Chapter #4: Adding Multitasking To The J-Bot

Chapter #4: Adding Chapter #4: Adding
Multitasking To Multitasking To The J-Bot
The J-Bot

Up to now, the J-Bot control
programs were single
threaded. The programs only
performed one action at a
time. Background operations
were handled by the Javelin’s
virtual peripherals. The Javelin does not support Java’s usual
multitasking services but it is possible to get an effect that is
sufficient for the J-Bot.

So why add the complexity of a multitasking system to the J-Bot?
To make things simpler and more manageable actually. It 1is
possible to control the J-Bot movements and handle its sensors in
a single threaded program but this can get complex. Multitasking
allows these operations to be handled by different cooperating
tasks.

Splitting operations into different tasks provides programming
independence versus a single threaded application. For example,
if a series of tones need to be played while other actions are
being performed then it is a simple matter to create a task that
does this. Adding a task 1s relatively easy. Integrating this
type of feature into a single threaded application 1is rather
complex regardless of how simple the other application is.

Here’s what you’ll learn how to do in Chapter #4:

e Multitasking, threads, and state machines.

e How the J-Bot multitasking system works.

e Write a simple multitasking program.

e Write a multitasking version of the tone generator.
e Drive the J-Bot using the multitasking system.

Overview

Multitasking operating systems are found in most embedded
applications especially robotics applications. Most desktop and
server operating systems are multitasking as well. This allows
different programs to be active at the same time. A closer 1look
at a single processor system, though, reveals a CPU that only
runs one task at a time. Multiple tasks get work done by sharing
the processor. Each task runs for a short period of time but
usually not to completion. Work not finished during this time

Task 1 Task 1

Time ---> Task 2 Task 2

Task 3 Task 3

Chapter #4: Adding Multitasking To The J-Bot

period is performed in subsequent time periods. These periods are
often called time slices.

The following figure shows how this might work.

In this case, Task 1 runs for its time slice followed by Task 2
and Task 3. Task 1 then runs again and the process continues. How
long each task runs and what task will run is handled by a task
manager that is also known as a multitasking scheduler. We will
take a look at some ways multitasking is implemented and then how
the J-Bot multitasking support is implemented. More extensive
coverage of multitasking systems and multitasking programming is
beyond the scope of this book. Instead, we will concentrate on
the services that can be run on the Javelin.

Our exploration with multitasking starts with the more complex
systems most users will be used to. These employ multiple stacks;
one for each active task. Java hides the stack from the
programmer but it uses one to keep track of local variables for a
method as well as all calling methods. For example, if method A
calls method B and method B calls method C for the same object
then the stack contains the local variables for method A, B and
C. It also contains information that allows the calling method to
continue running when a called method returns.

class foo { Caller return pt
void A (int w) {
B(1); intw="7?
B(w); ™~
} A return point
void B (int x) { Stag intx =1
C(L2);
. ™~ B return point
C(x,%); P
J inty=1
\}/01dC(1nty, intz) intz=2

} v

The figure shows how the return point and parameters for a method
are stored in the stack. Not shown is the object pointer that
would also be on the stack as a parameter. The stack in this
example grows down. The memory at the bottom of the stack must
not be used for other purposes or the data may be overwritten as
method calls occur. In many operating system implementations the

Chapter #4: Adding Multitasking To The J-Bot

heap is located below the stack with the two growing towards each
other.

The key thing to note here is that each task has its own stack.
Without the stack a task cannot keep track of where calling
methods will continue execution when a called method is done.

In more complex systems like Microsoft Windows, tasks are more
complex as well. There is the concept of a process that runs one
or more threads/tasks. Each thread/task has its own stack. The
process provides a way to collect together resources like open
files and memory. The resources are returned to the operating
system when the process terminates. The process/thread
architecture allows multitasking within a process. From a task
manager’s point of view, there is just a big collection of tasks
to run.

Switching between tasks can occur using a number of different
methods. There 1is preemptive and non-preemptive task switching.
Preemptive task switching allows an event outside of the task to
cause a switch from one task to another. The time slice
multitasking system mentioned earlier uses a timer to determine
when a task should relinquish control. The task has no say about
when this occurs and it wusually does not care since it will
continue running from the point that it was interrupted.

The timer event normally causes a hardware interrupt that saves
the state of the currently running task, starts the task manager
that then chooses the next task to run. The new task starts
running until the next timer interrupt.

Other interrupts can cause a task switch as well. For example, an
interrupt can occur when a serial port receives a full character.
On many embedded systems there may be dozens of events and
interrupts that are handled by the hardware and task manager.

There are non-preemptive actions that can cause a task switch as
well. For example, a task may use an operating system service to
send a message to another task. We don’t care about the details
here other than the semantics for this example that cause the
original task to pause until the message send operation
completes. Other tasks can run during this pause so the task
manager performs a task switch. If this is a system that supports
time slicing then the original task essentially has a shortened
time slice.

It 1s possible to Dbuild a multitasking system that wuses a
cooperative, non-preemptive mode of operation exclusively. 1In
this case, it is up to the programmer to make sure that that a
task periodically yields control to let other tasks run.

Chapter #4: Adding Multitasking To The J-Bot

Task priority is another feature supported by most multitasking
systems. In this case, each task has a priority. High priority
tasks run in preference to lower priority tasks. This type of
feature allows a programmer to setup tasks that need to get work
done as well as tasks that work on jobs that need to be done but
not immediately. The lower priority tasks run when all of the
higher priority tasks are waiting or have terminated.

An example where priorities can help are a communication-based
embedded system. In this case, the communication task would have
a high priority so incoming information can be processed
immediately. Medium priority tasks would execute requests
received by the communication system while low priority tasks
might handle less important operations such as generating status
reports.

The problem with all these neat features is their cost. There is
a performance cost, a memory cost and a programming cost.
Multiple tasks require enough performance to get them done plus
any overhead associated with the task manager. Memory costs
include support for multiple stacks and memory needed to support
each task. Multitasking systems are not always efficient with
memory usage. Programming is usually easier with multitasking
systems but it can be more complex as well if the interaction
between tasks is high. Debugging a multitasking application is
more difficult than debugging a one single threaded task.

The Javelin has a limited amount of memory and its performance,
although sufficient, 1is less than many processors that provide
multitasking support. It is possible to run a multitasking system
on a processor that 1is less capable than the Javelin but this
normally uses a lower level development system that requires
intimate knowledge of the hardware, the operating system and the
application.

How Multitasking Works On The J-Bot

The multitasking system used here is much different than anything
found in the commercial world. This 1is because it must operate
within the limitations of the Javelin. The biggest limitation is
its single stack architecture but it is still possible to build a
multitasking system.

The J-Bot multitasking system can be described as a single stack,
single priority, cooperative non-preemptive, state-machine
multitasking system. The single stack is a limitation of the
Javelin. Single priority greatly simplifies implementation and
programming. The cooperative non-preemptive architecture requires
programs that relinquish control periodically so they do not
monopolize the processing time. The non-preemptive aspect is also
a limitation of the Javelin. Virtual peripherals operate in a

Chapter #4: Adding Multitasking To The J-Bot

preemptive fashion but virtual peripherals are limited to those
built into the Javelin.

Finally there 1is the state machine aspect of the multitasking
system. It turns out to be a useful paradigm because robotic
applications are often more readily described as a state machine.
For example, the following diagram shows a simple state machine
for a robot that can move forward and pivot left or right. It has
a sensor that detects whether there is an obstacle in front to
the left or right. It is assumed that if the obstacle is directly
in front then it will be detected as either an obstacle to the
left or right.

No obstacle
detected

No obstacle

detected No obstacle

Obstacle

Obstacle on right

on left

Obstacle
on right

There are three states shown in circles: moving forward, pivoting
left and pivoting right. There are a number of transition arrows
with conditions associated with each.

The program starts in a particular state such as moving forward.
It then transitions to a new state Dbased on the current
conditions. It can stay in the same state as indicated by the arc
that points back to the same state.

This program is relatively simple. The robot simply moves forward
until an obstacle is detected at which point it turns away from
the obstacle. It keeps turning until it can go forward again.
This 1is actually a program that will be created when sensors are
introduced in subsequent chapters.

State diagrams can get much more complex. For example, a maze
program may keep track of wall so it can turn down a corridor
when it is detected. A backtracking program may keep track of
openings that were not explored to check them at a later time.

Chapter #4: Adding Multitasking To The J-Bot

Moving back to those locations requires a state machine that is
more complex than the one just presented.

There are programs that can convert graphical state machine
drawings to program code but we will not be using those. Instead,
programs will be written to match any state machine drawings in
this book. It is also possible to write the programs without
making state machine drawings.

The typical implementation of a state machine is a method that
performs actions for the current state and returns the next
state. The following 1is a sample state machine class for the
prior state machine diagram.

class RobotStateMachine {
static final int forward = 1 ;
static final int pivotLeft = 2 ;
static final int pivotRight = 3 ;

int state = forward ;

public void nextState (int state) {
this.state = state ;

}

public void execute () {
switch (state) {
case forward:
moveForward () ;
if (obstacleToLeft ())
nextState (pivotRight) ;
else if (obstacleToRight ())
nextState (pivotLeft) ;

break ;

case pivotLeft:
pivotLeft () ;
if (obstacleToRight ())
nextState (pivotRight) ;

else if (! obstacleToLeft ())
nextState (forward) ;
break ;

case pivotRight:
pivotRight () ;
if (obstacleToLeft ())
nextState (pivotRight) ;

else if (! obstacleToRight ())
nextState (forward) ;
break ;

}

return state ;

}

// other methods for detection and movement would go here

Chapter #4: Adding Multitasking To The J-Bot

Only the nextState and execute methods are shown. The other
methods used by it are not shown although a comment indicates
where they would be listed.

The execute method has no parameter but the state wvariable 1is
part of the object so it is always available to object methods
like execute. The method will perform an action and it then
checks whether the state should change. The nextState method is
used 1in this example. In theory it 1is possible to eliminate
nextState method but it provides a debugging mechanism. It also
provides a controlled way for one task to change another task’s
state.

Tasks used in our multitasking system will have a structure
similar to this. The task manager would call the execute method
for each task in a round robin fashion.

While the execute method can be rather large, each individual

state should minimize the amount of time 1t wuses. This allows
other tasks to use the rest of the time available for execution.

Activity #1: JBot Class — Adding Multitasking

If this were an introduction to building a multitasking state
machine system then the class definitions would be presented in
an incremental fashion with features added in each step. Sorry,
but we are going to jump right into the details of the full blown
system otherwise this chapter and book would be significantly
larger.

Don’t worry if the architecture or the class definitions get too
complicated. It helps to know how they work but it is not
necessary to use them. Make sure you understand how to use them
as illustrated in the test programs presented in this chapter. In
general, the creation of task classes is relatively simple. The
execute method is all that is needed.

The classes, such as the Event and Task class, that
are 1in the stamp.util.os package will be installed

FYI with the latest version of the Javelin software. They
do not need to be entered as the other application
programs in this book.

Chapter #4: Adding Multitasking To The J-Bot

Event
Semaphore
Task
InterruptTask
TimerTask
TaskToneGenerator
CallableTask
WatchHeapTask
ShowStatus
TaskStatus
SemaphoreStatus

The following is the Event class definition.

