
Chapter #5: Tactile Navigation With Whiskers

 Tactile Navigation

The Whiskers kit is so named because

the kit’s bumper switches look like

whiskers, though some argue they

look more like antennae. At any

rate, whiskers give the J-Bot the

ability to sense the world around it

with tactile inputs. The J-Bot can

use these whiskers to navigate only

by touch. Although the activities in this chapter focus on using

just the whiskers, they can also be used with other sensors to

increase the J-Bot’s functionality.

Activity #1: Building and Testing the Whiskers

Parts

 (2) 10 kΩ resistors

 (2) 3-pin headers

 (2) 3/8” 4/40 male/female

standoffs

 (2) ¼” 4/40 machine screws

 (2) J-Bot bumper wires

 (2) Nylon washers size #4

Figure 5.1 Whiskers parts

Build It!

Your #1 point Phillips screwdriver and quarter-inch combination

wrench will come in handy here. Before getting started on

whisker construction, take a close look at Figure 5.2. Use these

pictures as a guide while constructing the mechanical part of the

Whiskers kit. Figure 5.3 shows the whiskers wiring diagram.

Follow it for making the necessary electrical connections.

Chapter #5:

Tactile

Navigation

with Whiskers

Figure 5.2: Pictures of J-Bot with Whiskers

Chapter #5: Tactile Navigation With Whiskers

� Remove the two front

screws that hold your

Board of Education to

the front standoffs.

� Screw in the male/female

standoffs included in

the Whiskers kit in

place of the screws that

were just removed.

 TIP

Hold the male/female standoff by the servo port while

turning the standoff between the JSDB and J-Bot

chassis to tighten it. The standoff between the JSDB

and chassis won’t turn until you loosen the screw that

holds it to the chassis. Make sure to retighten it

when you’re done.

� Place a nylon washer on top of each standoff.

� Thread each screw removed in the first step through the open

loop of a whisker.

� Screw each screw into a standoff sandwiching the loop of the

whisker between the screw head and the nylon washer. Make

sure the whiskers are oriented as shown in Figure 3.2 and 3.3.

Whisker Inputs

Figure 5.4 is a schematic

representation of the circuit

you’ve just built. Each whisker

is both the mechanical extension

and the ground electrical

connection of a normally open,

single-pole, single-throw switch.

The Javelin can be programmed to

detect when a whisker is pressed.

I/O pins connected to each switch

X3

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Red

Black

Board of Education
www.stampsinclass.com

(916) 624-8333

(c) 2000

Rev BX4 X5

15 14 13 12

To
Servos

Figure 5.3: Whiskers wiring diagram.

Left Whisker

Right Whisker

10 kΩ

Vdd

Right
Whisker

P4

P6

Vss

10 kΩ

Vdd

Left
Whisker

Vss

P2

Vss

Piezo

Figure 5.4: Whiskers Schematic.

Chapter #5: Tactile Navigation With Whiskers

circuit monitor the voltage at the 10 kΩ pull-up resistor. When

a given whisker is not pressed, the voltage at the I/O pin

connected to that whisker is 5 V (logic 1). When a whisker is

pressed, the I/O line is shorted to ground, so the I/O line sees

0 V (logic 0).

Testing the Whiskers

Testing each whisker can be done with the Message window. This

time, instead of displaying a printed message, the Message window

interface is used to display the input seen by the I/O pins

connected to the whiskers.

Each Javelin I/O pin can be controlled individually using the CPU

class object. There are a number of class (static) methods that

support reading and writing data to one or more pins. These

methods include the following:

boolean readPin (int portPin)

void writePin (int portPin, boolean value)

byte readPort (int port)

void writePort (int port, byte value)

void setInput (int portPin)

void setOutput (int portPin)

The value of portPin must be one of the defined constants from

CPU.pin0 to CPU.pin15. Using a value of 0 to 15 WILL NOT work.

The port values are CPU.PORTA and CPU.PORTB. These ports map to

the first and last 8 bit pins. The direction of individual pins

can be set using setInput and setOutput methods as in

CPU.setInput (CPU.pin0). The direction is changed if necessary

when using readPin and writePin. The readPin method will be used

in this chapter to access the whisker input pins and the writePin

method to drive status LEDs.

