Chapter #5: Tactile Navigation With Whiskers

Chapter #5: Tactile Navigation

T il . .
aCF' e, The Whiskers kit 1is so named because
Navigation the kit’s bumper switches look like
with Whiskers whiskers, though some argue they
look more 1like antennae. At any

rate, whiskers give the J-Bot the

ability to sense the world around it

with tactile inputs. The J-Bot can

use these whiskers to navigate only
by touch. Although the activities in this chapter focus on using
just the whiskers, they can also be used with other sensors to
increase the J-Bot’s functionality.

Activity #1: Building and Testing the Whiskers

Parts

(2) 10 kQ resistors
(2) 3-pin headers
(2) 3/8” 4/40 male/female
standoffs _ T
(2) W” 4/40 machine screws e
(2) J-Bot bumper wires

(2) Nylon washers size #4

Figure 5.1 Whiskers parts

Build It!

Your #1 point Phillips screwdriver and quarter—-inch combination
wrench will come 1in handy here. Before getting started on
whisker construction, take a close look at Figure 5.2. Use these
pictures as a guide while constructing the mechanical part of the
Whiskers kit. Figure 5.3 shows the whiskers wiring diagram.
Follow it for making the necessary electrical connections.

()

Figure 5.2: Pictures of J-Bot with Whiskers

Chapter #5: Tactile Navigation With Whiskers

Q Remove the two front
screws that hold vyour
Board of Education to
the front standoffs.

O Screw in the male/female
standoffs included in
the Whiskers kit in
place of the screws that
were just removed.

(©) 2001

www.stampsinclass.com
(916) 624-8333

Figure 5.3: Whiskers wiring diagram.

Hold the male/female standoff by the servo port while
turning the standoff between the JSDB and J-Bot
chassis to tighten it. The standoff between the JSDB

TIP and chassis won’t turn until you loosen the screw that
holds it to the chassis. Make sure to retighten it
when you’re done.

O Place a nylon washer on top of each standoff.

O Thread each screw removed in the first step through the open

loop of a whisker.

O Screw each screw into a standoff sandwiching the loop of the
whisker between the screw head and the nylon washer. Make
sure the whiskers are oriented as shown in Figure 3.2 and 3.3.

vad vad
Whisker Inputs

_ _ _ §10k9 §10k9
Figure 5.4 is a schematic

P6 &

representation of the circuit
you’ve Jjust built. FEach whisker
is both the mechanical extension
and the ground electrical p2p

P4 @

o o
connection of a normally open, d/ d/
Right

single-pole, single-throw switch. f
Piezo e Whisker

The Javelin can be programmed to
detect when a whisker is pressed.

I/0 pins connected to each switch = = =
Vss Vss Vss

Figure 5.4: Whiskers Schematic.

Chapter #5: Tactile Navigation With Whiskers

circuit monitor the voltage at the 10 kQ pull-up resistor. When
a given whisker 1s not pressed, the voltage at the I/0 pin
connected to that whisker is 5 V (logic 1). When a whisker 1is

pressed, the I/O line is shorted to ground, so the I/O line sees
0 V (logic 0).

Testing the Whiskers

Testing each whisker can be done with the Message window. This
time, instead of displaying a printed message, the Message window
interface is used to display the input seen by the I/0O pins
connected to the whiskers.

Each Javelin I/0 pin can be controlled individually using the CPU
class object. There are a number of class (static) methods that
support reading and writing data to one or more pins. These
methods include the following:

boolean readPin (int portPin)
void writePin (int portPin, boolean value)

byte readPort (int port)
void writePort (int port, byte value)

void setInput (int portPin)
void setOutput (int portPin)

The value of portPin must be one of the defined constants from
CPU.pin0 to CPU.pinlb5. Using a value of 0 to 15 WILL NOT work.
The port values are CPU.PORTA and CPU.PORTB. These ports map to
the first and last 8 bit pins. The direction of individual pins
can be set using setInput and setOutput methods as in
CPU.setInput (CPU.pin0O). The direction is changed if necessary
when using readPin and writePin. The readPin method will be used
in this chapter to access the whisker input pins and the writePin
method to drive status LEDs.