Multitasking Class Hierarchy

It is the basis for

tasks and semaphores as noted in the class hierarchy shown above.

<p>

% o X X ok o X X o

/

Co-operative,

Qauthor Parallax, Inc.

@version 1.0 8/21/02

package stamp.util.os;

import stamp.util.*;
import stamp.core.*;

/**

* Interface for indicating an event occurred.

¥/

public class Event ({
static final public Event nullEvent = new Event
/**

* Create null event.

*/

protected Event () {

}

*

/

* % % ok o

Check if event reference is null.

@param event event to check

* @returns nullEvent if null, otherwise event

*/

static public Event checkEvent (Event event)

return

}

(event == null)

? nullEvent : event

{

’

multitasking state machine operating system

Tasks are a subclass of Event so a task can be resumed
by causing an Event.

() 7

Use Event.nullEvent instead.

Chapter #4: Adding Multitasking To The J-Bot

/**

* Cause an event to occur.
wy

public void notify() {
notify(null);

}

/**

* Cause an event to occur.

wy
public void notify(Object object) {
}

/‘k‘k
* Get event name.
*

* @return name of event.
%Y
public String name () {
return "Event" ;
}
}

The Event class is a class with only two methods: notify() and
notify(object). It provides a simple interface for notification
of an event. It 1s the superclass for the Task and Semaphore
classes. Calling the notify method with a Task object will resume
execution. This allows a task to setup an event and then suspend
itself. For a Semaphore object, the notify method will release
the semaphore. This simple Event interface will Dbe used when
controlling the J-Bot.

The Event objects can also have a name. By default this “Event”
and most subclasses 1like Task provide a different name. Names
are useful during debugging. They can be eliminated to conserve
memory once an application has been debugged.

We start the definition of the Task class. The Task class is used
as the superclass for all task objects. Each task object has a
logical thread of execution based around the state machine
architecture already presented.

The following is the Task class definition. It includes the
definition of the Task object as well as class methods that
implement the task manager. Don’t read the program in detail if
you are new to multitasking or Java. Instead, skip past the
listing to the description of the methods involved. Come back to
the listing after you are familiar with the methods available to
the task manager and task objects.

/*
* Co-operative, multitasking state machine operating system

* <p>

* This very basic operating system using round robin task scheduling.
*

The task list is a circular linked list for efficiency reasons.

Chapter #4: Adding Multitasking To The

J-Bot

P I T I R T I S

Note: If the TaskStatus class is not used and you need a few more
bytes then it is possible to eliminate taskStatusList and
nextTaskStatus along with references in the constructor.

@author William Wong
@version 3.0 8/23/02 eliminated execute() parameters and TaskManager

@version 2.0 7/23/02 state variable to execute ()
@version 1.0 7/21/02

package stamp.util.os;

import stamp.util.*;
import stamp.core.*;

/**

* A task that is run whenever there are free cycles.

* <p>

* Note: The nice way for an external task to terminate a task is
* to use taskToAbort.nextState (abort). The alternative is to

* use taskToAbort.stop() but this does not allow any cleanup.

*/

public abstract class Task extends Event {

final public static int initialState = 0 ;
final public static int checkTimer = -1 ; // for sleep() support
final public static int interrupt = -2 ; // see InterruptTask
final public static int terminate = -3 ;
final public static int stopped = -4 ;
/‘k‘k
* Timer object to handle task sleep() requests
%Y
public Timer timer = new Timer () ;
/‘k‘k
* Next active task in circular list
%Y
protected static Task taskStatusList = null ;
/‘k‘k
* Linked list for taskStatusList
%Y
protected Task nextTaskStatus = null ;
/‘k‘k
* Next active task in circular list
%y
protected Task nextTask = null ;
/‘k‘k
* State variable that can be used in execute ()
%y
protected int state = initialState ;
/‘k‘k
* Next state after timeout occurs
%y

protected int sleepState = checkTimer ;

/**

Chapter #4: Adding Multitasking To

The J-Bot

* Timout values
wy
protected int hi, lo ;

/**
* Setup and start task.
wy

public Task () {
addTask (this) ;

// Add task to status list
nextTaskStatus = taskStatusList ;
taskStatusList = this ;

}

/**
* Get task name. Default is an empty string.
*

* @return name of task.
%Y

public String name () {
return "Task"

}
/‘k‘k

* See if the task is running
*

* @return true if task is running

wy
public boolean running () {
return Task.running (this) ;
}
/‘k‘k

* Get current task state
*
* @return task state
wy

public int getState () {
return state ;

}
/‘k‘k

* Remove task from task manager's task list if task is running.

* This can be called by any task.
*

* @return true if task was removed from the list

wy
public boolean suspend () {
if (nextTask != null) {
// Note: myManager should not be null if nextTask is not null
return removeTask (this) ;

}

return false ;

}
/‘k‘k

* Suspend and set next state to stopped.
*
=Y
public boolean stop() {
if (suspend ()) {

Chapter #4: Adding Multitasking To The J-Bot

state = stopped ;
return true ;

return false ;

}
/‘k‘k

* Add task back into task manager's task list if task is not running

* This can be called by any task but the task must have a manager.
*

wy
public boolean resume () {
if (nextTask == null) {

// Note: myManager should not be null if nextTask is not null
addTask (this) ;
return true;

}

return false ;

}
/‘k‘k

* Same as resume ()
wy

public boolean start () {
return resume () ;

}
/‘k‘k

* Allows the task to be used as an Event value.
wy

public void notify(Object object) {
resume () ;

}
/‘k‘k

* Set the state for the next execute() call.
*

* (@param state next task state value

%Y
public void nextState(int state) {
this.state = state ;
}
/‘k‘k
* Set the state for the next execute() call.

* Suspend the task. It must be resumed by another task.
*

* (@param state next task state value

%y
public void sleep(int state) {
this.state = state ;

suspend () ;

—

*

Setup to poll timer and continue with the next state after
the elapsed number of ticks occurs.

@param nextState state to enter when the timeout occurs
@param hi hi timeout value, see Timer.timeout(hi,lo) for details
@param lo lo timeout value

* % X X ok % X X

~

Chapter #4: Adding Multitasking To The J-Bot

public void sleep (int nextState, int hi, int lo) {
this.hi = hi ;
this.lo = lo ;

timer .mark () ;
sleepState = nextState ;
state = checkTimer ;
}
/‘k‘k
* Setup to poll timer and continue with the next state after
* the elapsed number of ticks occurs.
*
* @param nextState state to enter when the timeout occurs
* @param msec timeout value in milliseconds
=Y
public void sleep (int nextState, int timeMS) {

sleep (nextState, timeMS/569, (timeMS%$569)*119) ;
}

*

/
Setup to poll timer and continue with the next state after
the elapsed number of ticks occurs.

* % X % %

@param nextState state to enter when the timeout occurs
* @param sec timeout value in seconds
wy

public void sleepSec (int nextState, int timeS) {

sleep (nextState, (timeS*18)/10, 0);

* Perform a period task. All subclasses must implement this method.

* An idle task is executed whenever the GUI is idle. Implementations of

* <code>execute()</code> should not take more than 100ms to ensure that the
* interface remains responsive.

wy

protected abstract void execute() ;

// Task manager support follows

/‘k‘k

* Class variable: current task in task list
%y

static protected Task taskList = null;

/‘k‘k
* Current active task.
%y

static protected Task currentTask = null ;

/‘k‘k
* Get currently executing task object.
*

* @returns currently executing task
%y

static public Task getCurrentTask () {
return currentTask ;

}

/‘k‘k
* Add a task to task list

Chapter #4: Adding Multitasking To The J-Bot

*
* (@param aNewTask task to be added to task list
%Y
public static void addTask (Task aNewTask) {
if (taskList == null) {
aNewTask.nextTask = aNewTask ;

}

else

{
aNewTask.nextTask = taskList.nextTask ;
taskList.nextTask = aNewTask ;

}

taskList = aNewTask ;

—

*

Check if a task is in the task list
@param task task to located

@return true if task in the list

/

public static boolean running (Task task) {
Task checkTask ;

* % X X ok % X

if (taskList != null) {
checkTask = taskList ;
do {
if (checkTask == task)

return true ;

checkTask = checkTask.nextTask ;
} while (checkTask != taskList) ;

return false ;

}

*

/

Remove a task from the task list

@param aNewTask task to be added to task list

* X X % %

* @return true if task removed from the list
%Y
public static boolean removeTask (Task aTaskToRemove) {
// handle empty list first

if (taskList !'= null) {
// scan list from current task and remove it if found

Task scanTask = taskList ;

do {
if (scanTask.nextTask == aTaskToRemove) {
// found task to remove

if (scanTask == aTaskToRemove) {
// removing the only task in the list
taskList = null ;

}

else

Chapter #4: Adding Multitasking To The J-Bot

// check if current task being removed

if (taskList == aTaskToRemove) {
taskList = aTaskToRemove.nextTask ;

scanTask.nextTask = aTaskToRemove.nextTask ;

aTaskToRemove.nextTask = null ;
return true ;

}

// check next task in the list
scanTask = scanTask.nextTask ;

}

while (scanTask != taskList) ; // exit if full list scanned

return false ;

}
/‘k‘k

* This method will run forever executing each task in the readyTask list
* in a round robin fashion. It returns when there are no running tasks.
%Y
public static void TaskManager () {
while (taskList != null) {
// change taskList so execute() can change it via removeTask
currentTask = taskList ;
taskList = taskList.nextTask ;

if (currentTask.state == checkTimer) ({
// Task is waiting for a timeout
if (currentTask.timer.timeout (currentTask.hi, currentTask.lo)) {
// Timeout occurred. Set next state.
currentTask.state = currentTask.sleepState ;

// Abort if the next state was set improperly

if (currentTask.state == checkTimer) {
currentTask.state = terminate ;

}

} else {
// Just call the next state
currentTask.execute () ;

The Task.java file contains both object and class methods. The
class methods implement the task manager that manages all active
tasks. The task manager is initiated using Task.TaskManager (). It
should be started only after one or more tasks have been created.

The Task class 1is a called an abstract class because contains a
virtual method, execute(). This means a Task object cannot be

Chapter #4: Adding Multitasking To The J-Bot

created but the class can be used as a superclass. This makes
sense because a Task object would do nothing by itself whereas a
subclass of Task would define the execute method to do something
useful. If you are not familiar with abstract classes then keep
reading. The first example task should make this a 1little
clearer.

Before getting into a sample task we take a look at the methods
defined in the Task class. These are divided into two categories.
We take a look at the class methods first. These are used to
implement and support the task manager that controls all active
tasks. Then we take a look at the Task object methods. These are
methods that can be used within the execute() method.

The class methods include:

void TaskManager ()

void addTask (Task aTask)
boolean removeTask (Task aTask)
boolean running (Task aTask)

The object methods include:

void execute ()

void resume ()

void suspend ()

void start ()

void stop()

void notify(Object object)

void nextState (int state)

void sleep (int state, int hi, int lo)
void sleep (int state, int timeMS)
void sleepSec (int state, int timeSec)

The number of methods is not large and the functionality of the
system is minimal. The Task <class 1is the superclass to a
hierarchy of more useful classes including:

InterruptTask
TimerTask
TaskToneGenerator
CallableTask

There 1is also one support task that provides a semaphore
facility, the Semaphore class, that 1is useful in multitasking
environments. Each of these classes will be examined in more
detail later in this chapter. The InterruptTask provides an
asynchronous interrupt facility but not preemptive interrupt
support. The TimerTask provides a framework for simple timer
oriented tasks like the TaskToneGenerator. The CallableTask class
proves a framework for a state machine system where calls and

Chapter #4: Adding Multitasking To The J-Bot

returns are possible. The basic state machine support of the Task
class is limited to a single level state machine.

