Chapter #9: A Mazing Things

A Mazing Things

Chapter #9: A Mobile robots can do many things
but one of the most basic is to
move between two points while
avoiding obstacles. The programs
used with the J-Bot thus far have
been relatively simple. They use the various sensors to avoid an
obstacle but they will not traverse a complex set of obstacles
such as walls that make up a maze.

Mazing Things

In this chapter we examine some basic maze traversal algorithms.
The J-Bot will use the infrared detectors configured and tested
in prior chapters to help it traverse a maze without bumping into
a wall. For our purposes, a wall will be considered a boundary
that the J-Bot should not cross. We do this because the J-Bot can
be setup to detected either a wvertical wall in front of it or a
virtual wall created by some black tape like that used for the
line follower experiment. In the latter case, the J-Bot’s
infrared sensors will be aimed at the floor. The floor should be
a color that reflects the infrared light. Typically a white floor
will be suitable. The J-Bot can detect the difference between the
white floor and the black tape designed to be the wall.

Two sensor classes are already defined to handle the two types of
maze walls. The IrRangeSensor is used to detected walls while the
IrRangeDropOffSensor is used to detect virtual walls implemented
using black tape on a white floor. Either sensor can be used with
the applications presented in this chapter. The one you use will
depend upon the type of maze that is constructed for the J-Bot.

Maze exploration can get very elaborate. It is possible to have
start and stop points but this requires additional recognition by
the J-Bot. The J-Bot can easily handle additional sensors to
detect when it exits a maze. For example, an IR sensor could be
aimed up to detect when the J-Bot passes through an arch. In this
chapter we forego the stop point detection and simply let the J-
Bot run forever. It a maze contest is being run then the J-Bot
can simply be picked up once it exits the maze or crosses the
stop point.

There are a number of different ways to navigate through a maze.
Three are presented in this chapter including:

Random Walk
Right Hand Rule
Basic Backtracking

The Random Walk is similar to the normal obstacle avoidance
programs used earlier in this book with a minor change so that
the J-Bot will turn in a random direction if an obstacle is found
in front of it. In theory, the J-Bot should will eventually find



Chapter #9: A Mazing Things

its way out of a maze but it may take a very long time since it
will cover the same area many times.

The Right Hand Rule approach uses a simple mechanism for finding
a way out of a maze. It is called the right hand rule because the
a person could find their way out of a maze by walking so their
right hand could touch the wall. This method always works if the
maze does not have any cycles. A cycle occurs when there is a
wall does not come in contact with a wall that forms the maze
exterior. A maze without a cycle is often called a simple maze. A
maze with one or more cycles is called a complex maze. The right
hand rule will get the J-Bot out of any simple maze. It will get
the J-Bot out of a complex maze if it starts next to the exterior
wall. If the J-Bot starts next to a wall that is not the exterior
wall it will follow the wall forever. The Right Hand Rule is
simple to implement and it will normally get the J-Bot out of a
simple maze faster than the random walk.

The Random Walk and the Right Hand Rule approach do not keep
track of where the J-Bot has been. The J-Bot does not know if it
winds up in the same spot more than once because the algorithms
do not incorporate any form of memory. The J-Bot simply responds
to immediate feedback.

The Basic Backtracking approach brings memory into play. It keeps
track of where the J-Bot has been and where it should look next
if a particular path does not lead out of the maze. The Random
Walk and Right Hand Rule do not require precise movements but the
Basic Backtracking approach does because the J-Bot will need to
backup to a point where it can continue to explore 1if a
particular path results in a dead end.

Activity #1: Random Walk

The Random Walk approach utilizes a task to control movement and
a sensor object to detect obstacles. As mentioned earlier, the
IrRangeSensor and IrRangeDropOffSensor classes can be used. The
sample program in this activity utilizes the IrRangeSensor.

The theory behind the Random Walk maze exploration approach is
that random movements when an obstacle is encountered

The RandomWalkTask class file Dbelow 1s very similar to the
AvoidObstacleTask class used earlier in the book.