The whisker test program uses pins 4 and 6 for input.

import stamp.core.*;

/**

 * Whisker switch test

 * <p>

 * Shows whisker switch status

 *

 * @version 1.0 9/10/02

 * @author Parallax, Inc.

 */

public class whisker1 {

 public static void main() {

 while (true) {

 System.out.print ("P6=") ;

Chapter #5: Tactile Navigation With Whiskers

 System.out.print (CPU.readPin (CPU.pin6) ? 1 : 0) ;

 System.out.print (" P4=") ;

 System.out.println (CPU.readPin (CPU.pin4) ? 1 : 0) ;

 CPU.delay (5000) ;

 }

 }

}

The Whisker1 class is designed to test the whiskers to make sure

they are functioning properly. It checks and displays the state

of the Javelin I/O pins connected to the whiskers. All I/O pins

default to input every time a JAVA program starts. This means

that the I/O pins connected to the whiskers will function as

inputs automatically. As an input, an I/O pin connected to a

whisker will cause its bit in the ins register to display 1 if

the voltage is 5 V (whisker not pressed) and 0 if the voltage is

0 V (whisker pressed). The Message window can be used to display

these values.

� Enter and run the Whisker1 program

� This program makes use of the Message window, so leave the

serial cable connected to the BOE while Whisker1.java is

running.

Chapter #5: Tactile Navigation With Whiskers

� Note the values displayed in the Message window; it should

display that both P6 and P4 are equal to 1.

� Check Figure 5.3 so you know which whisker is the “left

whisker” and which whisker is the “right whisker”.

� Press the right whisker so that it touches the three-pin

header on the right, and note the values displayed in the

Message window again. It should now read: P6 = 1 P4 = 0.

� Press the left whisker into the left three-pin header, and

note the value displayed in the Message window again. This

time it should read: P6 = 0 P4 = 1.

� Press both whiskers against both three-pin headers. Now it

should read P6 = 0 P4 = 0.

If the whiskers passed all these tests, you’re ready to move on;

otherwise, check your program and circuit for errors.

Chapter #5: Tactile Navigation With Whiskers

Your Turn

Assume that you may have to test the whiskers at some later time

away from a computer. Since the Message window won’t be

available, what can you do? One solution would be to program the

Javelin so that it sends an output signal that corresponds to the

input signal it’s receiving. One way of doing this would be with

a pair of LED circuits and a program that turns the LEDs on and

off based on the whisker inputs. Figure 5.5 shows the parts of

an LED circuit along with their schematic symbols.

Extra Parts

(2) Red LEDs

(2) 470 Ω resistors

10 kΩ

Vdd

Right
Whisker

P4

P6

Vss

10 kΩ

Vdd

Left
Whisker

Vss

P2

Vss

Piezo

Figure 5.5 Extra parts for testing the

whiskers.

FYI

LED stands for light emitting diode. The terminal

labeled 1 in figure 5.6 is the LED’s cathode, and

the terminal labeled 2 is the LED’s anode. You can

usually figure out which of the LED’s two wire leads

is connected to the cathode because it’s shorter.

TIP

Just above where the wire leads come out of LED’s

plastic case, the outer rim looks round, but if you

look carefully, there’s a small area that’s been

milled flat. The lead that comes out of the plastic

case closest to the milled flat spot is the cathode.

If the LED’s leads have been cut to the same length,

look for the flat spot to figure out which lead

connects to the LED’s cathode.

� Construct the circuit shown in Figure 5.6.

Chapter #5: Tactile Navigation With Whiskers

P9

P10

470 Ω 470 Ω

Vdd Vdd

LED LED

X3

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Red

Black

Board of Education
www.stampsinclass.com

(916) 624-8333

(c) 2000

Rev BX4 X5

15 14 13 12

To
Servos

Figure 5.6 (a): add this

LED circuit,

(b) so the Whiskers circuit looks like this when

you’re done.