The whisker test program uses pins 4 and 6 for input.

import stamp.core.*;

/**

* Whisker switch test

* <p>

* Shows whisker switch status
*

* @version 1.0 9/10/02

* @Qauthor Parallax, Inc.

*/

public class whiskerl {
public static void main() {
while (true) {
System.out.print ("pP6=") ;

Chapter #5: Tactile Navigation With Whiskers

System.out.print (CPU.readPin (CPU.pin6) 2 1 : 0) ;
System.out.print (" P4=")

System.out.println (CPU.readPin (CPU.pind4) 2 1 : 0) ;
CPU.delay (5000) ;

The Whiskerl class is designed to test the whiskers to make sure
they are functioning properly. It checks and displays the state
of the Javelin I/0 pins connected to the whiskers. All I/O pins

default to input every time a JAVA program starts. This means
that the I/O pins connected to the whiskers will function as
inputs automatically. As an input, an I/0 pin connected to a

whisker will cause its bit in the ins register to display 1 if
the voltage is 5 V (whisker not pressed) and 0 if the voltage is
0 V (whisker pressed). The Message window can be used to display
these values.

O Enter and run the Whiskerl program
O This program makes use of the Message window, so leave the

serial cable connected to the BOE while Whiskerl.java 1is
running.

Chapter #5: Tactile Navigation With Whiskers

O Note the wvalues displayed in the Message window; it should
display that both P6 and P4 are equal to 1.

O Check Figure 5.3 so you know which whisker 1is the “left
whisker” and which whisker is the “right whisker”.

O Press the right whisker so that it touches the three-pin
header on the right, and note the values displayed in the
Message window again. It should now read: P6 =1 P4 = 0.

O Press the left whisker into the left three-pin header, and
note the value displayed in the Message window again. This
time it should read: P6 = 0 P4 = 1.

a Press both whiskers against both three-pin headers. Now it
should read P6 = 0 P4 = 0.

If the whiskers passed all these tests, you’re ready to move on;
otherwise, check your program and circuit for errors.

Chapter #5: Tactile Navigation With Whiskers

Your Turn

Assume that you may have to test the whiskers at some later time
away from a computer. Since the Message window won’t be
available, what can you do? One solution would be to program the
Javelin so that it sends an output signal that corresponds to the
input signal it’s receiving. One way of doing this would be with
a pair of LED circuits and a program that turns the LEDs on and
off based on the whisker inputs. Figure 5.5 shows the parts of
an LED circuit along with their schematic symbols.

Vdd Vdd
10 kQ 10 kQ
P6 G
Extra Parts P4 G
(2) Red LEDs
(2) 470 Q resistors P2 D o o
(/ Right (/ Left
Piezo @ Whisker | Whisker
V_ss Vss Vss
Figure 5.5 Extra parts for testing the
whiskers.

LED stands for light emitting diode. The terminal
labeled 1 in figure 5.6 is the LED’s cathode, and

FYI the terminal labeled 2 is the LED’s anode. You can
usually figure out which of the LED’s two wire leads
is connected to the cathode because it’s shorter.

Just above where the wire leads come out of LED’s
plastic case, the outer rim looks round, but if you
look carefully, there’s a small area that'’s been
milled flat. The lead that comes out of the plastic

TIP case closest to the milled flat spot is the cathode.
If the LED’s leads have been cut to the same length,
look for the flat spot to figure out which lead
connects to the LED’s cathode.

O Construct the circuit shown in Figure 5.6.

Chapter #5: Tactile Navigation With Whiskers

x \2 gga
L
@ = Red
oo Black
X5 Rev Left Whisker
Vdd Vdd
P15
P14
hFD EFD pig
N N P12
P11
P10 ‘
470 Q 470 Q P9
P8 ‘
P7 ‘
P6
P10 o ‘H
P4
©
P9 D ks
P1 M EOoOoo
PO
X2
(Board of Education)”
www.stampsinclass.com
(916) 624-8333
Figure 5.6 (a): add this (b) so the Whiskers circuit looks like this when

LED circuit, you’re done.