There are three major differences between the RandomWalkTask
class and the AvoidObstacleTask class definitions. First, the
RandomWalkTask does not check the distance to an obstacle. This



Chapter #9: A Mazing Things

is done so either type of the aforementioned sensors can be used.
Remember, the floor 1looking sensors do not provide a good
distance result so an obstacle distance will always be reported
as zero.

The second difference is that most movements are chosen randomly
when an obstacle 1s encountered. The exception 1s when an
obstacle is detected only to the left or right. This is where the
randomness comes 1into play. The flipCoin method uses a Random
object to generate a result. The Random.next method returns a
number between 0 and MAX_RAND. If the object generates a truly
random sequence of numbers then half will be above MAX_RAND/2 and
half will be below this wvalue. This is essentially the same as
flipping a coin to see if it lands showing heads or tails.

The third difference is minor. In the initialState in the execute
method, there is only one call to the nextState method. This is
because the extra calls in the AvoidObstacleTask’s execute method
were not really needed since the state remains the same unless
changed. Changing it to the same state has no affect on the
operation of the method.

The test program, RandomWalkTestl, is relatively simple since all
the work is done by the sensor object and RandomWalkTask.

The TaskManager method should not terminate since the
RandomWalkTask task will never terminate. If the RandomWalkTask
class 1s altered so it can check when the J-Bot exits the maze
then the TaskManager method to return.

The program begins running as soon as power 1is applied. Watch the
J-Bot as it moves through the maze. It should not come in contact
with the walls. If it does, try turning the IR LED and sensor on
each side towards the outside so it will detect obstacles to the
side sooner.

Keep in mind that the J-Bot may collide with a wall when moving
backwards since it has no sensors there. The J-Bot will not have
a problem if the maze provides enough room within a corridor. The
J-Bot will not be able to navigate corridors that are only
slightly larger than its width. In general, obstacles should be
at least one foot apart if the J-Bot 1s to pass between the
obstacles.

Your Turn
O The range sensor has not been optimized. It always checks all

16 distances. Is this necessary for this activity or is it
possible to check for the maximum distance first? Do closer



Chapter #9: A Mazing Things

distances need to Dbe checked 1if a greater distance 1is
detected?

O The distance result from the range sensor is not used. What
would the difference be in the J-Bot’s movement be if the
distance result was checked to allow the J-Bot to get closer
to a wall? If the downward looking IR range sensor were used
instead, how could distance be judged?

Activity #2: Right Hand Rule

A simple maze actually consists of a single line that has been
bent at wvarious points. Getting out the J-Bot of a maze of this
type is then a simple matter of following the line until the J-
Bot exits the maze.

The RightHandRuleTask class defined next handles the movement of
the J-Bot based on feedback from the sensor.

The waitNextState and waitSensorNextState methods are included
because these short sequences of method calls to change the state
variable and suspend the task are used often within the execute
method. Essentially the task runs, starts the sensor, suspends,
is resumed by the sensor when data 1is ready and the execute
method then determines what to do based on the sensor results.
The same process 1s used for movement that is initiated by the
sensor results. In this approach, only one task will actually be
running at any time. In general the execution sequence that 1is
done repeatedly is this task, the sensor task, this task, and
then the J-Bot movement task.

The Task resume method does not change the current
state. The stop method changes the state to stopped.
This is why the resume method must be used in the
wailtNextState method definition.

FYI

The task cycling does lead to a start-stop movement of the J-Bot
because the sensors take a noticeable amount of time to get the
range of an obstacle. It is only a fraction of a second but
enough so that the movement of the J-Bot is not smooth. There are
tradeoffs compared to the approach taken in Activity #1. 1In
Activity #1, the J-Bot moves continuously but its sensor readings
are not as accurate because the J-Bot is moving so its movement
control is not that accurate. In this activity, the movement 1is
very accurate but the movement is not continuous.



Chapter #9: A Mazing Things

The execute method is where the task control is handled. The task
starts in the 1initialState where it starts the sensor using
waitSensorNextState. The execute method will be called again when
the sensor has obtained its results and notified this task so it
will enter the checkForObstacle clause of the switch statement.
The results of the sensor are tested and the J-Bot movement
control is initiated via the jbot object. The next state will be
initialState or doneWallToRight depending wupon the sensor
results. If the next state i1s initialState then the J-Bot will
have moved forward one inch. This distance can be greater
depending upon the distance to an obstacle obtained from the
sensor but this is not checked in this version of the program. If
it were then the J-Bot could be instructed to move forward a
greater distance without colliding with an obstacle.

