
Chapter #7: Object Detection Using Infrared

Using Infrared Headlights to See the

Road

Today's hottest products seem to have

one thing in common: wireless

communication. Personal organizers

beam data into desktop computers, and

wireless remotes let us channel surf. With a few inexpensive and

widely available parts, the Javelin can also use an infrared LED

and detector to detect objects to the front and side of your

traveling J-Bot.

Detecting obstacles doesn’t require

anything as sophisticated as machine

vision. A much simpler system will

suffice. Some robots use RADAR or SONAR

(sometimes called SODAR when used in air

instead of water). An even simpler system

is to use infrared light to illuminate the

robot’s path and determine when the light

reflects off an object. Thanks to the

proliferation of infrared (IR) remote

controls, IR illuminators and detectors

are easily available and inexpensive.

The J-Bot infrared object detection scheme

has a variety of uses. The J-Bot can use

infrared to detect objects without bumping

into them. As with the photoresistors,

infrared can be used to detect the

difference between black and white for

line following. Infrared can also be used

to determine the distance of an object

from the J-Bot. The J-Bot can use this

information to follow objects at a fixed

distance, or detect and avoid high ledges.

Infrared Headlights

The infrared object detection system we’ll

build on the J-Bot is like a car’s

headlights in several respects. When the

light from a car’s headlights reflects off

obstacles, your eyes detect the obstacles

and your brain processes them and makes

your body guide the car accordingly. The J-Bot uses infrared

LEDs for headlights as shown in Figure 7.1. They emit infrared,

and in some cases, the infrared reflects off objects, and bounces

back in the direction of the J-Bot. The eyes of the J-Bot are

the infrared detectors. The infrared detectors send signals to

the Javelin indicating whether or not they detect infrared

reflected off an object. The brain of the J-Bot, the Javelin,

Chapter #7:

Object

Detection

Using

Infrared

Infrared

Infra means below, so

Infra-red is light (or

electromagnetic

radiation) that has

lower frequency, or

longer wavelength than

red light. Our IR LED

and detector work at 980

nm. (nanometers) which

is considered near

infrared. Night-vision

goggles and IR

temperature sensing use

far infrared wavelengths

of 2000-10,000 nm.,

depending on the

application.

 Approximate

Color Wavelength

Violet 400 nm

Blue 470

Green 565

Yellow 590

Orange 630

Red 780

Near infra-red 800-

1000

Infra-red

1000-2000

Far infra-red

2000-10,000nm

Chapter #7: Object Detection Using Infrared

makes decisions and operates the servo motors based on this

input.

The IR detectors have built-in optical

filters that allow very little light

except the 980 nm. infrared that we

want to detect onto its internal

photodiode sensor. The infrared

detector also has an electronic filter

that only allows signals around 38.5

kHz to pass through. In other words,

the detector is only looking for

infrared flashed on and off at 38,500

times per second. This prevents

interference from common IR

interference sources such as sunlight

and indoor lighting. Sunlight is DC

interference (0 Hz), and house

lighting tends to flash on and off at

either 100 or 120 Hz, depending on the

main power source in the country where

you reside. Since 120 Hz is way

outside the electronic filter’s 38.5

kHz band pass frequency, it is, for

all practical purposes, completely

ignored by the IR detectors.

The Frequency Trick

Since the IR detectors only see IR signals in the neighborhood of

38.5 kHz, the IR LEDs have to be flashed on and off at that

frequency. The actual frequency will be 38.4 kHz since this is a

frequency that the J-Bot can generate. A 555 timer can be used

for this purpose, but the 555 timer circuit is more complex and

less functional than the circuit we will use in this and the next

chapter. For example, the method of IR detection introduced here

can be used for distance detection; whereas, the 555 timer would

need additional hardware to do distance detection.

A pair of J-Bot enthusiasts found an interesting trick that made

the 555 timer scheme unnecessary. This scheme uses the PWM object

without the RC filter that’s normally used to smooth the signal

into a sine-wave. Even though the highest frequency PWM is

designed to transmit is 57.6 kHz, the unfiltered PWM output can

generate a 38.4 kHz signal with useful properties for a 38.5 kHz

IR detector.