� Add these commands to the beginning of Program Listing 5.1:

CPU.setOutput (CPU.pin9) ;

CPU.setOutput (CPU.pin10) ;

These commands change the direction of P9 and P10 from input to

output. Now instead of listening for signals, they will be ready

to send signals.

� Add these two commands immediately after the debug command in

Program Listing 5.1:

CPU.writePin (CPU.pin9, CPU.readPin (CPU.pin4)) ;

CPU.writePin (CPU.pin10, CPU.readPin (CPU.pin6)) ;

These statements set the output values of P9 and P10 equal to the

input values at CPU.pin4 and CPU.pin6 respectively. If CPU.pin4 = 1,

CPU.pin9 is set to 1. This means that when CPU.pin4 sees 5 V,

CPU.writePin sends 5 V. If CPU.pin4 is 0, which means it detects 0

V, then CPU.writePin will also be 0, sending 0 V.

� Run your modified version of Whisker1, and test the whiskers

using the LEDs to indicate that the Javelin has detected a

whisker being pressed.

Activity #2: Single Tasking Whiskers

Left Whisker

Right Whisker

Chapter #5: Tactile Navigation With Whiskers

In Activity #1, the Javelin was programmed to detect whether or

not a given whisker was pressed. In this activity, the Javelin

will be programmed to use this information to guide the J-Bot.

When the J-Bot is rolling along and a whisker is pressed, it

means the J-Bot bumped into something. A navigation program

needs to take this input, decide what it means, and call a

navigational routine to back up from the obstacle and go in a

different direction.

Programming the J-Bot to Navigate Based on Whisker Inputs

Whisker2 class is called a roaming program. The program makes

the J-Bot go forward until it encounters an obstacle. In this

case, the J-Bot knows when it encounters an obstacle by bumping

into it with one or both of its whiskers. As soon as the

obstacle is detected by the whiskers, navigational routines and

subroutines developed in Chapter 3 are used to make the J-Bot

back up and turn. Then, the J-Bot resumes forward motion until

it bumps into another obstacle.

When a whisker is pressed, due to an obstacle, the normally open

switch closes. I/O pins P6 and P4 are set to input and used to

monitor the states of the whiskers. The two whiskers may be in

one of four states:

(1) Both high – no objects detected

(2) Left low, right high – object detected on the left

(3) Right low, left high – object detected on the right

(4) Both low – indicates a head-on collision with a wide

object such as a wall

Whisker2.java shows an example of how the states of the whiskers

can be used to select the appropriate J-Bot navigation routine.

For example, state 1 means the J-Bot can continue forward. State

2 means that the J-Bot should back up, then turn right. State 3

means the J-Bot should back up and turn left, and state 4 would

be a good time to back up and make a U-turn.

� Run Whisker2, and see how the J-Bot behaves when it bumps into

a wall.

import stamp.core.*;

import JBot.*;

/**

 * Whisker switch test

 * <p>

 * Shows whisker switch status

 *

 * @version 1.0 9/10/02

 * @author Parallax, Inc.

 */

public class whisker2 {

Chapter #5: Tactile Navigation With Whiskers

 public static void main() {

 JBotInterface jbot = new RampingJBot (new FixedMovementJBot ()) ;

 while (true) {

 switch ((CPU.readPin (CPU.pin6) ? 1 : 0)

 + (CPU.readPin (CPU.pin4) ? 2 : 0)) {

 case 0: // both low, backup and turn right

 jbot.stop () ;

 jbot.move (-3);

 jbot.pivot (-2) ;

 break ;

 case 1: // P4 low, backup and turn left

 jbot.stop () ;

 jbot.move (-2);

 jbot.pivot (2) ;

 break ;

 case 2: // P6 low, backup and turn right

 jbot.stop () ;

 jbot.move (-2);

 jbot.pivot (-2) ;

 break ;

 case 3: // neither low, go forward

 jbot.move (jbot.continuousForward);

 break ;

 }

 }

 }

}

The mechanical design of the whiskers is by no means foolproof.

Table 5.1 lists common problems you may encounter with some

suggested solutions.

Table 5.1: Whisker Troubleshooting

Problem Try This

J-Bot backs up too

far/not far enough.