There are two logical, high level cases that this task can be in.
The first is where the J-Bot does not know where the wall is. The
second is where the J-Bot thinks the wall is to its right. In the
first case, the J-Bot moves forward until a wall is detected. It
then turns so the wall will be to its right that is the second
case. In the second case, the J-Bot moves forward a short
distance, turns right to check if the wall is still there. If it
is, the J-Bot turns left and moves forward trying to move along
the wall. If not, it assumes there is a turn and the J-Bot moves
forward assuming the wall is now to the right. It will know if
this assumption is correct after the initial movement.

The test program is relatively simple since most of the work is
done by the RightHandRuleTask.

The try/catch/finally method was added to this test program
because making changes in the tasks can result in some strange
errors. This allows the system to shut down gracefully. The main
method 1is not much different than in Activity #1. The range
sensor 1s created and passed to the newly created task object
that starts everything running. In theory, the Task.TaskManager
should never terminate because there is no maze exit detection
mechanism.

The J-Bot will require walls that are relatively far apart as in
Activity #1. It should be able to go down a corridor that is at
least one foot wide. In most cases, the wider the better.

The RightHandRuleTask has some deficiencies. It could allow the
J-Bot to get closer to a wall. It only moves one inch forward at
time, and it performs 90 degree turns when a 45 degree turn may
be sufficient. Correcting these deficiencies will make the
program more complicated but the new program will improve the way
the J-Bot operates. In particular, allowing the J-Bot to get



Chapter #9: A Mazing Things

closer to a wall will mean that it can traverse an area where the
walls are closer together.

The range sensor has not been optimized as noted in Activity #1.

Improving the response time for the sensor will minimize the
jerky movements associated with this application.

Activity #3: Basic Backtracking

The prior activities move around a maze but they do not take
advantage of the information to be gained by keeping track of
where the robot has gone. This activity takes a different
approach. Now the JBot maintains a map of the area it has
traveled in and uses that information to determine where it
should explore. The type of mapping and backtracking is just one
way to implement a more intelligent maze exploration program.

The JBot needs to operate on batteries, unattached to the PC.
Still, it is useful to let the JBot show you what it has been up
to. Short of using a wireless link (a good alternative when extra
hardware is added), the JBot can store the map it makes so it can
be printed when the JBot is reattached to the PC. This will look
something like the following captured from the Message window.

Stored map
Y range -1 2
X range -1 2

O

© = @ ©

] 5
O[+]1+ O

R o N
o + +

In the example, there is a 4 x 4 element array. The unexplored
areas are noted by periods (.) and the obstacles are noted by the
letter O. The area traveled by the JBot is indicated by the plus
sign (+) and the starting position is in brackets ([]).

To do this, we need a few things. First is the main exploration
program, MazeMapTaskTestl. This will move the JBot through the
maze and create the map. The map will then be stored in the
JBot’s EEPROM when exploration is complete. The second program,
DumpMazeMapTaskTestl, is loaded after the JBot runs through the
maze. It reads the EEPROM and displays the information shown in
the Message window example just given. The EEPROM area is shared
by the programs and this data but there is more than enough space
for both. Downloading a new program does not overwrite the data
area allowing this approach to work.

The MazeMapTaskTestl program is tested in the following fashion.
The program is downloaded from the PC to the JBot. The power and
PC cables are then disconnected from the JBot. The program is
stored in the EEPROM at this point. The JBot must have 1its



Chapter #9: A Mazing Things

batteries installed. The JBot is then placed in the maze and
battery power 1is applied by connecting the power cable to the
JBot. The JBot then moves through the maze mapping as it goes.
Once it thinks it has explored the entire maze the buzzer will
sound. The map is stored in EEPROM at this point.

The JBot is then reattached to the PC and the
DumpMazeMapTaskTestl program is downloaded and zrun. The map
results are displayed and can be compared to the actual maze. To
repeat this scenario, the MazeMapTaskTestl must be again
downloaded since the JBot will have the DumpMazeMapTaskTestl in
memory at this time.