These more advanced task classes are available for use but the
facilities they provide may not be needed by all applications. In
this case, one of the simpler task classes like Task can be used.
Also, The InterruptTask, TimerTask, and CallableTask are abstract
classes. The TaskToneGenerator class 1is not an abstract class so
a TaskToneGenerator task object can be created.

The basic TaskManager supports any number of active tasks.
Detailed operation of the TaskManager is covered 1in the Task
Class Methods - TaskManager section coming up next. It 1is
possible to add and remove tasks from the active task list but
all active tasks are called in a round robin fashion. A task is
run for its time slice when its execute method is called. It
relinquishes control to the next task in the list when the method
returns. In general, the execute method should not run for more
than 100usec or it will monopolize the system making services
provided by other tasks unresponsive. Operations that take a long
time should be spread across multiple states so a little is done
each time a task’s execute method is called.

Classes based on the Task class are used to create task objects
that can be run by the TaskManager. By default, a task is placed
in the active list when it is created. It is possible to remove
the task from the list before it runs if necessary. Tasks may not
be in the active list for a variety of reasons. The task may have
completed its function or it may be waiting for another event to
occur. For example, it may be waiting on a Semaphore object that
has been acquired by another task. The waiting task will be moved
to the active 1list when the owner of the Semaphore object
releases the semaphore.

The Dbasic facilities provided Dby the Task class include the
ability to execute a state machine using the execute method and
to start, stop and sleep for a fixed time period. The sleep
methods use a single timer object that is part of the base Task
class. It 1is included because many tasks will utilize this type
of service. It also greatly simplifies the syntax of the execute
method since the name of an object that would otherwise provide
this service is not required.

Task Class Methods - Task Manager

The Task Class methods include:

void TaskManager ()

void addTask (Task aTask)
boolean removeTask (Task aTask)
boolean running (Task aTask)

Chapter #4: Adding Multitasking To The J-Bot

The TaskManager method controls all active tasks. It should be
called after the initial set of tasks is created. Additional
tasks can be created or removed from the active task list as a
later time. The TaskManager method returns when there are no
tasks in the active list. This is done to prevent the system from
being idle forever. Keep in mind that the TaskManager implements
a non-preemptive multitasking system. Once the task list is empty
the only thing running is the TaskManager method. There 1is
nothing that will add a new task to the active 1list so the
TaskManager either returns or remains idle forever. The former
action is how the TaskManager works.

The TaskManager maintains the active task list as a circular list
of tasks. This means that each task object has a reference to the
next task in the 1list. If the list contains one task then this
reference 1is to the task itself. The circular 1list requires
careful implementation but it 1is more efficient for execution
because the next active task 1is always available. Some
multitasking systems implement the active 1list as a non-cyclic
list but this means the task manager must check for the end of
the list and then start back at the beginning when the end of the
list is reached. This TaskManager does not have to perform such a
check.

The addTask and removeTask methods are used to add or remote a
task object from the active list. These methods are not usually
called directly. Instead, the task object methods like start and
stop are used. These methods utilize the addTask and remoteTask
methods.

The same is true for the running method although this can be
useful for applications that keep track of tasks explicitly. It
is also possible to use the matching task method which in turn
calls the class method.

Task Object Methods

The Task object methods include:

void execute()

void resume ()

void suspend ()

void start ()

void stop()

void notify(Object object)

void nextState (int state)
void sleep (int state, int hi, int lo)
void sleep (int state, int timeMS)

void sleepSec (int state, int timeSec)

Chapter #4: Adding Multitasking To The J-Bot

There 1is also a variable named state that is part of the Task
object definition. This means that all Task-based classes will
have this variable available to the object methods.

The execute method is called by the TaskManager each time the
task object becomes the active object. The task object’s state
variable 1is normally used in a switch statement in the execute
method. The execute method should be written to minimize the time
it takes to execute. A good rule of thumb is to keep the time
under 100usecs.

The state variable stores an integer but using numbers as state
names gets very confusing. It 1is better to provide a symbolic
name for each state. This 1is typically done wusing constant
definitions at the start of a task class definition. For example:

class taskl extends Task {
static final int newState = 1 ;
static final int anotherState = 2 ;
public void execute () {
switch (state) {
case initialState:
// perform action for state
break;

case newState:
// perform action for state
break;

case anotherState:
// perform action for state
break;

default:
stop ();
break;
}
}
}

The prefix static final int indicates the integer definitions a
constant. The state numbers should be unique. Although it is
easiest to use sequential numbers there is no requirement. Also,
once named constants are used, the actual value of the constant
is irrelevant. State constant values should only be positive
numbers. Zero and negative numbers are reserved for internal
TaskManager support.

FYI

It is good programming practice to stop a task if an
unknown state 1is set. The default switch clause
performs this function. It may also Dbe useful to
perform some action to indicate the problem such as
printing a message using System.out.println or by

Chapter #4: Adding Multitasking To The J-Bot

sounding a tone or Dblinking and LED. None of these
actions is shown in the sample code above.

The start and stop methods are used to add or remove a task from
the TaskManager’s active 1list. A task 1is started when it 1is
created so the start method is only needed when the task 1is
inactive. It is normally called by another task. The stop method
can be called by either the task itself or another task wishing
to stop a task. The operating system is very limited so there are
no facilities to protect one task from another. This is typical
on small embedded systems like the J-Bot.

The suspend and resume methods are the same as the start and stop
methods. The match the syntax and general semantics used with
standard Java threads. The notify method is required because the
superclass 1is the abstract Event class. The notify method is the
same as the resume method. It is needed because the superclass
explicitly named the method.

The sleep methods all require a state to enter after the sleep
period has expired and the amount of time to sleep. The methods
match the facilities of the Timer object including msec and
second timeouts. Essentially the sleep methods save the timeout
value and perform a Timer.mark method call using the task’s timer
object. The TaskManager then checks the task in the usual round
robin fashion until the timeout occurs in which case the state
variable is changed to the value passed in the sleep method call
and the execute method will be called. The task actually remains
in the active list so the TaskManager will not exit if all the
tasks are waiting on the timer object via a sleep method call.

Finally there 1is the nextState method. Use this instead of
setting the state wvariable directly. This allows debugging or
trace facilities to be added to a task and it also allows
subsequent task class subclassing that might need to know about
state changes.

First Multitasking Program

The first multitasking program will shows how the control flow
operates among tasks. This example uses multiple tasks that are
the same class but have different data. Typically tasks are
unique requiring their own class definitions. This requires
multiple class definition files.

The following MultitaskingTestl class contains both a static main
method that starts the program as well as a task definition. Task

objects are created using this definition.

import stamp.core.*;

Chapter #4: Adding Multitasking To The J-Bot

import stamp.util.os.*;

*

Multitasking Test 1

/

@version 1.0 8/15/02

Qauthor Parallax Inc.

/

L I I

public class MutlitaskingTestl extends Task {
// execute () states
final static int statel =
final static int state2 =

[
N -
~e ~

String name ;

MutlitaskingTestl (String name) {
this.name = name ;

}
/‘k‘k

* Get task name.
*
* @return name of task.
%Y

public String name () {
return name ;

}

public void show (String text) {
System.out.print (name) ;
System.out.print (": ") ;
System.out.println (text) ;

}

protected void execute () {
switch (state) {
case initialState:

show ("Initial state") ;
nextState (statel) ;
break ;

case statel:

show ("State 1")
nextState (state2) ;
break ;

case state2:

show ("State 2") ;
stop () ;
break ;
default: // terminate should be the default to catch bad states
stop () ;
break;

}

public static void main() {
new MutlitaskingTestl ("Task 1") ;
new MutlitaskingTestl ("Task 2") ;
new MutlitaskingTestl ("Task 3") ;

Chapter #4: Adding Multitasking To The J-Bot

Task.TaskManager () ;
System.out.println ("All done") ;
}
}

The constructor takes a single String parameter that is the name
of the task. The task prints out the current state and includes
the task name as part of the output. Each task steps through
three states including the initialState that the task starts in.
The task terminates after printing “State 2”.

The main method is where the tasks are created and the task
manager runs the tasks. Three tasks are created at the start of
the main method. The constructor parameters helps differentiate
each one. A reference to the task is only necessary if the task
will be manipulated by another task since the constructor adds
the task to the task manager’s active list.

The tasks in the active list are run when the Task.TaskManager
method is called. The execute method of each task will be called
in a round robin fashion until all the tasks terminate. In this
case, each task will print a message like the following in the
message window.

Task 1: Initial state

The output from each task will be interleaved because each task
exits the execute method after generating a line of output.

The TaskManager method returns when all the tasks have stopped
which occurs in state2. Note that the order of the actions in
state2 1is irrelevant since the execute method always runs to
completion. The stop method simply removes the calling task from
the active list. This has no affect on the task until the execute
method returns. Still, it 1is good programming practice to make
the last executed statement in an execute method state to set the
next state unless it remains the same.

InterruptTask Class

The basic Task class definition 1is sufficient for many
multitasking applications but there are many ways to extend the
Task class to make it easier to create new tasks. One type of
operation that is useful is the ability to interrupt another task
so it can handle a new request before it may have completed its
current work. The InterruptTask provides this type of service and
it is shown in the following listing:

/**

Chapter #4: Adding Multitasking To The J-Bot

* This type of task can be interrupted using the Interrupt () method.
*

* It changes the state of the task to Interrupt and saves the current
* state. The task can then resume using lastState.

*

* public void execute (int state) {

* switch (state) {

* case interrupt:

* // do something here with interruptValue

*

* nextState (lastState) ;

* break ;

*

* Q@author William Wong

*

* @version 3.0 8/23/02 execute() parameters removed

* @version 2.0 7/23/02 state variable to execute()

* @version 1.0 7/21/02

*/

package stamp.util.os;
import stamp.util.*;

public abstract class InterruptTask extends Task {
public int interruptState = terminate ;

public int interruptValue = 0 ;

/‘k‘k
* Used to interrupt a task. If multiple interrupts are made before the
* task enters the interrupt state then only the first interrupt will be
* recognized. All others will be ignored.
*

* @param interruptValue value given to task to determine the cause of the
interrupt
*

* @returns true if the interrupt will be processed
wy
public boolean interrupt (int interruptValue) {
if (state != interrupt) {
this.interruptValue = interruptValue ;
interruptState = state ;
state = interrupt ;
return true ;
} else
return false ;

}
/‘k‘k

* Resume state prior to interrupt. This should only be called from
* the interrupt state.

wy
public void resumeInterrupt () {

state = interruptState ;

}
/**
Used to interrupt a task. If multiple interrupts are made before the
task enters the interrupt state then only the first interrupt will be
recognized. All others will be ignored.