Adjust the for. . . next arguments in the

program listing. They may be increased or

decreased to increase or decrease how far

the J-Bot rotates when it turns/backs up.

J-Bot drives up

side of wall

because whiskers

didn’t catch hold

of an object.

Increase the resistance of a whisker against

the surface of an object by bending whiskers

in a different angle. Alternatively, try

dipping the whiskers in a coating material

such as rubber cement.

Whiskers do not

detect dead-center

object.

Bend whiskers inward.

Switches don’t

appear to work

properly.

Repeat Activity #1.

Chapter #5: Tactile Navigation With Whiskers

Chapter #5: Tactile Navigation With Whiskers

How Roaming with Whiskers Works

The switch statement in the main static method checks the whiskers

and generates a number from 0 to 3. If both whiskers are pressed

the value is 0 and the J-Bot is stopped, backed away from the

obstacle and turned to the right. It could just as easily turn to

the left. If just the left whisker is pressed then the value used

in the switch statement is 1. The action is very similar.

Likewise, if just the right whisker is pressed then the value is

2. Finally, a value of 3 indicates neither switch is closed and

the J-Bot moves forward.

Note the different types of method calls to the jbot object. The

forward movement uses no parameters because it is not moving for

a fixed distance. The other movement methods are for a fixed

number of inches and the jbot object handles starting and ending

the movement . Once the movement is done the sensors are checked

again. The J-Bot will move forward if there is nothing in the

way.

Your Turn

The jbot movement method distance parameters can change where the

J-Bot moves in response to an obstacle.

� Experiment with the method argument values in navigation

routines in Whisker2.java.

Activity #3: Tactile Navigation – Whiskers and Multitasking

The single tasking roaming program is short and easy to

understand. The FixedMovementJBot handles most of the work.

Unfortunately, if anything else is going on then the program

needs to be modified to handle more than one task. The

alternative is to use the multitasking support. We start with a

WhiskerSensor that extends BasicSensor presented in Chapter 2. We

then use the sensor with a multitasking roaming program. We can

use a different type of sensor by simply defining a new

BasicSensor class. The following is the WhiskerSensor class file.

package JBot;

import stamp.util.os.* ;

import stamp.core.* ;

/**

 * Basic whisker sensor class

 * <p>

 * Provides obstacle detection using whisker sensors

 * Returns obstacle directions of 45, 90 and 135.

 *

 * @version 1.0 8/23/02

 * @author Parallax Inc.

Chapter #5: Tactile Navigation With Whiskers

 */

public class WhiskerSensor extends BaseSensor {

 /**

 * Indicate whether an obstacle has been detected.

 * Normally used when polling versus using an event.

 *

 * @returns obstacle detected

 */

 public boolean obstacleDetected () {

 return CPU.readPin (CPU.pin6) | CPU.readPin (CPU.pin4) ;

 }

 /**

 * Indicate initial obstacle position.

 * For simple detection systems the detection of an object

 * on the right and left will return front.

 *

 * @returns obstacle's relative direction (left, right, etc.)

 */

 public int obstacleDirection () {

 switch ((CPU.readPin (CPU.pin6) ? 1 : 0)

 + (CPU.readPin (CPU.pin4) ? 2 : 0)) {

 case 0: // both low, backup and turn right

 return front ;

 case 1: // P4 low, backup and turn left

 return right ;

 case 2: // P6 low, backup and turn right

 return left ;

 default:

 case 3: // neither low

 return none ;

 }

 }

 /**

 * Get the distance to an obstacle in the specified direction.

 * A value of <code>none</code> indicates no object detected.

 *

 * @param direction to get range for

 *

 * @returns distance to an obstacle for the specified direction

 */

 public int obstacleDistance (int direction) {

 return 0 ; // distance is always 0 regardless of direction

 }

 /**

 * Set minimum event notification distance.

 * Notification will not occur until an obstacle is

 * outside of this distance. The minimum value is 0.

 *

 * @param minimumDistance minimum number of inches to detect an obstacle

 */

 public void setMinimumEventDistance () {

 /* Default case is to ignore the minimum distance

 * For example, contact oriented sensors can only detect objects

 * when they are in contact with them.