How It Works

There are a couple of classes that are needed to make things
work. These are covered in more detail later in the activity. The
main task is covered in The Mapping Task section that comes next.
The other classes are found in the Supporting Classes section. If
you are interested 1in the details then check out all the
sections. If vyou want to forego some o0f the details and
concentrate on what makes things move then you can leave the
Supporting Classes section till some later date.

The two main programs, MazeMapTaskTestl and DumpMazeMapTaskTestl,
are covered in this program. They are relatively short since with
utilize existing classes or ones covered 1in this activity. The
MazeMapTaskTestl is modular 1like the prior examples so it 1is
possible to replace the sample objects with almost any compatible
object. For example, the MazeMapTaskTestl uses the IR detector
sensor class, IrRangeSensor. This can be replaced Dby any
compatible sensor like the whisker sensor class covered earlier
in the book. Likewise, the JBot movement support can be replaced
as well. The MazeMapTaskTestl wuse the wheel encoder support
covered in the last chapter to keep a more accurate track of the
JBot’s movements.

The MazeMapTaskTestl makes a couple of assumptions. First, the
sensors range 1is at least two inches. If this 1is not true, as
with the whisker sensors, then a minor adjustment to the mapping
task needs to be made to prevent the JBot from running into an
obstacle. Second, the JBot moves in fixed increments. This makes
control and mapping easier. It is possible to run the JBot so its
movements are continuous but this is a more difficult problem to
tackle. Finally, the program assumes that the areas that the JBot
will be able to explore are within its limitations. For example,
the corridors of the maze should be about 12 inches wide. The
JBot 1s assumed to occupy a 6 x 6 inch area that easily fits
within a 12-inch corridor. It will assume that an opening that is
too narrow for it as an obstacle. This of course depends upon the
sensors employed but it is best if the maze is setup so the JBot
can navigate it easily. This implies that the edge of a narrow



Chapter #9: A Mazing Things

wall should not be exposed since the JBot’s sensors may miss it
or improperly interpret the sensor results. In general, it is
best to make a maze where all exposed walls are at least 12-
inches.

The best way to make a maze for the IR detectors is to use a
bunch of white boxes that are at least 4-inches high, at least 6-
inches wide and 12-inches long. These can be placed next to each
other to create a maze that can be easily reconfigured. They also
move if the JBot accidentally runs into a box.

Now onto MazeMapTaskTestl. It is shown in the following listing:

The main method creates a printableMazeMap and a MapMazeTask. The
latter uses the map along with a JBotInterface that is a new
RampingJBot. The 27 parameter of the constructor specifies the
range value that indicates an obstacle is within 1- to 2-inches
in front of the JBot.

The printableMazeMap constructor takes two parameters. These are
the yv and x map dimensions. In this case there will be a map with
400 elements created. Each element corresponds to a 6-inch square
that the JBot can occupy. This means the map can represent an
area that is 10 feet on a side.

Before you go out and create a giant maze, keep a couple of
things in mind. First, it is a lot of work. Second, the JBot will
not be able to accurately navigate this are as you might think.

Remember, when the JBot moves or rotates, its movement is not
exactly what you may desire. For example, if the JBot turn’s to
the right the actual amount of rotation may be anywhere from 85
or 95 degrees instead of exactly 90 degrees. This may appear to
be a minor difference and may not even be noticeable but this
error can be a problem. This is because cumulative error results
from the combination of multiple movements with a small amount of
error. Let the JBot turn half a dozen times and it can be off by
more than 45 degrees.

For this reason, the size of the test maze should not be too
large. A few feet on a side 1s more than enough for
experimentation. The JBot can navigate through a large maze but
the Jbot’s map may not give the desired results.

<<ed note: it would help to reference Laura Wong’s 2002 ISEF
paper here>>



Chapter #9: A Mazing Things

The MapMazeTask runs with the sensor and JBot tasks when the
Task.TaskManager method 1is called. These tasks move the JBot
around the maze. All tasks stop when the program determines that
the maze has been explored to the best of its ability. The
Task.TaskManager method then returns and the map.save method is
called. This stores the current map in EEPROM. A FREQOUT obiject
is created to sound a one second tone indicating that exploration
is complete and the map has been save. The power can then be
disconnected so the JBot can be reconnected to the PC.