Those familiar with the Basic STAMP-based BOEBOT will know that

the IR detection was done by varying frequency sent by the IR

LED. The IR detector responds to the different frequencies based

upon the distance to an obstacle. This approach will not work

with the J-Bot because the Javelin STAMP cannot generate pulses

B
o

a
rd

 o
f

E
d

u
c
a

ti
o

n
w

w
w

.s
ta

m
p

s
in

c
la

s
s
.c

o
m

(9
1

6
)

6
2

4
-8

3
3

3

(c
)
2
0
0
0

X
3

V
d

d
V

s
s

V
in

P
1

5
P

1
4

P
1

3
P

1
2

P
1
1

P
1

0
P

9
P

8
P

7
P

6
P

5
P

4
P

3
P

2
P

1
P

0
X

2

R
e

v
 B

R
e
d

X
4

X

5

1
5

1

4

1

3

1
2

B
la

c
k

Object

IR LED
IR
Detector

Figure 7.1: Object detection

with IR Headlights.

Chapter #7: Object Detection Using Infrared

fast enough or accurately enough. On the other hand, the J-Bot

has a better way of doing things.

To start with, the Javelin has a digital-to-analog (DAC) virtual

peripheral. This can generate voltages between 0 and 5 volts in a

stepped fashion (see Fig. 7.2a). Attach an IR LED to the DAC

output and the output intensity of the LED will vary depending

upon the voltage. Combine the DAC/IR LED combination with a 38.4

kHz PWM output (see Fig. 7.2b) and the J-Bot can generate a

modulated output of varying intensity (see Fig. 7.2c). Add in the

IR detector and objects can be detected based on their distance

from the IR LED/detector. An object that is very close to the J-

Bot will be detected regardless of the amount of light being

emitted by the LED. An object father away will only be detected

when the light is more intense.

0 37Time, us
0

+ 5

Volts, V
Volts, V

+ 1.25

- 1.25

0

0 Time, us 37
(b) PWM 38.4 kHz output
+ 1.25

- 1.25

0

0 Time, us 37

Figure 7.2: (a) Stepped DAC output (c) Stepped 38.4 kHz output

The DAC circuit uses a 1K Ω resistor and a 10µf capacitor. The

resistor is connected to the DAC virtual peripheral output pin.

The other end of the resistor is connected to the capacitor which

is in turn connected to ground. The DAC virtual peripheral

charges the capacitor to the desired voltage using pulses. The IR

LED is connected to the resistor and capacitor. The other end of

the LED is connected to the 220 Ω resistor which is connected to

the PWM output pin. The circuit is shown in figure 7.4.

Parts

 (2) Shrink wrapped IR LEDs

 (2) IR detectors

 (2) 220 Ω resistors

 (2) 10µf capacitors

 (2) 1K Ω resistors

 (misc) wires

 IR
LED 1

2

1

2 Short
Leg

1
2
3

1
2
3

Figure 7.3: IR detector schematic

symbol and part on top row and IR LED

schematic symbol and part on bottom

row.

Chapter #7: Object Detection Using Infrared

Activity #1: Building and Testing the New IR Transmitter/Detector

Build It!

P0

Vss

Vdd

P2

Vss

Piezo

P8

Vss

Vdd

IR
LED

220 Ω

Vss

P7

IR
LED

220 Ω

Vss

P1

Board of Education
www.stampsinclass.com

(916) 624-8333

(c) 2000

X3

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Rev B

Red

X4 X5

15 14 13 12

Black

To
Servos

Longer
leads

Figure 7.4: IR headlights (a) Schematic (b) wiring diagram.

Two circuits will be used by the IR obstacle detection object

defined later in this chapter. The circuits are identical as in

the prior chapter where a pair of photoresistors was used.

Testing the IR Pairs

The key to making each IR pair work is to modulate DAC output at

38.4 kHz. Only one IR LED and its matching detector will be used

at a time to prevent interference with light from the other

circuit.

Chapter #7: Object Detection Using Infrared

� Enter and run the IrRangeTest1.

� This program makes use of the Message window, so leave the

serial cable connected to the JSDB while the IrRangeTest1

program is running.