 */

 }

Chapter #5: Tactile Navigation With Whiskers

 // Protected classes for use by this class or subclasses

 /**

 * Set notification event

 *

 * @param event Event object to notify when a change occurs

 */

 public void setEvent (Event event) {

 this.event = event ;

 }

 /**

 * Cause event when obstacle status has changed.

 * May be called by subclass methods.

 */

 protected void notifyEvent () {

 if (event != null)

 event.notify () ;

 }

}

The list for the sensor is longer than the whisker2.java program

but this is primarily due to the comments. The obstacle detection

is isolated in this class while the movement will be handled by

the general multitasking roaming program presented next.

Reprogramming for Roaming with Whiskers

The AvoidObstacleTaskWhiskerTest1.java program operates in a

similar fashion to whisker2.java. However, it processes the

whisker inputs from the WhiskerSensor object and uses the

AvoidObstacleTask to handle the movement. The

AvoidObstacleTaskWhiskerTest1.java program is shown below.

import stamp.core.*;

import stamp.util.os.* ;

import JBot.* ;

/**

 * Test AvoidObjstacleTask class

 * <p>

 * Tun the J-Bot so it avoids obstacles.

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class AvoidObstacleTaskWhiskerTest1 {

 public static void main () {

 new AvoidObstacleTask

 (new WhiskerSensor ()

 , new RampingJBot (new MultitaskingJBot ())) ;

 Task.TaskManager () ;

 System.out.println ("All done") ;

 }

}

Chapter #5: Tactile Navigation With Whiskers

How Roaming with Whiskers Again Works

The AvoidObstacleTaskWhiskerTest1 program is very simple because

all the work is done by the AvoidObstacleTask object and the

WhiskerSensor object. Additional tasks can be added without

having a major affect on the movement and obstacle avoidance

tasks. Note that the control event for the RampingJBot is a

MultitaskingJBot task versus the single tasking

FixedMovementJbot.

Your Turn

� Set the J-Bot on something so that when the program runs, the

wheels don’t touch the ground. This is so you can leave the

J-Bot plugged into the serial cable while the program runs.

� Run the program and use the debugger window as you test the

whiskers.

� Modify the AvoidObstacleTask so it operates like the

whisker2.java program.

Activity #4: Tactile Memory – Whiskers and EEPROM

Lifting the wheels off the ground is fine for testing the basic

interface but it is impractical to keep the J-Bot connected to

the PC when it is roaming. The alternative is to record the

obstacle information in the Javelin’s EEPROM memory. This is the

same memory used to store the Java code but rarely does the

program use all the memory. In fact, since the program is

actually copied from the EEPROM to RAM for execution then there

must be some unused EEPROM space free because RAM is needed for

creating objects when the program runs.

The obstacle detection is handled by the AvoidObstacleTask. This

class is extended and called the AvoidObstacleRecordingTask show

next.

package JBot;

import stamp.util.os.* ;

import stamp.core.* ;

/**

 * Simple obstacle avoidance task with EEPROM recording

 * <p>

 * This tries to stay away from obstacles using a sensor object.

 * The J-Bot will be moved in fixed increments.

 * Obstacle information is stored in EEPROM

Chapter #5: Tactile Navigation With Whiskers

 *

 * @version 1.0 8/23/02

 * @author Parallax Inc.

 */

public class AvoidObstacleRecordingTask extends AvoidObstacleTask {

 int memoryIndex ;

 int memorySize ;

 public AvoidObstacleRecordingTask (BaseSensor sensor, JBotInterface jbot) {

 super (sensor, jbot) ;

 memoryIndex = 1 ;

 memorySize = (EEPROM.size () - 1) / 2 ;

 // Only record the first few obstacles. Must be under 255

 if (memorySize > 10) {

 memorySize = 10 ;

 }

 // Store number of recordings that will be saved

 EEPROM.write (0, (byte) memorySize) ;

 }

 protected void execute () {

 final int turnAround = 1 ;

 switch (state) {

 case initialState:

 if (sensor.obstacleDetected ()) {

 int direction = sensor.obstacleDirection () ;