Next the following DumpMazeMapTaskTestl program is loaded.

There are actually more comment lines than anything else. The
class method, load, 1is used to read EEPROM memory and create a
printableMazeMap that 1is identical to the one wused by the
MazeMapTaskTestl program. The print method will display the map’s
contents in the Message window.

A simple way to test these programs while leaving the JBot
connected to the PC is to put the JBot on a small box or object
so the wheels do not touch. Note, detaching the servo cables will
not work because the wheel encoders only work if the wheels
actually move. An obstacle 1is placed in front of the JBot.
Running the MazeMapTaskTestl program should result in a map with
one traveled cell, where the JBot starts, with obstacles all
around it. You can watch the wheels move while the program runs
and you can add System.out.println method calls to print status
information. Of course, things get more interesting when the JBot
is running unencumbered.

The next section takes a look at the mapping task that actually
handles most of the work.

The Mapping Task

The MapMazeTask is the main task that controls the JBot and
records 1its movements in a printableMazeMap covered in the next
section. The MapMazeTask extends the Task class. Its execute
method is called repeatedly by the Task.TaskManager in the main
program, MazeMapTaskTestl, discussed in the prior section. The
following is the MapMazeTask class file.

The MapMazeTask consists of two methods, the constructor and the
execute method. The constructor saves off the parameters. It



Chapter #9: A Mazing Things

creates a character array for the backtracking path and sets the
direction of the JBot to north. Now this direction is strictly
for mapping purposes and does an correspond to magnetic north.
This would require the use of a compass like the Parallax Compass
Appmod.

The MapMazeTask only moves the JBot along straight lines and only
pivots the JBot at 90 degree angles. This greatly simplifies the
mapping and backtracking process. It does mean that movement
along a corridor that is not at a 0 or 90 degree angle with
respect to the initial JBot position will be explored in a stair
step fashion.

The execute method is divided into three states:

initialState
computePath
followPath

The initialState checks the sensors to see if an obstacle is in
front of JBot. It does not matter whether it is directly in front
or only to one side. Because of the granularity of the system, an
obstacle that partially blocks the JBot is assumed to be the same
width as the mapping cell’s logical size that is 6-inches.

The JBot moves forward in short steps of 2-inches since this is
assumed to be the maximum distance the sensors can detect. Some
sensors may provide a longer range and the movement can be
adjusted by changing the stepDistance value used in the jbot.move
method call. The checkingOffset variable is used to keep track of
now far JBot inches forward. If the JBot gets partway into the
next 6-inch square and detects an obstacle then the JBot backs
out, using the checkingOffset wvalue, of the logical map cell and
marks it as an obstacle. This means that a JBot moving down the
middle of a 12-inch corridor will mark it as a 6-inch corridor, a
one cell map width, even though there is actually more space than
the map indicates.

The area traveled by the JBot 1is saved in the map calling
map.markTraveled. This occurs when the checkingOffset hits 6-
inches. The logical position in the map 1is adjusted using the
map.move method. The direction wvariable, facing, is used to keep
track of the logical direction the JBot is facing.

The fuzziness of the map is actually for the JBot’s benefit. It
allows the JBot to move through an area that it has traveled
before without having to worry how close it is to an obstacle. It
will be at least one inch away if not more.

The computePath state marks the explored area as an obstacle
using map.markObstacle. It then obtains a path to a new
exploration area by calling map.computeBacktrackPath. The path is



Chapter #9: A Mazing Things

placed in the backtrackPath array. Each element of the array is
the direction the JBot needs to move, starting from its current
location, to get to an unexplored area. The result of this call
is the number of directions placed in the array. If the number is
0 then all areas accessible by the JBot have been explored. The
task is and servos are stopped and the Task.TaskManager method,
discussed in the prior section, will return.

The followPath state is used to move the JBot along the backtrack
path. The last step in the path is used to position the JBot but
the JBot will not move into the area. Instead, the initialState
will be entered at this point and the JBot will use the sensor to
see if the unexplored area is open and can be traveled in or if
it contains and obstacle.