O Add these commands to the beginning of Program Listing 5.1:

CPU.setOutput (CPU.pin9) ;
CPU.setOutput (CPU.pinl0) ;

These commands change the direction of P9 and P10 from input to
output. Now instead of listening for signals, they will be ready
to send signals.

O Add these two commands immediately after the debug command in
Program Listing 5.1:

CPU.writePin (CPU.pin9, CPU.readPin (CPU.pin4d)) ;
CPU.writePin (CPU.pinl0, CPU.readPin (CPU.pin6)) ;

These statements set the output values of P9 and P10 equal to the
input values at CPU.pin4 and CPU.pin6é respectively. If cpU.pind = 1,
CPU.pin9 1is set to 1. This means that when CPU.pin4 sees 5 V,
CPU.writePin sends 5 V. If cpu.pind4 is 0, which means it detects 0
V, then CPU.writePin will also be 0, sending 0 V.

O Run your modified version of Whiskerl, and test the whiskers
using the LEDs to indicate that the Javelin has detected a

whisker being pressed.

Activity #2: Single Tasking Whiskers

Right Whisker

2

Chapter #5: Tactile Navigation With Whiskers

In Activity #1, the Javelin was programmed to detect whether or
not a given whisker was pressed. In this activity, the Javelin
will be programmed to use this information to guide the J-Bot.
When the J-Bot 1s rolling along and a whisker is pressed, it
means the J-Bot bumped into something. A navigation program
needs to take this input, decide what it means, and call a
navigational routine to back up from the obstacle and go in a
different direction.

Programming the J-Bot to Navigate Based on Whisker Inputs

Whisker2 class is called a roaming program. The program makes
the J-Bot go forward until it encounters an obstacle. In this
case, the J-Bot knows when it encounters an obstacle by bumping
into it with one or Dboth of its whiskers. As soon as the
obstacle is detected by the whiskers, navigational routines and
subroutines developed in Chapter 3 are used to make the J-Bot
back up and turn. Then, the J-Bot resumes forward motion until
it bumps into another obstacle.

When a whisker is pressed, due to an obstacle, the normally open
switch closes. I/0 pins P6 and P4 are set to input and used to
monitor the states of the whiskers. The two whiskers may be in
one of four states:

1) Both high - no objects detected

2) Left low, right high - object detected on the left

3) Right low, left high - object detected on the right

4) Both low - indicates a head-on collision with a wide
bject such as a wall

Whisker2.java shows an example of how the states of the whiskers
can be used to select the appropriate J-Bot navigation routine.
For example, state 1 means the J-Bot can continue forward. State
2 means that the J-Bot should back up, then turn right. State 3
means the J-Bot should back up and turn left, and state 4 would
be a good time to back up and make a U-turn.

O Run Whisker2, and see how the J-Bot behaves when it bumps into
a wall.

import stamp.core.*;
import JBot.*;

/**

* Whisker switch test

* <p>

* Shows whisker switch status
*

*

@version 1.0 9/10/02
* @author Parallax, Inc.

*/

public class whisker2 {

2

Chapter #5:

Tactile Navigation With Whiskers

public static void main()
JBotInterface jbot =

while (true) {
switch ((
#
case 0:
jbot.stop () ;
jbot.move (-3);
jbot.pivot (-2) ;
break ;

case 1: // P4 low,
jbot.stop () ;
jbot .move (-2
jbot.pivot (2
break ;

)i
)

’

case 2: // P6 low,
jbot.stop () ;
jbot.move (-2);
jbot.pivot (-2) ;
break ;

case 3:
jbot .move (
break ;

new RampingJdBot (

CPU.readPin
CPU.readPin
// both low,

backup and turn

backup and turn

// neither low,
jbot.continuousForward) ;

{
0)

new FixedMovementJBot

(CPU.pin6) ? 1
(CPU.pind) ? 2
backup and turn right

0)
0)) {

left

right

go forward

The mechanical design of the whiskers is by no means foolproof.

Table 5.1 1lists
suggested solutions.

common problems

you may encounter with some

Table 5.1: Whisker Troubleshooting

Problem

Try This

J-Bot backs up too
far/not far enough.

