters

 leftCount += leftRatio ;

 rightCount = rightRatio ;

If the counter value is less than the ratio value then nothing

changes. This is akin to both counters reaching zero at the same

time. It means that the wheels are exactly (when both values are

zero) or close in synch or almost in synch within the limits of

the ratios. A closer look shows that a ratio of 1:1 is

essentially the same as 2:2 except in this algorithm the 2:2 will

be less sensitive to small variations whereas a 1:1 setting, used

in the example, will react more quickly to changes that occur.

If the counter value greater or equal to its respective ratio

then it is time to make an adjustment to one of the wheels

because one is going to faster than the other. One of two changes

can be made. Either the slower wheel can be run faster or the

faster wheel can be slowed down. The code checks for both

conditions and determines which to do based on the current

adjustment variable (leftAdjust or rightAdjust) values. This is

done because we assume the maximum speed of a servo is 100%.

In the code listing shown above, the leftAdjust value is tested

when the left wheel is going slower. If the leftAdjust value is

not zero then it has been slowed prior to this point. Decreasing

its value by subtracting the step value from it will result in

the servo speeding upon when the setSpeed method is called.

Otherwise, the right wheel must be slowed down by increasing its

adjustment value. This is where a major optimization is included.

Note that the rightAdjust value is only changed if it is less

than rightLimit. This prevents servo from going slower than the

specified limit, otherwise the speed could be reduced to zero or

even go negative in which case the wheel would be going backward!

 Chapter #8: Tracking Distance Traveled

Slowing the servo too much will cause the other wheel to catch up

but it turns the J-Bot too quickly. This over steering will very

quickly cause the J-Bot to require compensation in the opposite

direction. The result is a J-Bot that weaves drastically from

side to side.

The prevention of these drastic actions is called damping.

Limiting how slow a wheel will be adjusted provides the damping.

� Raise the J-Bot so the wheels do not touch the floor and run

the program with the serial cable attached. The Message window

should show the state of various variables including the speed

of both wheels. Notice how the wheel speeds are changed in

response to differences in transition detected.

� Remove the PC cable and run the J-Bot using batteries. Place

the J-Bot on the floor and see if it runs straight. Remember,

it may waver side-to-side slightly.

Your Turn

� The program is designed to run the J-Bot in a straight line in

a forward direction. Change the program so it will run the J-

Bot in a backward direction instead. Hint: Change the

percentage variables but not the transition counter variables.

Remember, the spoke and hole transitions are detected in the

same fashion regardless of the direction the wheel is turning.

� Make the same kind of change except allow J-Bot to pivot right

or left. Remember that pivoting is done by running the wheels

in opposite directions.

� The test program counts the number of transitions and

terminates after a fixed value. Change the termination

condition so it is based on the number of transitions detected

on a particular wheel. This essentially controls the distance

traveled. How does this approach differ from the initial test

program?

 Chapter #8: Tracking Distance Traveled

Activity #3: Wheel Encoder Class

Activity #2 presented a mechanism for running the J-Bot in a

straight line. The additional experiments allowed for backward

and pivot movements. These can be combined into a class that can

be used to control the J-Bot in a single tasking environment. It

is a more complex task to create a control system that will

operate with the multitasking system but that is what will be

done in this activity.

As you might expect, this wheel control class will be

significantly more complex than the other classes defined in

prior chapters. It actually requires two classes because a task

is needed to monitor the wheel encoder hardware. The task will be

hidden behind the wheel encoder class that inherits its interface

from JBotInterface.

The two class architecture is similar to the ones used with the

multitasking sensor systems used to support the photoresistor and

infrared range finder hardware. The application interfaces with

the main object and a second object, usually based on a Task

class, operates in the background.

The main class for wheel encoder system is the WheelEncoderJBot

class. The other class is the WheelEncoderTask. One object from

both classes will be created and these two objects will interact

to control the J-Bot servos. An application will interface with

the WheelEncoderJBot object. The WheelEncoderTask only needs to

run when the wheels are moving. The WheelEncoderJBot class will

also provide odometer methods that could not be done using prior

JBotInterface-based classes.

A slightly different interface is provided to control the

WheelEncoderJBot class. This interface is based on the Event

class. The WheelEncoderJBot class will call the event’s notify

method when a movement has been completed. This allows the event

to immediately initiate another movement if necessary. This

provides a mechanism for continuous servo control without

requiring another task that will poll the status of the

WheelEncoderJBot. Polling is still possible but less efficient.

The starting point is the WheelEncoderJBot class shown in the

following listing.

The WheelEncoderJBot class starts with a number of constant

definitions. These control the movement of the servos based on

the wheel configuration. Use a wheel that is a different size or

has a different number of holes and spokes and these numbers may

 Chapter #8: Tracking Distance Traveled

have to change. Keeping the constant definitions together make it

easier to locate them when changes are necessary.

The WheelEncoderJBot constructor is relatively simple. It lets

the superclass store the startEvent. This is typically a

FixedMovementJBot or MultitaskingJBot event object.

The basic movement control methods, movementDone and stop, are

available to an application along with a host of movement methods

including move, pivot and so on. These are essentially identical.

They setup the wheel encoder support and then call the matching

superclass support. Note that the parameter passed to the

superclass is increased. This is so the movement will continue

passed the expected stop point allowing the wheel encoder support

to mark the end of the movement. This also prevents the J-Bot

from running forever should the wheel encoder hardware work

improperly or if the wheels are slipping for some reason.

The new methods not required by the JbotInterface class include

the odometer methods. The odometer operation is relatively

simple. The odometer can be reset to 0 and the values can be

obtained. The left and right values are available independently.