The followPath state compares the current direction of the JBot
with the desired direction. It turns the JBot to the desired
direction 1if necessary. The wuse of the dir wvariable 1is an
optimization. The initial turn computation can result in a 270
degree turn that is the same as a 90 degree turn. The latter is
more efficient and accurate. This code means the JBot will only
be executing left and right 90 degree turns or 180 degree turns.

It then moves the JBot 6-inches in the desired direction assuming
that the path step is not the last one. The map.move method call
changes the logical position within the maze map. The
map.markTraveled method call is actually redundant because the
path will always be over a traveled area.

That’s it. The logic is relatively simple but getting to this
design takes a good bit of thought. This is one of the simpler
methods for using a map. As you can see, making things more
complex is no easy chore but it is a good challenge.

Supporting Classes

The printableMazeMap is used by the MapMazeTask. It is based on
the following class hierarchy.

charArray
charMap
mazeMap
printableMazeMap

The classes serve two purposes. The charArray class is needed
because the Javelin implements only one dimensional arrays and
our map 1is a two dimensional array. The chapMap 1is wused to
provide a more dynamic use of the array since arrays are normally
accessed from 0 to N where there are N+1 elements. The charMap
allows negative indices to be used. The map grows as it 1is
accessed to the maximum size used to create it. This is very



Chapter #9: A Mazing Things

handy for our mapping because the JBot can be logically started
at 0,0 and moved in any direction based upon its exploration. A
conventional map would have to be four times the size to provide
similar coverage.

The mazeMap adds backtracking capabilities as well as constant
definitions for the wvalues that are used and stored in the map.
The printableMazeMap extends this class by providing EEPROM
storage methods and System.out.println status reports. It does
not provide any additional mapping or backtracking capabilities.

The following is the charArray class definition. It maps a 2-
dimensional array onto a l-dimensional character array. The same
approach can be used for arrays of any type. The methods 1like
xLow provide a consistent way to determine the size of an array
that can take into account the dynamic nature of the subclasses.
The class throws the IndexOutOfBoundsException exception if the
array is addressed improperly.

The charMap class presented below maps a logical array with
bounds that can be negative on a conventional array that uses
only positive array indices. This is handled by redefining the
getIndex used by the charArray. The class maintains the high and
low map ranges and provides public methods for their access.

The mazeMap class, shown below, Dbuilds on the charMap. It
populates it with wvalues like obstacle and traveled and uses the
path value when searching for a backtracking path. It maintains a
logical position in the y and x variables. These are changed
using the move method. It assumes logical directions based on
north, east, south and west that match the movements the JBot can
perform. The markTraveled and markObstacle methods are used to
populate the map based upon the information the JBot can garner
regarding its surroundings.

The computeBacktrackPath searches for a path to an unexplored
area using and modifying the current map contents. The map was
initialized to unknown (or unexplored) and the method looks for a
path from the current logical position (y,x) to a cell marked
unknown. The search proceeds by changing traveled cells to path



Chapter #9: A Mazing Things

cells as a path is created. Cells marked as part of the path are
left in that state until the method returns at which point these
points are changed Dback to traveled leaving the map in its
original position. This 1is done so the method can determine
whether it has already looked at a cell for a path. If this is
not done then a circular search can result in an infinite loop.

The method does not try to find the closest unexplored area. It
simply tries to find one using a simple algorithm. It starts
looking north. If it cannot find a path in that direction it
moves around the «cell to the right ending in a westerly
direction. This means it will find the first unexplored area to
the north 10 cells away even 1if there 1is an unexplored cell
immediately to the west.

Note how the direction of the search is changed as the path 1is
cut back. The path consists of as set of directions from the
logical position (y,x) to an unexplored cell.

There are many ways to search a map. This is simply an approach
that is easy to implement. It also uses no additional space. This
can be critical in tight memory environments like the Javelin.

The printableMazeMap, shown below, adds a EEPROM methods and
System.out.println oriented methods that provide a way to save,
restore and display the contents of a mazeMap. The load method is
a static class method that returns a new printableMazeMap object.
The contents of the map are stored at the beginning of the EEPROM
area. A more sophisticated wversion would allow the map to be
positioned elsewhere in the EEPROM area. The save method stores
an existing map object in EEPROM.