� While the program is running, point the IR detectors so

nothing nearby could possibly reflect infrared back at the

detectors. The best way to do this is to point the J-Bot up

at the ceiling. The Message window output should display both

left and right values as equal to “15.”

� By placing your hand in front of an IR pair, it should cause

the Message window display for that detector to change from

“15” down to “0.” Removing your hand should cause the output

for that detector to return to a “15” state. This should work

for each individual detector, and you also should be able to

place your hand in front of both detectors and make both

their outputs change from “15” to “0.”

� If the IR Pairs passed all these tests, you’re ready to move

on; otherwise, check your program and circuit for errors.

How the IR Range Detection Program Works

The main method allocates the virtual peripherals but stops each

before allocating the next virtual peripheral. This is because

the constructor for the virtual peripherals starts the virtual

peripheral.

FYI

The Javelin STAMP can only have 6 active virtual

peripherals at one time. Stopping a virtual

peripheral makes it inactive. Starting one makes it

active.

The while loop in the main method repeats forever so it is best

to run the program using the debugger. The method repeatedly

prints out the range results for each DAC/PWM pair. The work

determining the range is done by the getRange class method. We do

not have to create our own objects at this point so we will stick

with class methods.

The getRange method starts both virtual peripherals at the

beginning of the method and stops both when the method is done.

This means only two virtual peripherals will be active at one

time. The for loop repeats sixteen times (0 to 15) and generates

Chapter #7: Object Detection Using Infrared

a voltage using the DAC. A dac.update value of 255 corresponds to

5 volts. This means the voltage will start at 5 volts and step

down. The minimum value will be 60 (255 – (13*15)) or about 1

volt. The IR LED will generate any light if the value is below

this point. Even at this point the amount of light is very small.

There is a small delay after the LED starts emitting the

modulated signal. This allows the modulation to start since

updating the PWM frequency does not cause the PWM object to

change its frequency immediately. Likewise, the delay allows the

IR detector to respond to the reflected infrared light.

The loop checks the IR detector response on each iteration. In

theory, the transition from not detecting an obstacle to

detecting one will occur consistently but in practice there are

fluctuations in the signals from the IR detector. By counting the

IR detector responses the results will typically vary only by one

or two units.

Your Turn

� Experiment with different ranges instead of the 0 to 15 used

in the example. Keep in mind that you must change the

multiplier in the dac.update call. Does a finer granularity

provide more information or do the results fluctuate too much

to make a difference in accuracy?

� Try different color objects when testing the range

capabilities. Do different colors or textures generate the

same range results?

Chapter #7: Object Detection Using Infrared

Activity #2: Detection Class – Infrared

The infrared sensor class uses the same BaseSensor class as the

photoresistor example in the previous chapter. The task/sensor

object architecture is repeated here to take advantage of the

delays required for the DAC output voltage to settle and for the

IR detector to recognize any reflected light from the LED. This

infrared system actually works better with the multitasking

system because virtual peripherals handle all the background

operations and timing is not critical.

The following file shows IrRangeSensor class.

The IrRangeSensor class very similar to the PhotoresistorSensor

class. The last obstacle detected information is maintained in

object variables that are updated by the IrRangeSensorTask

calling the sensor’s saveResults method. The noObstacle constant

definition is used to determine when no object is detected. The

value is 15 which will be the distance returned by the task if no

modulate IR light is detected by the IR detector. This also means

that if an obstacle is detected then the range value will be

between 0 and 14.

The range is in no particular units but a 0 distance means that

an obstacle is very close or in contact with the J-Bot. As in the

prior chapter, the deadband value is used to determine whether an

object is in front of the J-Bot when the range values from the

left and right detector are close.

The IrRangeSensor constructor creates and starts the

IrRangeSensorTask. The IrRangeSensorTask constructor requires the

six pins used for each pair of DACs, PWMs and IR detector inputs.

Of course, the task needs the reference to the sensor object as

well.

The following is the IrRangeSensorTask class definition.

The IrRangeSensorTask constructor allocates the virtual

peripherals in the same fashion as the prior section so the DAC

and PWM objects are stopped. They will be restarted as needed.