The bulk of the work is done in the movementDone method. This

method will be called periodically by the startEvent. It will

check the wheel encoder hardware and keep track of the

transitions detected adjusting the speed as necessary. The

setRealSpeed method is used so any changes made by the ramping

support via the setSpeed method will not be affected.

To test the WheelEncoderJBot and WheelEncoderTask classes using

the following program.

The WheelEncoderTest4 class may be a bit of a surprise since it

is based on the Event class and not the Task class. This is

because only one task is necessary at this point, the background

MultitaskingJBot.

The main method starts by creating a WheelEncoderTest4 event

object. An object variable, jbot, is assigned a reference to a

new WheelEncoderJBot object that in turns creates a

MultitaskingJBot object. This is the task that will actually be

run by the Task.TaskManager method call.

Hopefully this will not get too convoluted so follow along

closely. The constructor method creates the appropriate objects

as just mentioned. The constructor then calls the jbot’s setEvent

method and passes a reference to the WheelEncoderTest4 event

object. Since the task is not running (remember, its constructor

 Chapter #8: Tracking Distance Traveled

will stop it) the call to the setEvent method will cause a

subsequent call to the event’s notify method. It is important to

set the i and state variables before the setEvent call because

these variables must be initialized before the notify method is

called.

The notify method is simple because the path being followed by

the J-Bot is a square. All four sides of the square require the

same actions to be performed: move forward and pivot. In this

case there are two states that the handle these actions:

moveForward and pivotLeft. These names do not conflict with the

ones used in other classes because they are specific to the

WheelEncoderTest4 class.

The jbot methods are called to initiate each movement. The states

change to the other state after initiating the movement. Unlike

the task execute method that is called repeatedly by the

TaskManager method, the notify method will only be called when a

movement has completed.

The moveForward state in the notify method will be called 4 times

to traverse the square. Two squares will be traversed by keeping

track of the number of times the state is entered and by exiting

after 8 iterations.

And that’s it. Once the notify method is called 8 times it will

not call the jbot.forward method. The background task will remain

stopped so the Task Manager method will eventually return so the

final “All Done” text can be printed using the System.out.println

method call in the main method.

� Connect the PC cable and raise the J-Bot so the wheels do not

touch the floor. Run the program and watch the wheels to see

if they rotate as anticipated.

� Remove the PC cable and run the J-Bot using batteries. Place

the J-Bot on the floor and see if it runs around in a square,

twice. Remember, it may waver side-to-side slightly.

So what needs to be changed if the J-Bot will follow a more

complex path? The WheelEncoderJBot and WheelEncoderTask classes

should remain intact. The event class can be changed to make

different movement calls.

Your Turn

� The program moves in a simple square. Change the figure to a

rectangle so one pair of sides is twice that of the other

sides.

� Run the figure in the reverse direction. This means going

backwards and pivoting to the right.

 Chapter #8: Tracking Distance Traveled

� The Task class is a subclass of Event so it can be passed to

the WheelEncoderJBot’s setEvent method. Implement the

WheelEncoderTest4 class by extending Task instead of Event.

Keep in mind that the default Task action for notify is to

start the task. This means the task’s execute method should

start a movement and then stop. It will be restarted when the

movement is done in the state set before the stop method is

called.

 Chapter #8: Tracking Distance Traveled

This chapter makes use of infrared

reflective sensors to keep the J-Bot

on the straight and narrow. They are

used to implement a wheel encoder

class that can be used to track how

far the J-Bot travels as well as

when to adjust movements to keep the

J-Bot moving in the desired direction.

Odometer support is also provided. This is an offshoot of the

sensor system used to provide feedback for controlling the J-Bot

servos. Odometer readings provide significantly more accurate

movement information than is possible using an open feedback loop

as in prior chapters.

Knowing where the J-Bot moves and moving in prescribed directions

will be important to solving many problems such as mapping and

maze traversal.

Real World Example

Feedback systems are used almost everywhere computers are used.

Wheel encoders, also called shaft encoders, are used in a variety

of areas. They are used in robotics to control wheels. The

technology can also be used with servo control of robotic arms.

Encoders are used to track movements that may be generated from

other sources. For example, an automobile’s speedometer and

odometer uses wheel encoder technology. The wheels drive a

flexible speedometer shaft. The number of turns corresponds to

the distance traveled.

Questions and

Projects

Questions

1. What components are in the infrared reflective sensors?

2. How does the infrared reflective sensors work?

3. What would happen if the white wheel was replaced with a

black wheel?

4. How can a black wheel be modified so it would work with the

wheel encoder hardware?

Summary and

Applications

 Chapter #8: Tracking Distance Traveled

Exercises

1. Activity #2 introduced feedback control of the J-Bot

servos. Describe what damping is and how it was utilized in

the sample program and what happens when this support is

removed.

2. Develop a single tasking class based on the JBotInterface

that uses polling instead of the multitasking system used

in Activity #3. Examine the CheckForWait and movementDone

methods.

Projects

1. The wheel encoder object can be used to keep the J-Bot

going straight or turning as desired but it helps if these

operations are started with values that are very close to

the optimum values. The J-Bot servo control classes were

calibrated manually in prior chapters.

� Create a program to calibrate the J-Bot’s forward

movement using the wheel encoders.

� Create a similar program for turns and pivots.

� It is possible to create a self calibrating program. Do

so if the prior programs require user intervention.

2. The event mechanism was used to traverse simple path using

a fixed set of movement calls. Create an event class that

can be passed a set of movements in a string or array. This

class will be more useful it is also has a method, like

setEvent, that takes a reference to an event. This event

should be notified when all the movements in the array or

string have been performed. Keep in mind that a task is a

subclass of Event so a typical implementation has a task

that will use this new movement event. The task will sleep

after initiating a sequence of movements.