@returns true if the interrupt will be processed

L I

Chapter #4: Adding Multitasking To The J-Bot

public boolean interrupt () {
return interrupt(0);

}

The InterruptTask adds three methods and two object wvariables.
The methods include two interrupt methods and a resumelnterrupt
method. The first interrupt method takes a single integer
parameter that is saved in the interruptValue variable that can
be queried by the task when it enters the interrupt state. The
task’s execute method needs to handle the interrupt state
accordingly.

This will normally do one of two things. The first is to examine
the interruptValue and perform some operation based upon this
information. The second is to determine what to do next. It can
call the resumelnterrupt method that will change the state back
to the value it had prior to the interrupt. It can also set a new
state in which case the task can be interrupted again.

The InterruptTask can only be interrupted by one source at a
time. The interrupt methods will return false 1if the task 1is
already interrupted.

The following is a variation on the first multitasking test
program except that the task class extends InterruptTask instead
of Task. State 1 1is also changed so that another task 1is
interrupted. The task to interrupt is passed as a parameter to
the task constructor. Nothing occurs if the parameter is null.

import stamp.core.*;
import stamp.util.os.*;

*

Multitasking Test 2

/

@version 1.0 8/15/02

b R I S

Qauthor Parallax Inc.

/

public class MutlitaskingTest2 extends InterruptTask {
// execute () states
final static int statel i1 g
final static int state2 = 2 ;

String name ;
InterruptTask taskToInterrupt ;

MutlitaskingTest2 (String name, InterruptTask taskToInterrupt) {
this.name = name ;
this.taskToInterrupt = taskToInterrupt ;

}

public void show (String text) {

Chapter #4: Adding Multitasking To The J-Bot

System.out.print (name) ;

System.out.print (": ") ;

System.out.println (text) ;
}

protected void execute () {
switch (state) {
case initialState:

show ("Initial state") ;
nextState (statel) ;
break ;

case statel:
show ("State 1")
nextState (state2) ;
if (taskToInterrupt != null)
if (taskToInterrupt.interrupt ())
show ("Task interrupted") ;
else
show ("Task already interrupted") ;
break ;

case state2:

show ("State 2")
stop () ;
break ;

case interrupt:
show ("Interrupted") ;
resumeInterrupt () ;
break ;

default: // terminate should be the default to catch bad states
stop () ;
break;

}

public static void main() {

MutlitaskingTest2 taskl = new MutlitaskingTest2 ("Task 1", null) ;
new MutlitaskingTest2 ("Task 2", taskl) ;

new MutlitaskingTest2 ("Task 3", taskl) ;

Task.TaskManager () ;

System.out.println ("All done") ;

The first task 1is saved in taskl so it can be passed as a
parameter to the other two tasks. Each of the other two tasks
will try to interrupt taskl in statel. The first task will be the
only one to wuse the interrupt state and the interruptValue
variable is not used in this exercise. The first task will simply
resume its work after printing an indication that it was
interrupted. The other two tasks will indicate whether they were
able to interrupt taskl.

Chapter #4: Adding Multitasking To The J-Bot

The interrupt support is limited but useful. Normally this type
of task will be setup to handle one or more types of interrupts.
Multiple interrupt types can be handled using the parameterized
version of the interrupt method. There 1is no indication what
other task caused the interrupt but this type of facility can be
added if it 1is needed. In general, the reason for having the
interrupt support 1is well defined in an application and the
interrupt is either from a single source or the source does not
matter.

TimerTask Class

The TimerTask is an extension of the InterruptTask. We will take
a look at its construction in this section but leave the example
program to the next section about the TaskToneGenerator that uses
the TimerTask. The following is the 1listing for the TimerTask
class.

/‘k‘k

* Task for simplified timer-based operations

* <p>

* This type of task is designed to be started when the timer is
* started. The <code>handleTimeout</code> method is called

* when the timeout occurs. The timer can be restarted or the

* task can be terminated.

*<p>

* A typical use is a tone generator that will be used with the
* TaskManager. This allows other tasks to run while the timer
* is running. The <code>handleTimeout</code> method can also

* be defined. By default, calling the <code>interrupt</code>

* method will terminate the timer.

*

* @version 1.0 7/23/02

* Q@author William Wong

*

~

package stamp.util.os;

public abstract class TimerTask extends InterruptTask {
final static int timeout = 1 ;

/‘k*
* Called when interrupt invoked.
* Redefine if subclass will handle this state.
*
* @return <code>true</code> if resume, <code>false</code> if terminate
%Y
public boolean handleInterrupt (int interruptValue) {
return false ;

}
/‘k‘k

* Called when timeout occurs.

* Redefine if subclass will handle this state.

*

* @return <code>true</code> if resume, <code>false</code> if terminate
%Y

public abstract boolean handleTimeout () ;

Chapter #4: Adding Multitasking To The J-Bot

/‘k*
* Check if timer is running
*

* @return <code>true</code> if timer is running

%Y

public boolean timerRunning () {
return state == checkTimer ;

}

/‘k‘k

* Task execution routine called by TaskManager
*
* (@param state current task state
=Y
public void execute () {
switch (state) {
case interrupt:

if (handleInterrupt (interruptValue))
resumeInterrupt () ;

else
nextState (terminate) ;

break ;

case timeout:
if (handleTimeout ())
break ; // continue if timeout handled

// otherwise fall through to stop() the task

// case initialState:
// case terminate:

default:
stop () ;
break ;
}
}
/‘k*
* Start timer and call handleTimeout () on timeout.

*

* @param hi hi timeout value, see Timer.timeout(hi,lo) for details
* @param lo lo timeout value

%y
public void sleep (int hi, int lo) {
sleep (timeout, hi, lo) ;
resume () ;
}
/‘k‘k
* Start timer and call handleTimeout () on timeout.

*
* @param msec timeout value in milliseconds
wy
public void sleep (int timeMS) {
// use super or you get the local sleep method

super.sleep (timeout, timeMS) ;
resume () ;

}

/‘k*

* Start timer and call handleTimeout () on timeout.
*

Chapter #4: Adding Multitasking To The J-Bot

* @param sec timeout value in seconds

%Y

public void sleepSec (int timeS) {
sleepSec (timeout, timeS);
resume () ;

The TimerTask is designed to support simple time-based tasks such
as a tone generator. It is one way of using a task’s timer object
instead of using CPU.delay. Using CPU.delay is not a good idea in
a multitasking environment Dbecause everything except the
background virtual peripherals comes to a complete halt.

What the TimerTask does is allow an operation to start such as a
tone generated using a PWM virtual peripheral and then easily
determine when to turn off the PWM. This leads to some
interesting source code whose use will be explained here.

First take a look at the execute method. Notice that there is a
default clause in the switch statement but not one for
initialState (there is a note in the comment though). In this
case the default clause will be the first state that the task
executes and it stops the task. That is because the normal state
for a TimerTask is stopped. It is started when there is work to
do. The task then does some setup and waits until some amount of
time 1is elapsed. This type of work will Dbe done 1in the
TaskToneGenerator class based on the TimerTask class. The
TimerTask «class 1s an abstract class and it needs to be
subclassed as in the TaskToneGenerator class.

The execute switch statement does handle two states: timeout and
interrupt. This is where a TimerTask subclass will differ from a
conventional task. In the TimerTask case the subclass must define
the handleTimeout method, not the execute method.

The typical operation of a TimerTask is to stop and wait for it
to be started. Normally a method is defined in the subclass so
the task object can Dbe started such as playTone in the
TaskToneGenerator class. This method does the setup and then
calls one of the TimerTask sleep methods. These methods setup a
timeout value and start the task. The handleTimeout method 1is
called when the timeout occurs. If the handleTimeout method
returns true then it 1is assumed that the task should continue
executing. This normally means another action has been setup and
the task will wait for another period. If not, the task will be
stopped.

There are three sleep methods that are available that match the
types of methods available with the Timer class. These include
timeouts based on ticks, milliseconds and seconds.

Chapter #4: Adding Multitasking To The J-Bot

The TimerTask is also setup to handle interrupts. The
handleInterrupt method is called if the task 1is interrupted. The
result of this method should be true if the task should keep
running until the timeout occurs. A wvalue of false should be
returned if the task should terminate. In the 1last case, the
method should perform any necessary cleanup. In the
TaskToneGenerator class, this cleanup process stops the tone
output.

TimerTask objects can be used for a wvariety of purposes. For
example, a watchdog timer task could require a periodic interrupt
from another task. If the interrupt failed to occur then the
watchdog timer task would assume that something is wrong and take
action accordingly. Watchdog timer tasks are common in embedded
systems.

For a real world example of the TimerTask we turn to the
TaskToneGenerator class.

TaskToneGenerator Class

The TaskToneGenerator objects should be used in a multitasking
environment instead of FREQOUT class used in earlier chapters. A
FREQOUT object generates a tone for a fixed duration using the
CPU.delay method. In a multitasking environment, the task that
used the FREQOUT object would monopolize the Javelin until the
tone stopped.

The TaskToneGenerator is a subclass of the TimerTask. It is a bit
more complex than some TimerTasks because it can generate a
single tone or a series of tones specified in a tone list. The
following is a list of the TaskToneGenerator class file.

/‘k*

* Tone generator for use with TaskManager

* <p>

* Generates tones for a specified period using the TaskTimer support.
* It does not use CPU.delay like FREQOUT does.

*

* @version 1.0 7/23/02

* @Qauthor Parallax, Inc.

=Y

package stamp.util.os;

import stamp.core.*;

public class TaskToneGenerator extends TimerTask {
protected PWM pwm ;
protected int pin ;
protected int tones|[] ;
protected int tonesIndex ;

Chapter #4: Adding Multitasking To The J-Bot

protected boolean pwmRunning = false ;

final static int endTone = 1 ; // state when done done
final static int noMoreTones = -1 ;
/‘k‘k

* Setup the tone generator output.
*
* @param pin set output pin such as CPU.pinl0
wy
public TaskToneGenerator (int pin) {
this.pin = pin ;
pwm = new PWM (pin) ;
}

/**
* Get task name.
*
* @return name of task.
wy
public String name () {
return "TaskToneGenerator"

}

/**
* Set output frequency
*
* @param frequency frequency in hertz (0 - 32k)
=Y
protected void setFrequency (int frequency) {
if (frequency == 0)
frequency = 1 ;

int halfCycleTime = 12000 / frequency ;

pwm.update (halfCycleTime, halfCycleTime) ;
}

/‘k‘k
* Play a tone for a fixed amount of time.
*
* @param frequency frequency in hertz (0 - 32k)
* @param time duration in milliseconds
wy

public void playTone (int frequency, int time) {
tonesIndex = noMoreTones ;

playToneNow (frequency, time) ;
}
/‘k‘k
* Play a set of tones. The array contains an even number of items.
* The first value in an item is the frequency.
* The second is the duration.
* Does nothing if there are not at least 2 elements in the array.
*

* @param tones tone array with (frequency, duration) pairs
wy
public void playTones (int tones[]) {
if (tones.length >= 2)
{
this.tones = tones ;
tonesIndex 0 ;

Chapter #4: Adding Multitasking To The

J-Bot

startNextTone () ;

}

/* Internal routine */

protected void playToneNow (int frequency, int time) {
// Setup PWM
setFrequency (frequency) ;

// Check if PWM and task already running

if (! pwmRunning) {
pwmRunning = true ;
pwm.start () ; // start PWM

}

/* Sleep for the specified amount of time.