Adjust the for. . next arguments in the
program listing. They may be increased or
decreased to increase or decrease how far
the J-Bot rotates when it turns/backs up.

J-Bot drives up
side of wall
because whiskers
didn’t catch hold
of an object.

Increase the resistance of a whisker against
the surface of an object by bending whiskers
in a different angle. Alternatively, try
dipping the whiskers in a coating material
such as rubber cement.

Whiskers do not
detect dead-center
object.

Bend whiskers inward.

Switches don’t
appear to work
properly.

Repeat Activity #1.

Chapter #5: Tactile Navigation With Whiskers

Chapter #5: Tactile Navigation With Whiskers

How Roaming with Whiskers Works

The switch statement in the main static method checks the whiskers
and generates a number from 0 to 3. If both whiskers are pressed
the wvalue is 0 and the J-Bot 1is stopped, backed away from the
obstacle and turned to the right. It could just as easily turn to
the left. If just the left whisker is pressed then the value used
in the switch statement is 1. The action 1s very similar.
Likewise, if just the right whisker is pressed then the value is
2. Finally, a value of 3 indicates neither switch is closed and
the J-Bot moves forward.

Note the different types of method calls to the jbot object. The
forward movement uses no parameters because it is not moving for
a fixed distance. The other movement methods are for a fixed
number of inches and the jbot object handles starting and ending
the movement . Once the movement is done the sensors are checked
again. The J-Bot will move forward if there is nothing in the
way.

Your Turn

The jbot movement method distance parameters can change where the
J-Bot moves in response to an obstacle.

O Experiment with the method argument values 1in navigation
routines in Whisker2.java.

Activity #3: Tactile Navigation — Whiskers and Multitasking

The single tasking roaming program 1is short and easy to
understand. The FixedMovementdJBot handles most of the work.
Unfortunately, 1f anything else 1is going on then the program
needs to be modified to handle more than one task. The
alternative is to use the multitasking support. We start with a
WhiskerSensor that extends BasicSensor presented in Chapter 2. We
then use the sensor with a multitasking roaming program. We can
use a different type of sensor by simply defining a new
BasicSensor class. The following is the WhiskerSensor class file.

package JBot;

import stamp.util.os.* ;
import stamp.core.* ;

/**

* Basic whisker sensor class

* <p>

* Provides obstacle detection using whisker sensors
* Returns obstacle directions of 45, 90 and 135.

*

* @version 1.0 8/23/02

*

Qauthor Parallax Inc.

Chapter #5: Tactile Navigation With Whiskers

*/

public class WhiskerSensor extends BaseSensor ({

/**

* Indicate whether an obstacle has been detected.

* Normally used when polling versus using an event.
*

* @returns obstacle detected

¥/
public boolean obstacleDetected () {
return CPU.readPin (CPU.pin6) | CPU.readPin (CPU.pin4d) ;
}
/**
* Indicate initial obstacle position.
* For simple detection systems the detection of an object
* on the right and left will return front.
*
* @returns obstacle's relative direction (left, right, etc.)
¥/
public int obstacleDirection () {
switch ((CPU.readPin (CPU.pin6) ? 1 0)
+ (CPU.readPin (CPU.pind) 2 2 0)) {
case 0: // both low, backup and turn right
return front ;
case 1: // P4 low, backup and turn left
return right ;
case 2: // P6 low, backup and turn right
return left ;
default:
case 3: // neither low
return none ;
}
}
/**
* Get the distance to an obstacle in the specified direction.
* A value of <code>none</code> indicates no object detected.
*
* @param direction to get range for
*
* @returns distance to an obstacle for the specified direction
¥/
public int obstacleDistance (int direction) {

return 0 ; // distance is always 0 regardless of direction

—

Set minimum event notification distance.
Notification will not occur until an obstacle is
outside of this distance. The minimum value is 0.

@param minimumDistance minimum number of inches to detect an obstacle
/

public void setMinimumEventDistance () {

/* Default case is to ignore the minimum distance

* For example, contact oriented sensors can only detect objects

* when they are in contact with them.