 // Exit if EEPROM area filled

 if (memorySize == 0) {

 stop () ;

 break ;

 }

 // Record obstacle details in EEPROM

 EEPROM.write (memoryIndex, (byte)direction) ;

 EEPROM.write (memoryIndex + 1, (byte)sensor.obstacleDistance

(direction)) ;

 memoryIndex += 2 ;

 -- memorySize ;

 if (sensor.obstacleDistance (direction) < 2) {

 // Too close, back up 2 inches, then turn around

 jbot.move (-2) ;

 jbot.wait (turnAround) ;

 } else {

 // Enough room to pivot away from object

 if (direction < 75) {

 // Something to the left

 jbot.pivot (-2) ;

 } else {

 // Something in front or to the right

 jbot.pivot (2) ;

 }

 jbot.wait (turnAround) ;

 }

Chapter #5: Tactile Navigation With Whiskers

 } else {

 // Nothing detected. Move forward 1 inch

 jbot.move (1) ;

 jbot.wait (initialState) ;

 }

 break;

 case turnAround:

 // J-Bot has backed up. Time to pivot 180 degrees

 jbot.pivot (4) ;

 jbot.wait (initialState) ;

 break;

 default: // default catches bad states

 stop () ;

 break;

 }

 }

}

Three things are added to this class. First, are some new object

variables. Second, the constructor initializes these variables

using the EEPROM class methods. The memorySize variable is used

to store the number of entries that will be recorded. The maximum

value is 255 because EEPROM data is store in bytes with a value

between 0 and 255. It is possible to store a 16-bit integer in

two bytes but we leave this as an exercise. The memory Index

starts at an offset of 1 so the number of entries can be stored

in the first byte at offset 0. The obstacle information will be

stored after this byte.

Finally, data is stored in the execute method’s initialState.

This is where obstacles are detected using a sensor. At this

point the sensor is the WhiskerSensor. The J-Bot will stop after

the set number of obstacle entries are stored. We start with a

value of 10 in the constructor so the J-Bot will not run too long

before it stops.

Once the J-Bot stops it can be picked up and connected to the PC.

The J-Bot can be turned off if necessary because data stored in

the EEPROM is maintained even when power is off. The next step is

to download the reporting program that will read the EEPROM

contents and display the information in the Message window. The

data saved in the EEPROM will not be overwritten by the new

program because it is loaded at the other end of memory. The

following is the DumpObstacle program that displays the

information from the EEPROM.

import stamp.core.*;

/**

 * Dumps data stored in EEPROM by AvoidObstacleRecordingTask.

 * <p>

Chapter #5: Tactile Navigation With Whiskers

 * Reads the data from the EEPROM memory and displays it

 * in the Message window.

 *

 * @version 1.0 9-20-02

 * @author Parallax, Inc.

 */

public class DumpObstacle {

 public static void main() {

 int memoryIndex = 1 ;

 for (int memorySize = (int) EEPROM.read (0)

 ; memorySize > 0

 ; -- memorySize) {

 System.out.print (memoryIndex) ;

 System.out.print (" Direction: ") ;

 System.out.print ((int) EEPROM.read (memoryIndex)) ;

 System.out.print (" Distance: ") ;

 System.out.println ((int) EEPROM.read (memoryIndex + 1)) ;

 memoryIndex += 2 ;

 }

 }

}

This program is very simple. It assumes that the first EEPROM

byte is the number of 2 byte entries that start at offset 1. The

offset and the two bytes are printed on each line. The two values

are prefixed by Direction or Distance so you don’t have to

remember which number is which. The information may scroll by

very quickly but the Message window will retain the information.

Scroll the window up to see information printed when the program

starts.

Your Turn

The pair of classes, AvoidObstacleRecordingTask and DumpObstacle,

must use the same offsets and entries if the proper information

is to be observed later. It may also be useful to add movement

and pivot steps to this information. Remember to make the same

kind of changes to both classes.