* Must be after timerRunning check performed above

* because the following sets the timerRunning status
=Y

sleep(time) ;

/* Internal routine */
protected void startNextTone () {
// tonesIndex will always reference a valid pair

playToneNow (tones[tonesIndex], tones[tonesIndex+l]) ;
tonesIndex += 2 ;

// Adjust tonesIndex if this was the last tone in the list

if ((tonesIndex + 2) > tones.length) {
tonesIndex = noMoreTones ;

}

/‘k‘k
* Turn off tone generation if tone is being played
wy
public void stopTone () {
interrupt (0) ;
}
/‘k‘k
* Turn off tone generation if it is on.
*
* @param interruptValue ignored
*

* @return <code>false</code>, stop task

%y
public boolean handleInterrupt (int interruptValue) {
if (pwmRunning) {
tonesIndex = noMoreTones ; // disable on next timeout
handleTimeout () ; // force timeout

}

return false ;

}
/‘k‘k

* Task execution routine called by TaskManager
*

* @return <code>false</code> if done, <code>true</code> if more tones

*/

Chapter #4: Adding Multitasking To The J-Bot

public boolean handleTimeout () {
if (tonesIndex == noMoreTones) {
// No more tones. Turn off PWM
pwmRunning = false ;

pwn.stop () ; // turn off tones
CPU.readPin (pin);
return false ; // stop task
} else {
// Get next tone
startNextTone () ; // startup timer and next tone
return true ; // continue task

The TaskToneGenerator c¢lass has a number of object wvariables
including a PWM object and the output pin number. The other
variables are used for generating the tone or for playing the
tones specified in a tone list.

The TaskToneGenerator constructor takes the pin number, such as
CPU.pinl0, as an argument. This is used to setup the PWM object.
Normally one TaskToneGenerator object 1is created since a system
normally has only one speaker.

The setFrequency method is used to setup the PWM but it is a
protected method. This means it can only be called by other
methods, not by using the object. It 1is used by the object
methods that handle tone generation.

The playTone and playTones are the methods that start the task.
The playTone method sets the tonesIndex object wvariable to the
constant noMoreTones so the task will terminate after playing one
tone. This tone is setup using the playToneNow method.

The playTones method takes an integer array as a parameter. The
array must have an even number of elements. The first of two
elements is the frequency and the second is the duration. These
are the same type of parameters passed to the playTone method.
The task stops when all the tones in the list have been played.
The playTones method first verifies there is at least one pair in
the array. It then saves the array reference and sets up the
tonesIndex to reference the first element of the array. The
startNextTone method uses the referenced element to start playing
a new tone.

The remaining methods are protected and used only within the
class. The playToneNow method sets the frequency of the tone and
it then starts up the PWM. The task then sleeps for the duration
of the tone.

Chapter #4: Adding Multitasking To The J-Bot

The handleTimeout method at the end of the listing is called when
the task wakes up from its sleep. If there are no more tones to
play the PWM is stopped and the pin used by the speaker is set to
an input so the output for the next tone starts off properly. If
there are more tones then the startNextTone method is called. The
handleTimeout method returns false if there are no more tones.
This will cause the task to stop. It 1is restarted by the next
playTone or playTones call. The task continues running if the
return value is true. The startNextTone method is what sets up
the next tone and calls the sleep method.

The stopTone can be called to terminate any active playTone or
playTones initiate output. The stopTone method uses an interrupt
to do this. The task will be notified of the interrupt by a call
to the handleInterrupt method. This method checks to see if the
PWM is still running and shuts it down if it is.

The following program shows how tones can be generated.

import stamp.core.*;
import stamp.util.os.*;

/**
* Multitasking Test 3 - Tone generation
*
* @version 1.0 8/15/02
*
* @author Parallax Inc.
wy
public class MutlitaskingTest3 extends InterruptTask {
final static int waitForToneDone = 1 ;
final static int waitForTonesDone = 2 ;

// The toneList is a set of pairs of frequency and duration (msec)
final static int tonelList [] = { 120, 50, 240, 50, 360, 50 } ;

TaskToneGenerator toneGenerator = new TaskToneGenerator (CPU.pinl0) ;
protected void execute () {

switch (state) {
case initialState:

System.out.println ("Initial state") ;
toneGenerator.playTone (200, 1000) ;
nextState (waitForToneDone) ;

break ;

case waitForToneDone:

if (toneGenerator.running ()) {
System.out.println ("Waiting for tone to end")
} else {
toneGenerator.playTones (tonelList) ;
nextState (waitForTonesDone) ;
}
break ;

case waitForTonesDone:
if (toneGenerator.running ()) {
System.out.println ("Waiting for tone list to end")

Chapter #4: Adding Multitasking To The J-Bot

} else {
stop () ;
}

break ;

default: // terminate should be the default to catch bad states
stop () ;
break;
}
}

public static void main() {
new MutlitaskingTest3 () ;

Task.TaskManager () ;
System.out.println ("All done") ;
}

The sample program actually creates two task. One 1is the
MultitaskingTest3 task and the other is a TaskToneGenerator. The
MultitaskingTest3 task starts the toneGenerator with a single
done in the initialState. It then waits for the toneGenerator to
stop before starting it up again with a playTones method call.

Normally the TaskToneGenerator would handle the tone generation
while other tasks did useful work. The MultitaskingTest3 task
simply prints out a lot of status messages. This would not be
possible if the FREQOUT object was used instead.

While the ability to print out a bunch of text may not seem

important it does show how other actions can be done while sound
is being generated.

CallableTask Class

Most multitasking applications can operate with single level
state machines using any of the task classes as their base. The
CallableTask class provides a mechanism to implement multilevel
state machines. 1In essence, it 1is providing a way to «call
routines while remaining within the limitations of the Javelin.
Remember, all calls started from within a task’s execute method
need to return promptly.

The need for a CallableTask 1is more apparent when considering
more complex applications. For example, a task that sends out an
arbitrary number characters via a serial port can do so without
this support if the output buffer built into the serial port
virtual peripheral is never filled. If it 1is then the call to
send a character will not return until the character at the start
of the buffer is sent.

Chapter #4: Adding Multitasking To The J-Bot

The conventional state machine task can handle this nicely by
having a state that checks if the buffer has room. It does not
send a character until there is enough room in the buffer. The
problem with a single level state machine is that this support
only works for the states defined thus far. If a different part
of the task must send characters too then the programmer must
either setup a way to track what state should be entered after
the character is sent or use the CallableTask support.

Essentially, a CallableTask uses the callState and returnState
methods in a fashion similar to calling a method and returning
from it. These methods are much more explicit and wverbose than a
typical Java call but it works within the limitations of the
multitasking support. It also regquires a minimal amount of
overhead.

The CallableTask maintains a «call stack that 1is actually
implemented as a linked list. Each call generates a stack entry
that includes the return state number and an optional parameter.
The parameter reference 1is to an Object so it can be anything
except the built-in objects such as integers. This turns out to
be more flexible because the object passed as a parameter can
contain an arbitrary number of object wvariables that can be
accessed by the called state. The state can return information
via the object 1f necessary. The parameter object class 1is
application dependent.

The CallableTask support consists of two files. The following 1is
the CallableTask class file. The second is the CallStackEntry.
The stack entry is used by the CallableTask class to keep track
of call states.

/‘k*

* This type of task supports a rudimentary state calling convention.
*

* The task can change states by calling other states. Those states
* can then return to the calling state. Parameters have not been

* implemented but a subclass could easily do so.

*

* @version 1.0 8/25/02

*

* Qauthor Parallax, Inc.

wy

package stamp.util.os;
import stamp.util.*;

public abstract class CallableTask extends InterruptTask ({
// stack is exclusive to task
protected CallStackEntry stack = null ;

/**
* Get current parameter
*

* @return parameter passed in latest callState

Chapter #4: Adding Multitasking To The J-Bot

wy
public Object getParameter () {

return (stack == null) ? null : stack.parameter ;
}
/**

* Call a state.
*
* @param callState next state to enter
* @param calling parameter
* @param returnState state to enter when <code>returnState()</code> is called
wy
public void callState (int callState, Object parameter, int returnState) {
// Add a new stack entry
stack = CallStackEntry.getEntry (returnState, stack, parameter) ;

// Set new state
nextState (callState) ;
}

/**
* Call a state.
*
* @param callState next state to enter
* @param returnState state to enter when <code>returnState()</code> is called
wy
public void callState (int callState, int returnState) {
callState (callState, null, returnState) ;
}

/‘k‘k
* Return to prior state specified in the last <code>callState</code>.
* Terminate task if return performed without prior call.
=Y
public void returnState () {
CallstackEntry oldEntry ;

if (stack == null) {
state = terminate ;

} else {
// Setup return state
state = stack.returnState ;

// Pop the stack
oldEntry = stack ;
stack = oldEntry.nextEntry ;

// Free entry
oldEntry.free () ;

// Note: The following should be added if garbage collection is supported
// stackEntry.parameter = null

The following is the CallableTask stack entry class,
CallsStackEntry.

Chapter #4: Adding Multitasking To The

J-Bot

/**
* Used to implement the CallableTask stack.
*

* @version 1.0 8/25/02

*

* @Qauthor Parallax, Inc.

=Y
package stamp.util.os;
import stamp.util.*;

public class CallStackEntry {
protected CallStackEntry nextEntry ;
protected int returnState ;
protected Object parameter ;

protected static CallStackEntry freelList = null ;

protected CallStackEntry () {
}

/**
* Return entry to free list
wy

void free () {
nextEntry = freelist ;
freelList = this ;

/**

* Return an unused stack entry.

* A new entry is created if the free list is empty.

*

* @param returnState returnState to be saved in the new entry
* @param nextEntry nextEntry to be saved in the new entry

* @param parameter parameter to be saved in the new entry

*

* @returns unused stack entry

*/

static CallStackEntry getEntry
(int returnState
, CallStackEntry nextEntry
, Object parameter) {
CallStackEntry result ;

if (freeList == null) {

result = new CallStackEntry () ;
} else {

result = freelList ;

freelList = result.nextEntry ;

}

// Add entry to stack list
result.returnState = returnState ;
result.nextEntry = nextEntry ;
result.parameter = parameter ;

return result ;

Chapter #4: Adding Multitasking To The J-Bot

We’ll work backwards and start with the CallStackEntry. Each
entry keeps track of the returnState and the parameter for the
called state. The nextEntry variable does double duty. When an
entry is in the CallableTask stack it refers to the entry of the
prior call if any. It is null if this is the first entry in the
stack. When a returnState method is called the top of stack entry
is moved to the head of the freelist maintained by the class
methods of CallStackEntry.

A CallStackEntry is not allocated by the CallableTask using new.
Instead it calls the getEntry method that may generate a new
object. It does so only if the freelist is empty. When the entry
is no longer needed it is returned to the freelist using the free
method. This is done with the Javelin because there is no garbage
collection. With normal Java, the object could simply be
dereferenced and it would eventually be returned to free memory
via the garbage collector.

The one thing you may have noticed is there is a constructor for
the CallStackEntry that does nothing but it is protected. This
prevents another class from creating a new object. A new object
can only be created using getEntry.