*/

L I

Chapter #5: Tactile Navigation With Whiskers

// Protected classes for use by this class or subclasses

/**
* Set notification event
*

* @param event Event object to notify when a change occurs
¥/

public void setEvent (Event event) {
this.event = event ;

}
/**

* Cause event when obstacle status has changed.
* May be called by subclass methods.
¥/
protected void notifyEvent () {
if (event != null)
event.notify () ;

The 1list for the sensor is longer than the whisker2.java program
but this is primarily due to the comments. The obstacle detection
is isolated in this class while the movement will be handled by
the general multitasking roaming program presented next.

Reprogramming for Roaming with Whiskers

The AvoidObstacleTaskWhiskerTestl.java program operates 1in a

similar fashion to whisker2.java. However, 1t processes the
whisker inputs from the WhiskerSensor object and uses the
AvoidObstacleTask to handle the movement. The

AvoidObstacleTaskWhiskerTestl.java program is shown below.

import stamp.core.*;
import stamp.util.os.* ;
import JBot.* ;

*

/
Test AvoidObjstacleTask class

<p>

Tun the J-Bot so it avoids obstacles.

@version 1.0 7/23/02
Qauthor Parallax Inc.

% % X X % % X

~

public class AvoidObstacleTaskWhiskerTestl ({
public static void main () {
new AvoidObstacleTask
(new WhiskerSensor ()
, new RampingJBot (new MultitaskingdBot ())) ;

Task.TaskManager () ;
System.out.println ("All done") ;

Chapter #5: Tactile Navigation With Whiskers

How Roaming with Whiskers Again Works

The AvoidObstacleTaskWhiskerTestl program is very simple because
all the work 1is done by the AvoidObstacleTask object and the
WhiskerSensor object. Additional tasks can Dbe added without
having a major affect on the movement and obstacle avoidance
tasks. Note that the control event for the RampingJBot is a
MultitaskingJBot task versus the single tasking
FixedMovementJbot.

Your Turn
O Set the J-Bot on something so that when the program runs, the
wheels don’t touch the ground. This is so you can leave the

J-Bot plugged into the serial cable while the program runs.

O Run the program and use the debugger window as you test the
whiskers.

O Modify the AvoidObstacleTask so it operates 1like the
whisker?2.java program.

Activity #4: Tactile Memory — Whiskers and EEPROM

Lifting the wheels off the ground is fine for testing the basic
interface but it 1is dimpractical to keep the J-Bot connected to
the PC when it 1s roaming. The alternative 1is to record the
obstacle information in the Javelin’s EEPROM memory. This is the
same memory used to store the Java code but rarely does the
program use all the memory. In fact, since the program is
actually copied from the EEPROM to RAM for execution then there
must be some unused EEPROM space free because RAM is needed for
creating objects when the program runs.

The obstacle detection is handled by the AvoidObstacleTask. This
class is extended and called the AvoidObstacleRecordingTask show
next.

package JBot;

import stamp.util.os.* ;
import stamp.core.* ;

/ *

Simple obstacle avoidance task with EEPROM recording

<p>

This tries to stay away from obstacles using a sensor object.
The J-Bot will be moved in fixed increments.

Obstacle information is stored in EEPROM

L R

Chapter #5: Tactile Navigation With Whiskers

*

* @version 1.0 8/23/02
* @author Parallax Inc.
¥/
public class AvoidObstacleRecordingTask extends AvoidObstacleTask {
int memoryIndex ;

int memorySize ;

public AvoidObstacleRecordingTask (BaseSensor sensor, JBotInterface jbot) {

super (sensor, jbot) ;
memoryIndex = 1 ;
memorySize = (EEPROM.size () - 1) / 2 ;

// Only record the first few obstacles. Must be under 255
if (memorySize > 10) {
memorySize = 10 ;

}

// Store number of recordings that will be saved
EEPROM.write (0, (byte) memorySize) ;

protected void execute () {
final int turnAround = 1 ;

switch (state) {
case initialState:
if (sensor.obstacleDetected ()) {
int direction = sensor.obstacleDirection () ;