Chapter #5: Tactile Navigation With Whiskers

In this chapter, instead of navigating

from a pre-programmed list, the J-Bot was

programmed to navigate based on sensory

inputs. In this case, the sensory inputs

were whiskers. The Javelin was

programmed to test these whisker sensors

and display the test results using two different media, the

Message window and LEDs. The obstacle information using the

multitasking version of the program was also modified to store

information in the EEPROM.

When properly wired, these switches can show one voltage (5 V) at

the switch’s contact point when it’s open, and a different

voltage (0 V) when it’s closed. Voltages of 5 and 0 V are

transistor-transistor logic (TTL) levels, and the Javelin’s input

registers interpret these levels as “1” and “0,” respectively.

JAVA programs were developed to make the Javelin check the

whiskers between each servo pulse. Based on the state of the

whiskers, the programs’ main: routines either made the J-Bot

continue forward, or called navigational routines developed in

the previous chapter to guide the J-Bot away from obstacles.

Real World Example

Automated sensors are all around you. When you go to a grocery

or convenience store, sensors are often responsible for opening

the door for you. Microcontrollers scan keypads in a fashion

similar to the way the Javelin scans the whiskers to detect

whether or not they have been pressed. The information is

processed and results as an output. In the case of a door

opener, the result is a servo- or motor-controlled door being

opened.

Robotic machinery of many shapes and sizes also relies on a

variety of tactile switches wired similarly to the whiskers.

Robotic arms sometimes use these switches to detect when they’ve

encountered the object they are programmed to pick up and place

elsewhere. Factories use these switches to count objects on a

production line, and also for aligning objects for industrial

processes. In all these instances, the switches provide inputs

that dictate some other form of programmed output. Be it a

calculator, robot or a production line, the switch input is

electronically monitored. Based on the state of the switches,

the calculator display updates, the robot arm grabs the object,

or the factory production line reacts with motors or servos to

guide the product in a pre-programmed fashion.

J-Bot Application

Summary

and

Applicati

ons

Chapter #5: Tactile Navigation With Whiskers

This chapter introduced input-based J-Bot navigation using real

sensors. The next three chapters will focus on using different

types of sensors to give the J-Bot vision. Both vision and touch

open up a lots of opportunities for the J-Bot to navigate in

increasingly complex environments.

Chapter #5: Tactile Navigation With Whiskers

Questions and

Projects

Questions

1. What kind of electrical connection is a whisker?

2. If an I/O pin is set to output, what register does this

effect?

3. When a whisker is pressed, what voltage occurs at the I/O

pin monitoring it? What binary value will occur in the

input register? If I/O pin P8 is used to monitor the input

pin, what value does in8 have when a whisker is pressed, and

what value does it have when a whisker is not pressed?

4. What direction does an I/O pin have to be set to make an

LED circuit function?

5. Which whisker is CPU.pin6 connected to? How about CPU.pin4?

Exercises

1. What happens if the CPU.delay call is removed from

whisker1.java?

2. Implement whisker2.java using if statements instead of the

switch statement.

3. The AvoidObstacleRecordingTask saves an obstacles direction

and distance in the EEPROM. Add the movements used in

response to an obstacle. Remember to change the

DumpObstacle file as well.

Projects

1. Modify whicker2.java so that the J-Bot moves backward

slowly while both whiskers are pressed. Otherwise, it

stays still. Modify the program further so that the J-Bot

rotates counterclockwise when the left whisker is pressed

and clockwise then the right whisker is pressed. When the

program is finished, fine tune the speed response so that

it appears that you are pushing the J-Bot around by its

whiskers.

2. Challenge: whisker2.java so that the J-Bot travels in a

circular path. Modify it so that if you tap the inside

Chapter #5: Tactile Navigation With Whiskers

whisker, the circular path will become 5 cm. narrower in

diameter. Also make it so that if you tap the whisker on

the outside of the J-Bot’s circular path, the diameter will

increase by 5 cm.

When you’ve got whisker control over the diameter of the J-

Bot’s circle, program the J-Bot to remember this diameter,

even after the power is reset. The write command can be

used to save data to EEPROM. EEPROM data is called non-

volatile. Whereas the Javelin’s RAM is erased with each

reset (volatile), the EEPROM can save the data for use the

next time the Javelin gets power (non-volatile).