Now back to the CallableTask class. There are just two methods:
callState and returnState. They work as a pair. The callState
takes two, or three, parameters. The two parameters are the state
to call and the state to return to. The third parameter on one
version of callState is an argument. More on this later.

The reason callState needs both a call and return state is that
the current state is usually not the state that the call should
return from. Typically the return state will be the case
statement following the case statement where the callState method
is called.

The callState method works 1like the nextState method. The new
state is not entered until the task’s execute method is called
again.

The returnState method takes no parameters and changes the state
to the return state in the matching callState.

When the called state 1s entered, the parameter passed by the
callState is available wusing the getParameter method. As
mentioned earlier, the parameter that is passed must be an object
of class Object. In theory, this should be any object but in
practice the built-in wvalues like int and byte are not suitable
as a parameter. In general, a parameter class will be defined
with one or more arguments. It can also be used to return values.

Chapter #4: Adding Multitasking To The J-Bot

For example, the following could be used as a parameter to a
serial routine.

class aCallStateParameter extends Object {
public int bufferSize ;
public byte buffer [20] ;
public boolean success ;

}

If this parameter were used for output then the bufferSize would
be set to the number of bytes in the buffer array. The success
variable would be set by the serial output routine before the
returnState is called. It would indicate whether the data was
sent successfully.

We take a look at a sample program that actually uses a String
parameter. Unlike an int or byte, the String class has the Object
class as a superclass.

import stamp.core.*;
import stamp.util.os.*;

/‘k‘k

* Multitasking Test 4 - Callable Task test
*

* @version 1.0 7/25/02

* @Qauthor Parallax, Inc.

*/

public class MutlitaskingTest4 extends CallableTask {
final static int statel = 1 ;
final static int state2 2 g
final static int calll = 10 ;
final static int call2 20 ;
final static int call2a = 21 ;

protected void execute () {
switch (state) {
case initialState:

System.out.println ("Starting") ;
callState (calll, "test base", statel) ;
break ;

case statel:

System.out.println ("State 1")
callState (call2, state2);
break ;

case state2:

System.out.println ("State 2") ;
nextState (terminate) ;
break ;

[/ ——— Call 1 ————

case calll:
System.out.println ("Enter call 1") ;

Chapter #4: Adding Multitasking To The J-Bot

System.out.println ((String) getParameter ()) ;
System.out.println ("Exit call 1") ;
returnState () ;
break ;

// -—— Call 2 —-————-

case call2:
System.out.println ("Entering call 2") ;
callState (calll, "test 2", call2a) ;
break ;

case callza:
System.out.println ("Done with call 2") ;
returnState () ;
break ;

// —-——— End of program —--—

default: // terminate should be the default to catch bad states
case terminate:

System.out.println ("All done") ;

stop () ;

break;

}

public static void main() {
new MutlitaskingTest4 () ;

Task.TaskManager () ;
System.out.println ("No more tasks running"”)

}

The program creates a single CallableTask, actually
MultitaskingTest4. It is similar to earlier test programs that
print out the states being entered. The output from the program
is shown below.

Chapter #4: Adding Multitasking To The J-Bot

=

M B
Clear C CEE oo
Starting o
Enter call 1
test base
Exit call 1
State 1
Entering call 2
Enter call 1
test 2
Exit call 1
Done with call 2
State 2
All done
No more tasks running

e of

The CallableTask is not something that is always needed but it is
very handy when the need arises.

Semaphore Class

Tasks can communicate with each other using shared wvariables.
These may be static or object variables where a task has access
to the object. The problem is, this type of access 1is
unrestricted. In some applications there needs to be more control
intertask (also referred to as interprocess) communication.

It 1s possible to implement a full range of interprocess
communication methods but, given the limited memory of the
Javelin, something 1like the Semaphore class 1is all that 1is
needed.

Semaphores are useful for controlling access to resources. For
example, control of the J-Bot’s wheel servos may be managed by a
semaphore. There could be multiple tasks wvying for control. For
example, a task may need to maintain control until a particular
action is done such as ramping.

As with Java threads, Java has its own interprocess
communication services that are not supported by the

FYI Javelin. The Semaphore class can be implemented in
standard Java but other methods will normally be
used.

The following is the definition for the Semaphore class.

Chapter #4: Adding Multitasking To The J-Bot

/*

* Semaphore class

* <p>

* Used by a Task to control a resource. It can be acquired
* by one Task at a time. Subsequent tasks will be suspended
* and added to the Semaphore list

*

* Qauthor Parallax, Inc.

*

* @version 2.0 8/30/02 extends Event. Added semaphoreList
* @version 1.1 7/24/02 acquire () uses TaskManager.currentTask
* @version 1.0 7/24/02

*

/
package stamp.util.os;
import stamp.util.*;

/**
* Standard semaphore support for Task object.
* It starts in the ready state.

*/

public class Semaphore extends Event {
protected static Semaphore semaphorelList ;

protected Semaphore nextSemaphore ;
protected Task acquiredTask ;
protected Task waitingTaskList ;

/‘k‘k
* Create semaphore object.
=Y
public Semaphore () {
nextSemaphore = semaphorelist ;
semaphorelist = this ;
acquiredTask = null ;
waitingTaskList = null ;
}
/‘k‘k

* See if semaphore is ready
*

* @return true if semaphore is ready to be acquired

wy
public boolean ready () {
return (acquiredTask == null) ;
}
/‘k‘k
* Acquire semaphore. Sets task's next state.
*
* The task should exit execute() for this to take affect.
* Use ready () if the task must conditionally acquire the semaphore.
* Does a task.suspend() if semaphore is not ready.
* If the semaphore is acquired then execution can continue. This allows
* the task to release the semaphore immediately after performing
* some action if possible. Set the nextState appropriately.
* Remember not to do more than one matching release().
* <p>
* Example:
*

<code><pre>

Chapter #4: Adding

Multitasking To The J-Bot

case 9: // this always yields control
semaphore.acquire(11);
break;

case 10: // yields control if not acquired
if (semaphore.acquire(1l1l))

break;

case 11:
// do something
semaphore.relese () ;
nextState(12);
break ;

</pre></code>

P I S S S S S

* @return <code>false</code> if semaphore acquired,

suspended
wy
public boolean acquire (
// force next state

int nextState) {

Task.currentTask.nextState (nextState) ;
if (ready ()) {
acquiredTask = Task.currentTask ;

return false ;

}

// remove task from run list
if (! Task.currentTask.suspend
return true ;

}

0) |

// add task to waiting list

if (waitingTaskList == null) {

// list was empty

waitingTaskList = Task.currentTask ;
} else {

// add to end of list
// Note: task.nextTask should be null
Task lastTask = waitingTaskList ;

// walk to end of list
while (lastTask.nextTask != null)
lastTask = lastTask.nextTask ;

// append task to end of list
lastTask.nextTask = Task.currentTask ;
Task.currentTask.nextTask = null ;

return true ;

}
/‘k‘k

* Release semaphore.

// task was already suspended

<code>true</code> if

// just in case

Start next task if one is waiting.

* Assumes the task that is doing the release is allowed to do so.

wy
public void release () {
if (waitingTaskList == null) {
acquiredTask = null ;
}

else {

// Tasks are suspended with the nextState set.

// Resume the first waiting task.
acquiredTask = waitingTaskList ;

Chapter #4: Adding Multitasking To The J-Bot

waitingTaskList = waitingTaskList.nextTask ;
acquiredTask.nextTask = null ;
acquiredTask.resume () ;
}
}
/**
* Release semaphore when an event occurs.
* The Semaphore class is based on the Event class
* that has only the notify method.
*/
public void notify (Object object) {
release () ;

}
/**

* Get name.
*

* @return name of semaphore.
wy
public String name () {
return "Semaphore" ;
}
}

The a Semaphore object can be acquired by one task. If a second
task tries to acquire the semaphore object while a task already
has acquired the object then the second task will be added to the
wait 1list. The first task 1in the wait 1list will acquire the
Semaphore object when the task that has acquired the Semaphore
object releases it.

The acquire method has a state as a parameter. The reason is that
the acquire method may add the task to the wait 1list of the
Semaphore object. The method will return true if the semaphore is
acquired. This means the task can continue and use the resources
protected by the semaphore. If the method returns false then the
task should return from the execute method. The state parameter
to the acquire method will be the state when the execute method
is called next. The acquire method saves the task reference of
the task that acquires the Semaphore in the acquiredTask
variable.

If the task 1is an InterruptTask and an interrupt
occurs then the next state wvalue when the task’s
execute method is called will be the interrupt state.

FYI The state specified in the semaphore acquire method
call will be 1in the next execute call. Also, the
interrupt state will not be entered until the
semaphore is acquired.

The release method should only be called when a task is done with
the resources associated with the Semaphore object. The notify

Chapter #4: Adding Multitasking To The J-Bot

method is included because the Event class is the superclass of
the Semaphore class. The cause method releases the semaphore so
programs should only be setup so this will occur after the
semaphore is acquired.

The acquire method adds a task to the wait list if the Semaphore
object is already acquired. This may not always be desirable. For
example, a task may have other things to do and need the
controlled resources 1f they happen to be available. In this
case, the ready method can Dbe wused to query the Semaphore
object’s status. It returns true if the object can be acquired.
This type of procedure works because the multitasking system is
non-preemptive. It would not work if this was a preemptive
multitasking system since a task switch might occur between the
time the ready method is called and a subsequent acquired method
call.

The Semaphore class also keeps a list of Semaphore objects using
the semaphorelist class variable and the nextSemaphore object
variables. The 1list is used for debugging purposes only. It is
not required for general operation.

The following 1s a sample application that shows how the
Semaphore object can be used.

import stamp.core.*;
import stamp.util.os.*;

/‘k‘k

* Multitasking Test 5 - Semaphore demonstration
*

* @version 1.0 7/15/02

* Q@author William Wong

*/

public class MutlitaskingTest5 extends Task {
static public Semaphore semaphore = new Semaphore () ;

String name ;

MutlitaskingTest5 (String name) {
this.name = name ;

}

public void show (String text) {
System.out.print (name) ;
System.out.print (": ") ;
System.out.println (text) ;

}

// execute () states
final static int statel =
final static int state2
final static int state3 =

I
w NP
~e ~e s

protected void execute () {
switch (state) {

Chapter #4: Adding Multitasking To The J-Bot

case initialState:

show ("Initial state - acquire semaphore") ;
semaphore.acquire (statel) ;
break ;

case statel:

show ("State 1 - semaphore acquired")
sleep(state2,1000) ; // wait and then do state 2
break ;

case state2:

show ("State 2 - done sleeping") ;
show ("Releasing semaphore") ;
semaphore.release () ;
stop () ;
break ;
default: // terminate should be the default to catch bad states
stop () ;
break;

}
}

public static void main() {
new MutlitaskingTest5 ("Task 1")
new MutlitaskingTest5 ("Task 2")
new MutlitaskingTest5 ("Task 3")

// Each task tries to acquire the semaphore.

// The task then waits for a short period.

// It then releases the semaphore and terminates.
Task.TaskManager () ;

System.out.println ("All done") ;

The tasks try to access the semaphore and they release it. A task
terminates after it releases the Semaphore object. Eventually all
tasks will return.

A Semaphore object can be used in isolation or it can be used as
a superclass for a class of objects that will be controlled by
the Semaphore. Either approach is wvalid but the latter tends to
be more restrictive since it prevents the «class from using
another, possibly more useful, superclass.