The dac, pwm and detectorPin variables will contain the currently

active DAC, PWM, and detector pin values since these are

maintained while the task checks the range for one side or the

other. These variables are used by the changeVoltage, startPulse

Chapter #7: Object Detection Using Infrared

and checkRange methods. If the object variables were not used

then these methods would need a corresponding set of parameters.

Skip to the execute method. This has a structure similar to the

PhotoresistorSensorTask in the last chapter. The initialState

stops the task which will be restarted by the IrRangeSensor the

checkSensors method. The startChecking state will be entered when

the checkSensors method restarts the task. This state calls the

startPulse method that clears the range and iteration counters,

sets the dac, pwm and detectorPin variables, starts the PWM and

DAC objects, sets the DAC voltage and will cause the task to

sleep until things have stabilized. When this method returns the

virtual peripherals are configured to send modulated IR light via

the IR LED.

The checkLeftPin state will be entered when the task is done

sleeping. The task remains in the checkLeftPin state and calls

the checkRange method repeatedly until the IR LED has been

operated in all 16 voltage levels. The checkRange method checks

the IR detector pin and updates the range counter if light is

detected. The iteration variable is incremented. The checkRange

method will return true when all iterations have been performed

and the DAC and PWM have been turned off. This result is used to

determine when the next side is to be checked. The startPulse

method for the right side is called in the execute method at this

point after the range value is saved.

The process is repeated for the right side. Note that the

checkRightPin state uses the checkRange method but the layout is

slightly different to allow the initialState’s stop task method

call to do double duty and stop the task after checkRange returns

false. At this point the sensor’s saveResults method is called

using the saved leftResult and the current range from the right

side.

Testing the IR range sensor object is relatively easy using the

following program.

The test program creates a task that in turns creates an IR

sensor with its task. The IrRangeSensorTest1 execute method

simply polls the sensor and prints the current status. If the

information is being displayed too quickly then an additional

state can be added and the task can sleep before or after the

status is printed.

Chapter #7: Object Detection Using Infrared

Activity #3: Object Detection and Avoidance

An interesting thing about the IR detectors is that their outputs

are just like the whiskers. The main difference is that the

whiskers only indicate contact with an obstacle whereas the IR

range finder determines distance allowing the J-Bot to avoid

obstacles before coming in contact with them.

Converting the Whiskers Program For IR Object Detection/Avoidance

Changing the whisker obstacle avoidance program,

AvoidObstacleTaskWhiskerTest1, to work with the IrRangeSensor is

extremely easy since all the work is already handled by the

AvoidObstacleTask. This object takes a sensor object as a

constructor parameter. It is a matter of filling in the blanks to

make things work.

How the Roaming with Whiskers Adjusted for IR Pairs Program Works

Actually there is not much to this change. The AvoidObstacleTask

starts up with the newly created IR range sensor object. This is

polled to determine when an object has been detected otherwise

the J-Bot continues moving forward. The task already handles all

the movement control.

It is possible to adjust the deadband value. Setting the value to

0 will mean that the J-Bot will only backup if it detects an

object directly in front. That is, both sensors return the same

range. Increasing the value to 2 makes the J-Bot a little less

sensitive so head on detection is more forgiving.

Activity #4: The Drop-off Detector

The IR detector and LEDs were aimed parallel to the floor. This

allows the J-Bot to detect objects directly in front and slightly

to the sides. Aiming these down towards the floor allows the J-

Bot to determine when there is a drop-off such as the edge of a

table.

There are a number of approaches that can be used to replicate

the operation of the AvoidObstacleTask in avoiding obstacles to

avoiding drop-offs. One is to come up with a new class like

AvoidObstacleTask that works in a slightly different way. It

moves forward while an obstacle is detected in front.

Another method is to come up with a new sensor object that

indicates a drop off as an obstacle. We take this approach

because changing the AvoidObstacleTask would be a little more

Chapter #7: Object Detection Using Infrared

difficult. Also, creating the new sensor object is simply a

matter of extending the IrRangeSensor object.

Combine this object with the usual AvoidObstacleTask object as in

the following program and everything works.