// Exit if EEPROM area filled

if (memorySize == 0) {
stop () ;
break ;

}

// Record obstacle details in EEPROM

EEPROM.write (memoryIndex, (byte)direction) ;

EEPROM.write (memoryIndex + 1, (byte)sensor.obstacleDistance
(direction)) ;

memoryIndex += 2 ;

—-— memorySize ;

if (sensor.obstacleDistance (direction) < 2) {
// Too close, back up 2 inches, then turn around

jbot .move (-2) ;
jbot.wait (turnAround) ;
} else {

// Enough room to pivot away from object

if (direction < 75) {
// Something to the left
jbot.pivot (-2) ;
} else {
// Something in front or to the right
jbot.pivot (2) ;
}

jbot.wait (turnAround) ;

Chapter #5: Tactile Navigation With Whiskers

} else {
// Nothing detected. Move forward 1 inch

jbot.move (1) ;
jbot.wait (initialState) ;
}

break;

case turnAround:
// J-Bot has backed up. Time to pivot 180 degrees

jbot.pivot (4) ;
jbot.wait (initialState) ;
break;

default: // default catches bad states
stop () ;
break;

}

Three things are added to this class. First, are some new object
variables. Second, the constructor initializes these variables
using the EEPROM class methods. The memorySize variable is wused
to store the number of entries that will be recorded. The maximum
value 1is 255 because EEPROM data is store in bytes with a value
between 0 and 255. It 1is possible to store a 1l6-bit integer in
two bytes but we leave this as an exercise. The memory Index
starts at an offset of 1 so the number of entries can be stored
in the first byte at offset 0. The obstacle information will be
stored after this byte.

Finally, data is stored in the execute method’s initialState.
This 1s where obstacles are detected using a sensor. At this
point the sensor is the WhiskerSensor. The J-Bot will stop after
the set number of obstacle entries are stored. We start with a
value of 10 in the constructor so the J-Bot will not run too long
before it stops.

Once the J-Bot stops it can be picked up and connected to the PC.
The J-Bot can be turned off if necessary because data stored in
the EEPROM is maintained even when power is off. The next step is
to download the reporting program that will read the EEPROM
contents and display the information in the Message window. The
data saved in the EEPROM will not Dbe overwritten by the new
program because it 1is loaded at the other end of memory. The
following is the DumpObstacle program that displays the
information from the EEPROM.

import stamp.core.*;

/**
* Dumps data stored in EEPROM by AvoidObstacleRecordingTask.
* <p>

Chapter #5: Tactile Navigation With Whiskers

Reads the data from the EEPROM memory and displays it
in the Message window.

@version 1.0 9-20-02
Qauthor Parallax, Inc.

/

* % % X X %

public class DumpObstacle {
public static void main() {

int memoryIndex = 1 ;
for (int memorySize = (int) EEPROM.read (0)
; memorySize > 0
; —— memorySize) {
System.out.print memoryIndex) ;
System.out.print " Direction: ") ;

System.out.print " Distance: ") ;
System.out.println ((int) EEPROM.read (memoryIndex + 1)) ;
memoryIndex += 2 ;

(
(
System.out.print ((int) EEPROM.read (memoryIndex)) ;
(
(

This program is very simple. It assumes that the first EEPROM
byte is the number of 2 byte entries that start at offset 1. The
offset and the two bytes are printed on each line. The two values
are prefixed Dby Direction or Distance so you don’t have to
remember which number is which. The information may scroll by
very quickly but the Message window will retain the information.
Scroll the window up to see information printed when the program
starts.

Your Turn

The pair of classes, AvoidObstacleRecordingTask and DumpObstacle,
must use the same offsets and entries if the proper information
is to be observed later. It may also be useful to add movement
and pivot steps to this information. Remember to make the same
kind of changes to both classes.