Activity #2: Multitasking J-Bot

Activity #1 was very long but it introduced the multitasking
support that will be used throughout much of the book. The sample
programs were very simple and designed to highlight specific
features of the multitasking system. Now we put these tools to
good use and drive the J-Bot. The source code looks a bit more
complex than the code used in prior single tasking examples but

Chapter #4: Adding Multitasking To The J-Bot

keep in mind the trade off. This new approach allows other tasks
to operate in the Dbackground. These might include obstacle
detection, wireless communication with other J-Bots or computers,
and more advanced recording and planning programs. Such features
would be very difficult to Dbuild and manage without a
multitasking system.

As with many of the examples in this book, we start with a class
definition for an object that will do most of the work followed
by a class definition with a main method that starts things off.
The following BasicMultitaskingdBot class file wutilizes the
BasicJBot class defined earlier. It allows movements to occur
without using CPU.delay method calls that would monopolize the
time spent handling the movements.

package JBot ;

import stamp.core.*;
import stamp.util.os.*;

*

/
MultitaskingJBot class

<p>

The program runs the J-Bot using as a task using the
multitasking system.

@version 1.0 7/23/02
Qauthor Parallax Inc.

% % X X % % X X

~

public class MultitaskingJdBot extends Task {
protected JBotInterface jbot ;

static final int checkMovement = 1 ;
/**
* Setup to poll jbot object
%Y
public void notify (Object jbotInterface) {
jbot = (JBotInterface) jbotInterface ;
nextState (checkMovement) ;
resume () ;
}
/**
* Task execute method
%Y

protected void execute () {
switch (state) {
case checkMovement:
if (jbot.movementDone ()) {
// stop task since movement is done
stop () ;

// event may restart this task with a new movement
jbot.causeNextEvent () ;

}

break;

case initialState:

Chapter #4: Adding Multitasking To The J-Bot

default: // default catches bad states
stop () ;
break;
}
}

The MultitaskingJBot class is designed to work with a
JBotInterface object, 1like BasicJBot, plus another task that
initiates movements using a set of public methods including move,
pivot, and turn. These methods do essentially the same thing. The
JBotInterface object 1s setup so its startEvent refers to a
MultitaskingJBot object. The JBotInterface object calls the
MultitaskingdBot’s notify method with a reference to itself as
the argument. This 1s stored in the MultitaskingJBot’s jbot
object variable so it can be used while the task is running. The
task is started via the resume method call in the notify method.

The MultitaskingJBot’s execute method will be called periodically
by the Task.TaskManager that controls all tasks. The execute
method then calls Jjbot’s movementDone method until it returns
true. The task then stops itself and calls the Jbot’s
causeNextEvent method. This will notify the events maintained by
the Jbot that should then initiate the next movement, if
necessary. This may case the MultitaskingdJBot object to be
restarted.

The following sample application shows how this task can be used.

import stamp.core.*;
import stamp.util.os.* ;
import JBot.* ;

/‘k‘k

* Test MultitaskingJBot class

* <p>

* The program runs the J-Bot using BasicMultitaskingJBot class methods.
*

* @version 1.0 7/23/02

* @author Parallax Inc.

wy

public class MultitaskingJdBotTestl extends Task {
JBotInterface jbot = new RampingJBot (new MultitaskingJBot ()) ;

protected void execute () {
switch (state) {
case initialState:

jbot.move (2) ;
nextState (1) ; // need to poll for completion
break;
case 1: // polled version
if (jbot.movementDone ()) {

// Non-polled version.
// This task will be suspended until the movement is done.

Chapter #4: Adding Multitasking To The J-Bot

jbot.pivot (-2) ;
jbot.wait (2) ; // suspend this task until done
}

break;

case 2:
jbot.turn (1
jbot.wait (3
break;

) i // make a short short turn
) i // suspend this task until done

case 3:
jbot.stop () ; // don't wait, background task will run
default: // default catches bad states
stop () ;
break;
}
}

public static void main () {
new MultitaskingJBotTestl () ;

Task.TaskManager () ;
System.out.println ("All done") ;
}

The MultitaskingJBotTestl program creates its own task object and
starts it running using the familiar Task.TaskManager call. We
cheated and use numbers instead of defined constants since there
are only a few states used in the execute method.

A MultitaskingJdBot task object is created when the
MultitaskingJBotTestl task object is created so there are really
two tasks running initially. The MultitaskingJdBot object
reference 1is stored and used only by the JBotInterface-based
object. In this case it 1is a RampingJBot object that 1is a
subclass of the BasicJBot class.

The first state, initialState, of the main task starts the J-Bot
by calling Jbot.move that 1in turn starts the J-Bot moving
forward. The main task then sets the next state to 1 where it
polls the jbot.movementDone method until it returns true. This is
also occurring with the MultitaskingJBot object but the example
shows how both can use the method without causing problems.

When the movementDone method returns true, the jbot.pivot method
is called followed by a call to jbot.wait. The latter causes the
next state to be set to 2 and the task is put to sleep. The task
will Dbe resumed when the MultitaskingJBot’s execute method
notices that the movementDone method returns true and the
causeNextEvent is called. This in turn calls the notify method
for the MultitaskingJBot object that subsequently resumes itself
allowing its execute method to be called by the Task.TaskManager
at a later point in time. The state value used by execute method

Chapter #4: Adding Multitasking To The J-Bot

will be the 2 set earlier. The MultitaskingJdBot 1is stopped at
this time.

The main task repeats its process to call the jbot.turn in state

2 and stopping the servos in state 3. The jbot.wait in state 3 is
needed because the jbot.stop in state 3 must

Activity #3: Multitasking J-Bot With Obstacle Checks

The multitasking J-Bot support in the prior activity handles
movements without feedback. In this activity we add support for
obstacle checks although we will not actually use sensors for in
the sample program. That will be add in future chapters.

Now that we have multitasking support is should be relatively
easy to have a task that monitors sensors to determine whether
the J-Bot 1is close to or in contact with an obstacle. The first
step is to define an abstract class that will be basis for sensor
objects. Using objects with this superclass will allow a movement
algorithm to be implemented for something like a random walk or
maze exploration and then use this implementation with different
types of sensors.

In this activity we will also come up with a simulation of a
sensor. It will be based on a random number generator. This will
be used with a simple collision avoidance algorithm.

The following is the abstract class definition for a sensor.

package JBot;

import stamp.util.os.* ;

/‘k*

* Basic abstract sensor class

* <p>

* This provides a standard method to access sensor information.
* Normally the sensor will notify an event when a change occurs.
* Often the event is a task that is waiting for an obstacle to be
* detected.

*

* Detection is assumed to be through the front 180 degrees.

* The forward position is 90 degrees.

* The far left is 0 degrees. Left is 45 degrees.

*

* @version 1.0 8/23/02

* Qauthor Parallax Inc.

wy

public abstract class BaseSensor {
protected Event event = Event.nullEvent ;

/**

* range: No obstacle detected

Chapter #4: Adding Multitasking To The J-Bot

%Y

static final int none = -1 ;
/‘k‘k

* direction: obstacle to left
%Y

static final int left = 45 ;
/‘k‘k

* direction: obstacle to right
%Y

static final int right = 135 ;
/‘k‘k

* direction: obstacle in front
%Y

static final int front = 90 ;
/‘k‘k

* Indicate whether an obstacle has been detected.

* Normally used when polling versus using an event.
*

* @returns obstacle detected

wy

public abstract boolean obstacleDetected () ;

*

/
Indicate initial obstacle position.

For simple detection systems the detection of an object
on the right and left will return front.

* % X ok ok X

@returns obstacle's relative direction (left, right, etc.)
wy

public abstract int obstacleDirection () ;

*

/
Get the distance to an obstacle in the specified direction.
A value of <code>none</code> indicates no object detected.

@param direction to get range for

* % X ok % X X

@returns distance to an obstacle for the specified direction
wy

public abstract int obstacleDistance (int direction) ;

/**
Set minimum event notification distance.
Notification will not occur until an obstacle is

outside of this distance. The minimum value is 0.

* X X % %

* @param minimumDistance minimum number of inches to detect an obstacle
=Y
public void setMinimumEventDistance () {
/* Default case is to ignore the minimum distance
* For example, contact oriented sensors can only detect objects
* when they are in contact with them.
=Y
}

// Protected classes for use by this class or subclasses

/**

* Set notification event

Chapter #4: Adding Multitasking To The J-Bot

*

* @param event Event object to notify when a change occurs
%Y

public void setEvent (Event event) {
this.event = Event.checkEvent (event) ;

}
/‘k‘k

* Cause event when obstacle status has changed.
* May be called by subclass methods.
=Y
protected void notify () {
notify (null) ;
}

/‘k‘k

* Cause event when obstacle status has changed.
* May be called by subclass methods.

=Y

protected void notify (Object object) {
event.notify (this) ;

}

We assume the sensor can do a number of things. It can detect an
obstacle. It can determine its direction relative to the J-Bot
and determine the distance to the obstacle. Although the abstract
class supports a fine resolution, an implementation may not. For
example, the contact whiskers wused in the next chapter are
limited to detecting an object to the left and the right and the
distance to the J-Bot 1is always 0 since the object must be in
contact with the J-Bot to be detected. Infrared range finders
provide a more accurate reading at a much farther range.

The following 1is a sample subclass of BaseSensor. As noted
earlier, it uses a random number generator to indicate when an
obstacle is found.

package JBot;

import stamp.util.os.* ;
import java.util.* ; // for Random class

>*

/
Random sensor class

<p>

This sensor generates random obstacle information.

It only works changes obstacle information when polled.
Direction and distance are random.

@version 1.0 8/23/02
Qauthor Parallax Inc.

* % X ok ok X X ok ok X

~

public class RandomSensor extends BaseSensor ({
protected int direction ;
protected int distance ;
protected Random generator = new Random () ;

Chapter #4: Adding Multitasking To The J-Bot

*

Generate a random number between 0 and limit

@param limit maximum random value

* % X % %

* @returns obstacle detected

%Y
protected int random (int limit) {
int result = generator.next () / (Random.MAX_RAND/ (limit+1)) ;
return (result > limit) ? (result - 1) : result ;
}
/‘k‘k

* Indicate whether an obstacle has been detected.

* Normally used when polling versus using an event.
*

* @returns obstacle detected

*/
public boolean obstacleDetected () {
if (random (9) == 0) {

// Obstacle seen 1:10 times

direction = random(4)*45 ; // integral 45 degree values from 0-180
distance = random(10) ;

notify () ;
return true ;
} else {

// Nothing detected. Reset stored values.

direction = 0 ;
distance = none ;
return false ;

—

Indicate initial obstacle position.
For simple detection systems the detection of an object
on the right and left will return front.

* X X % %

* @returns obstacle's relative direction (left, right, etc.)
wy

public int obstacleDirection () {
return direction ;

}

*

/
Get the distance to an obstacle in the specified direction.
A value of <code>none</code> indicates no object detected.