The AvoidObstacleTask object uses the new IrRangeDropOffSensor

object. The sensor indicates it has detected an obstacle when the

IrRangeSensor detects nothing. This will occur when a drop-off is

located.

Your Turn

� The approach presented does not detect minor vertical

differences that would occur if the J-Bot is running on a

table that has a lower ledge around its perimeter. How could

this be handled? Hint: Write a new class to replace the

AvoidObstacleTask class that checks for changes in distance.

� Using the new class, check for both drop-offs and obstacles.

Hint: drop offs will occur when the change in distance is

positive. Obstacles can be detected when the change is

negative.

Chapter #7: Object Detection Using Infrared

This chapter covered a unique

technique for infrared object

detection. By shining infrared

light into the J-Bot’s path and

looking for its reflection, object

detection can be accomplished.

Infrared LED circuits are used to send a 38.4 kHz signal by using

a DAC and PWM virtual peripheral objects.

Building on the BaseSensor class, the IrRangeSensor class was

created. This was used in conjunction with the existing

AvoidObstacleTask to allow the J-Bot to navigate around

obstacles.

By tilting the IR LED and detectors toward the floor the J-Bot

can detect drop-offs such as the edge of a table. This was

accomplished by extending the IrRangeSensor in a novel fashion.

Real World Example

Infrared is one of the more popular amenities on electronic

products. TV remotes, palmtop computers, and fancy calculators

all use infrared for communication. A variety of communication

schemes exist for transmitting data. A TV remote control, for

example, sends a high signal by flashing its IR transmitter at

38.5 kHz. A low signal is no IR. The detectors in some TVs,

VCRs, etc. are identical to the receiver used in the J-Bot.

The detection scheme in the automatic door openers common in

convenience and grocery stores relies on the same theory of

operation for object detection used by the J-Bot. Whenever you

trigger one of these door openers, it’s because you walked into

and broke the IR beam being reflected back at the receiver.

Infrared detectors also are mounted on many different conveyer

belts. Factories use them to count products as they fly by, and

grocery stores use them to detect when the groceries have reached

the end of the conveyer belt. In grocery stores, these belts

automatically move the groceries forward so the checker can reach

them. To prevent the conveyer belt from piling groceries on the

scanner, an IR detector is mounted at the end of the conveyer

belt. When the Twix candy bar interrupts the IR beam shining

across the conveyer belt, the IR detector’s output changes. When

this change is detected by a microcontroller, it stops the motor

that runs the conveyer belt.

J-Bot Application

The unique thing about IR detectors is that they allow the J-Bot

to detect objects without actually touching them. In maze

Summary and

Applications

Chapter #7: Object Detection Using Infrared

competitions where you lose points by touching the walls, this is

a real plus.

Questions and

Projects

Questions

1. What does infrared mean? How does infrared differ from

near infrared?

2. What are the two kinds of filters built into the IR

detectors in the J-Bot Kit? What does each do?

3. Describe what each of the two IR detector outputs mean.

4. Why is a DAC and a PWM virtual peripheral used to build an

infrared range finder?

Exercises

1. Modify IrRangeSensor so that the right IR pair is checked

before the left pair.

2. Modify the AvoidObstacleTask so that it makes the J-Bot

follow objects instead of avoiding them. Describe the

problems you encounter, if any.

Projects

1. The IR range finder sensor object is not calibrated in

terms of inches.

� Create a program that translates the 0-15 values from the

infrared detection system so it returns results in terms

of inches.

� Modify the obstacleDistance method so it returns values

in inches.

2. One of the shortcomings of IR object detection is that the

J-Bot’s IR detectors do not detect black. That’s because

black absorbs IR instead of reflecting it. The J-Bot tends

to run into black objects when roaming with IR because it

doesn’t see them. Add whiskers to your breadboard and

create a sensor class that extends BaseSensor and uses an

Chapter #7: Object Detection Using Infrared

IrRangeSensor object and a WhiskerSensor object. Hint: the

new sensor class object methods will check the whisker

sensor first and then the IrRangeSensor.

!
Remember: Wrap the portions of the whiskers with

electrical tape that could come into contact with

circuits other than the whisker contact posts.