Chapter #5: Tactile Navigation With Whiskers

Summary In this chapter, instead of navigating
from a pre-programmed list, the J-Bot was
. . programmed to navigate based on sensory
Applicati inputs. In this case, the sensory inputs
ons were whiskers. The Javelin was

programmed to test these whisker sensors
and display the test results using two different media, the
Message window and LEDs. The obstacle information wusing the
multitasking version of the program was also modified to store
information in the EEPROM.

and

When properly wired, these switches can show one voltage (5 V) at
the switch’s contact point when 1it’s open, and a different
voltage (0 V) when it’s closed. Voltages of 5 and 0 V are
transistor-transistor logic (TTL) levels, and the Javelin’s input
registers interpret these levels as “1” and “0,"” respectively.

JAVA programs were developed to make the Javelin check the
whiskers between each servo pulse. Based on the state of the
whiskers, the programs’ main: routines either made the J-Bot
continue forward, or called navigational routines developed in
the previous chapter to guide the J-Bot away from obstacles.

Real World Example

Automated sensors are all around you. When you go to a grocery
or convenience store, sensors are often responsible for opening
the door for you. Microcontrollers scan keypads in a fashion
similar to the way the Javelin scans the whiskers to detect
whether or not they have been pressed. The information 1is
processed and results as an output. In the case of a door
opener, the result is a servo- or motor-controlled door being
opened.

Robotic machinery of many shapes and sizes also relies on a
variety of tactile switches wired similarly to the whiskers.
Robotic arms sometimes use these switches to detect when they’ve
encountered the object they are programmed to pick up and place

elsewhere. Factories use these switches to count objects on a
production 1line, and also for aligning objects for industrial
processes. In all these instances, the switches provide inputs
that dictate some other form of programmed output. Be it a
calculator, robot or a production line, the switch input is
electronically monitored. Based on the state of the switches,

the calculator display updates, the robot arm grabs the object,
or the factory production line reacts with motors or servos to
guide the product in a pre-programmed fashion.

J—-Bot Application

Chapter #5: Tactile Navigation With Whiskers

This chapter introduced input-based J-Bot navigation using real
sensors. The next three chapters will focus on using different
types of sensors to give the J-Bot vision. Both vision and touch
open up a lots of opportunities for the J-Bot to navigate in
increasingly complex environments.

Chapter #5: Tactile Navigation With Whiskers

Questions and
Projects

Questions

1. What kind of electrical connection is a whisker?

2. If an I/0 pin is set to output, what register does this
effect?

3. When a whisker is pressed, what voltage occurs at the I/O
pin monitoring it? What binary wvalue will occur in the
input register? If I/0 pin P8 is used to monitor the input
pin, what value does in8 have when a whisker is pressed, and
what value does it have when a whisker is not pressed?

4. What direction does an I/O pin have to be set to make an
LED circuit function?

5. Which whisker is CPU.pin6 connected to? How about CPU.pin4d?

Exercises

1. What Thappens if the CPU.delay <call 1is removed from
whiskerl. java?

2. Implement whisker2.java using if statements instead of the
switch statement.

3. The AvoidObstacleRecordingTask saves an obstacles direction
and distance in the EEPROM. Add the movements used in
response to an obstacle. Remember to change the
DumpObstacle file as well.

Projects

1. Modify whicker2.java so that the J-Bot moves backward
slowly while both whiskers are pressed. Otherwise, it
stays still. Modify the program further so that the J-Bot
rotates counterclockwise when the left whisker is pressed
and clockwise then the right whisker is pressed. When the
program 1is finished, fine tune the speed response so that
it appears that you are pushing the J-Bot around by its
whiskers.

2. Challenge: whisker2.java so that the J-Bot travels in a

circular path. Modify it so that if vyou tap the inside

Chapter #5: Tactile Navigation With Whiskers

whisker, the circular path will become 5 cm. narrower in
diameter. Also make it so that if you tap the whisker on
the outside of the J-Bot’s circular path, the diameter will
increase by 5 cm.

When you’ve got whisker control over the diameter of the J-
Bot’s circle, program the J-Bot to remember this diameter,

even after the power 1is reset. The write command can be
used to save data to EEPROM. EEPROM data i1s called non-
volatile. Whereas the Javelin’s RAM is erased with each

reset (volatile), the EEPROM can save the data for use the
next time the Javelin gets power (non-volatile).