The print and printPath methods display the map and the current
search path respectively. They convert the binary values used in
the map and path array to more friendly output.

The printableMazeMap class is used in the mapping application but
it was developed using the MazeMapTestl program shown below. This
allows a map to be populated and the path creation method to be
tested without having the JBot traveling all around a maze. This
class is not necessary for the exploration and result
applications already defined but it is invaluable when trying to
develop new path search algorithms.



Chapter #9: A Mazing Things

Your Turn

Q

The computeBacktrackPath method does a

implementing other search algorithms.
first search is more complicated but

results.
area.

A greedy search should find

depth first search. Try
For example, a breadth
will provide different
the closest unexplored



Chapter #9: A Mazing Things

Summary This chapter addresses navigation through
and a maze. It wutilizes the J-Bot control

) ) and obstacle classes defined in previous
Applicati chapters. Three maze navigation methods
ons were presented: Random Walk, Right Hand

Rule and Basic Backtracking. The Random

Walk presented in Activity #1 wused a
continuous movement mechanism while sacrificing sensor accuracy.
The other methods alternated between sensor and movement actions
that were more accurate but more jerky in the J-Bot’s movement.
The basic backtracking method improved upon the Right Hand Rule
method allowing the J-Bot to keep track of the areas already
explored thereby allowing it to navigate through a complex maze.

Real World Example

Mobile robots that avoid obstacles and explore are used in a
variety of areas. The most notable is the Sojourner robot that is
still up on Mars. Although it was similar to a remote control
vehicle, Sojourner was a true robot. It needed the ability to
navigate by itself because the time needed to send a signal from
Mars and back again is measured in minutes. This delay is too
long for safe control of the robot. The robot could easily run
into a rock before the human controller on Earth signaled the
robot to stop.

Instead, Sojourner was programmed to move from one point to
another. The robot was responsible for moving between the two
points while avoiding obstacles that were in the way.

The maze exploration programs presented 1in this chapter are
slightly different from the programs used with Sojourner because
the J-Bot had no final fixed destination. Instead, the J-Bot
would explore the maze.

Questions and
Projects

Questions

1. What is a cycle within a maze? This is the same thing as a
circular path.

2. What is a simple and complex maze?

3. Why would the J-Bot fail to exit a maze when wusing the
Right Hand Rule?



Chapter #9: A Mazing Things

4.

How does sensor detection delays impact algorithms and
movement?

Exercises

. Change the Right Hand Rule in Activity #2 to the Left Hand

Rule approach.

. Modify the maze exploration programs so they record in

EEPROM the path followed by the J-Bot. Write a program that
displays this information in the Message window. Remember,
the J-Bot needs to be connected to the PC for the latter.

Projects

1.

The RandomWalkTask in Activity #1 polls the sensor to see
when an obstacle range is available. Polling adds overhead
so other tasks like the sensor task and servo task have
less time to run. Use the setEvent support within the
BasicSensor class so that the RandomWalkTask can suspend
itself while the sensor task does its job. Does this change
improve the J-Bot’s response time when detecting an
obstacle? It should.

. The IR sensor classes return an obstacle distance from 1 to

16. The default implementation checks the sensor 16 times
regardless of the distance detected. If the maximum
distance to an obstacle before an action is taken is
greater than 1 then the sensor class does not have to check
any values between 1 and the maximum distance - 1. Modify
the sensor class so it only checks between a range of
values. Does this change improve the J-Bot’s response time
when detecting an obstacle? It should.

. Having the JBot detect walls is easy but accurately turning

the JBot can be a problem. One way around this difficulty
is to simplify the problem and place the accuracy of
movements on the maze instead. This can be done by using
line following and clearly marking the intersections. An
obstacle 1is considered to be a 1line that simply ends.
Create the maze wusing 1lines of tape making sure the
intersections are marked every six inches. The JBot should
be programmed to follow each line until it ends as noted
above. The Jbot does not have to worry about accurate
rotation because the line following program should make the
minor adjustments to follow the line.