@param direction to get range for

P I R

* @returns distance to an obstacle for the specified direction
wy

public int obstacleDistance (int direction) {
return distance ;

}
/‘k‘k

* Set minimum event notification distance.
* Notification will not occur until an obstacle is

Chapter #4: Adding Multitasking To The J-Bot

* outside of this distance. The minimum value is 0.
*

* @param minimumDistance minimum number of inches to detect an obstacle
=Y
public void setMinimumEventDistance () {
/* Default case is to ignore the minimum distance
* For example, contact oriented sensors can only detect objects
* when they are in contact with them.

*/

The random generation of an obstacle occurs about once every
tenth time the random sensor object is polled wusing the
obstacleDetected method. It stores a random direction and
distance so the controlling task can obtain values that will not
change until the object is polled again. Although the event
object is not set in the test programs in this chapter they may
in later applications which is why the notify method is called
when an object 1s detected. If the sensor object 1is operated
independently of the object that will use the obstacle
information then a task can be setup to do the polling and the
change in status can be signaled through the event.

Instead of putting the J-Bot support class in the test class we
create a standalone support task class for avoiding obstacles.
This will allow the task to be used in other applications in
later chapters. The following 1is the AvoidObstacleTask class
source code.

package JBot;

import stamp.util.os.* ;

/‘k‘k

* Simple obstacle avoidance task

* <p>

* This tries to stay away from obstacles using a sensor object.
* The J-Bot will be moved in fixed increments.

*

* @version 1.0 8/23/02

* Qauthor Parallax Inc.

*

~

public class AvoidObstacleTask extends Task {
JBotInterface jbot ;
BaseSensor sensor ;

public AvoidObstacleTask (BaseSensor sensor, JBotInterface jbot) {
this.sensor = sensor ;
this.jbot = jbot ;

}

protected void execute () {
final int turnAround = 1 ;

switch (state) {

Chapter #4: Adding Multitasking To The J-Bot

case initialState:

if (sensor.obstacleDetected ()) {
int direction = sensor.obstacleDirection () ;
if (sensor.obstacleDistance (direction) < 2) {

// Too close, back up 2 inches, then turn around

jbot .move (-2) ;
jbot.wait (turnAround) ;
} else {

// Enough room to pivot away from object

if (direction < 75) {
// Something to the left
jbot.pivot (-2) ;
} else {
// Something in front or to the right
jbot.pivot (2) ;
}

jbot.wait (turnAround) ;

}

} else {
// Nothing detected. Move forward 1 inch

jbot.move (1) ;
jbot.wait (initialState) ;
}

break;

case turnAround:
// J-Bot has backed up. Time to pivot 180 degrees

jbot.pivot (4) ;
jbot.wait (initialState) ;
break;

default: // default catches bad states
stop () ;
break;

}

The AvoidObstacleTask requires a sensor and a JBotInterface in
its constructor. This allows any combination to be used from a
single tasking sensor and JBotInterface to a multitasking
version.

The AvoidObstacleTask uses a simple algorithm to keep moving. It
checks the sensors to see if an object is in the way. If the
object is in contact or very close to the J-Bot then the program
backs the J-Bot away from the obstacle and turns around 180°
which is 4 pivot steps. If the obstacle is farther away then the
J-Bot will try pivoting away from the obstacle. The J-Bot moves
forward one inch if no obstacle is detected.

The program makes two assumptions. First, it is able to move an
inch forward if no obstacle is detected. Second, there is no

Chapter #4: Adding Multitasking To The J-Bot

obstacle behind it when it starts. The first assumption may not
be wvalid with a contact sensor but it may work in a practical
sense because either the obstacle will be pushed for up to an
inch or the J-Bot will spin its wheels for a short period of time
if it runs into a fixed object that it cannot move. In either
case, the J-Bot should be able to make adjustments and proceed on
forever.

The test program is now significantly shorter since most of the
work is done in the AvoidObstacleTask class just presented.

import stamp.core.*;
import stamp.util.os.* ;
import JBot.* ;

*

~

* % X X ok % X X

Test AvoidObjstacleTask class
<p>
Tun the J-Bot so it avoids obstacles.

@version 1.0 7/23/02
Qauthor Parallax Inc.

~

public class AvoidObstacleTaskTestl {
public static void main () {
new AvoidObstacleTask
(new RandomSensor ()
, new RampingJBot (new MultitaskingdBot ())) ;

Task.TaskManager () ;
System.out.println ("All done") ;
}
}

The test program is now simply a main method that creates the
AvoidObstacleTask object. The parameter to the task 1is the
RandomSensor and a RampingJBot object. The J-Bot will now wander
around as 1f it were detecting obstacles using built-in sensors.
We will be able to use the classes just presented with other
sensors defined in later chapters by simply changing the test
program so the appropriate sensor is used. If the sensor requires
a task then it can be created as well, either by the sensor
object or in the main method.

Now that the test program 1s available, the J-Bot can be
programmed and it will then run forever. Of course, movement
could be limited by adding a timer task that stopped the other
tasks after a fixed amount of time. This is one of the exercises
presented at the end of the chapter.

Activity #4: Task Status And Living Without Garbage Collection

Chapter #4: Adding Multitasking To The J-Bot

The multitasking programs presented up to this point have been
relatively simple and well tested. Debugging can get more complex
as the number of tasks increases and as the tasks become more
complex. Luckily there are ways to make debugging easier.

At this point it 1s wuseful to take a quick look at memory
allocation using the Javelin. In particular, the Javelin does not
support garbage collection. This <can be a problem if an
application is not properly designed because it is possible to
allocated all available memory at which point the Javelin will
terminate the application. The Javelin will notify the debugger
of the error if the Javelin is connected to the PC with the IDE
running.

It is preferable to catch problems before they happen. We present
some status classes and tasks that will provide more insight into
what the multitasking system is doing. These can be used with any
set of tasks. They will not be used elsewhere in this book but
they should be added if problems are encountered building new
applications or modifying ones presented in this book.

The first step is the ShowStatus class. This is the basis for the
TaskStatus and SemaphoreStatus classes. Here is the ShowStatus
class.

package stamp.util.os;

import java.io.* ;
import stamp.core.* ;

*

~

* % X o ok X X o

Multitasking status support class
<p>
This is a class object only.

@version 1.0 8/23/02
Qauthor Parallax Inc.

~

public class ShowStatus {
static public PrintStream stream = System.out ;

protected static void print (Event event) {
stream.print ("<")
stream.print (event.name ()) ;
stream.print ("> ")

}

protected static void print (int value) {
stream.print (value) ;

}

protected static void print (String string) {
stream.print (string) ;

}

protected static void println (String string) {

Chapter #4: Adding Multitasking To The J-Bot

stream.println (string) ;

}

protected static void println () {
stream.println (" ") ;

}

This class, like the TaskStatus and SemaphoreStatus classes
provide only class methods. The constructor is protected to
prevent creation of class objects that would do nothing. This
class provides Dbasic print support that can be redirected by
changing the stream variable. Note that the Event class is the
basis for the Task and Semaphore classes.

Next is the TaskStatus class file.

package stamp.util.os;

import java.io.* ;
import stamp.core.* ;

*

Display multitasking status

<p>

Shows active tasks and free memory.
This is a class object only.

@version 1.0 8/23/02
Qauthor Parallax Inc.

* % X ok ok X X ok of

~

public class TaskStatus extends ShowStatus {
protected TaskStatus () {
// Prevents creation of object

}

protected static void printStateName (int state) {
switch (state) {
case Task.initialState:
print ("initial ") ;
break ;

case Task.checkTimer:
print ("sleeping") ;
break ;

case Task.interrupt:
print ("interrupt") ;
break ;

case Task.terminate:
print ("terminate")
break ;

case Task.stopped:
print ("stopped ") ;
break ;

Chapter #4: Adding Multitasking To The J-Bot

default:
print (state) ;
break ;

}
/‘k‘k

* Print memory status
*

* @param stream output stream

%Y

public static void printMemoryStatus () {
print (Memory.freeMemory ()) ;
println (" bytes free") ;

}

/‘k‘k

* Print task status

%Y

public static void printTaskStatus (Task task) {
print (task) ;
printStateName (task.state) ;
println () ;

}

/‘k‘k

* Print list of tasks

*

* (@param prefix print before list of tasks

* @param running true if running tasks should be listed

wy
public static void printTasks (String prefix, boolean running) {
println (prefix) ;

for (Task task = Task.taskStatusList

; task != null
; task = task.nextTaskStatus
) |

if (task.running () == running) {
print (non) ;
printTaskStatus (task) ;

}

}
/‘k‘k

* Generate a random number between 0 and limit
*
* @param stream output stream
=Y
public static void show () {
Task task = Task.taskList ;

println ("== Task Status ==") ;
printMemoryStatus () ;

printTasks ("Tasks running", true) ;
printTasks ("Tasks not running", false) ;
if (task == null) {

println ("-- Empty task list --") ;

Chapter #4: Adding Multitasking

To The J-Bot

} else {
// Check taskList integrity
do {
task = task.nextTask ;
if (task == null) {
println ("== Error: Task list not circular ==") ;
break ;
}
} while (Task.taskList != task) ;
}
println () ;

The show method provides a detailed account

all tasks.

Individual task status can be obtained using printTaskStatus.
This support 1is included in this class instead of the Task class
so there is no added overhead using Tasks if the status methods

are not used.

The SemaphoreStatus class file is very similar to the TaskStatus

class.

package stamp.util.os;

import java.io.* ;
import stamp.core.* ;

>*

Display multitasking status

<p>

Shows active tasks and free memory.
This is a class object only.

@version 1.0 8/23/02
Qauthor Parallax Inc.

* % X X o o X X o

~

public class SemaphoreStatus extends ShowStatus {
protected SemaphoreStatus () {
// Prevents creation of object

}
/‘k‘k

* Print task status including semaphore information
%y

public static void printTaskStatus (Task task) {
// Print general status
TaskStatus.printTaskStatus (task) ;

// Print acquired semaphores

for (Semaphore semaphore = Semaphore.semaphorelist
; semaphore != null
; semaphore = semaphore.nextSemaphore
) |
if (semaphore.acquiredTask == task) {

print (" Acquired ")

Chapter #4: Adding Multitasking To The J-Bot

print (semaphore) ;
println () ;
}
}

// Print semaphore waiting status
for (Semaphore semaphore = Semaphore.semaphorelist
; semaphore != null
; semaphore = semaphore.nextSemaphore
) |
for (Task waitingTask = semaphore.waitingTaskList
; waitingTask != null
; waitingTask = waitingTask.nextTask
) |
if (waitingTask == task) {
print (" Waiting for ") ;
print (semaphore) ;
println () ;
}

}
/‘k‘k

* Generate a random number between 0 and limit
*

* @param stream output stream

=Y
public static void show () {
println ("== Semaphore Status ==") ;
for (Semaphore semaphore = Semaphore.semaphorelist
; semaphore != null
; semaphore = semaphore.nextSemaphore
) |
print (semaphore) ;
if (semaphore.ready ()) {
println ("ready") ;
} else {
print ("acquired by ") ;
print (semaphore.acquiredTask) ;
println () ;
if (semaphore.acquiredTask.state == Task.stopped) {
println (" ** Error: Task stopped **")
}
println (" Waiting tasks")
for (Task task = semaphore.waitingTaskList
; task != null

; task = task.nextTask

) A

print (" ") ;
print (task) ;
println () ;

Chapter #4: Adding Multitasking To The J-Bot

The show method operates in a fashion similar to the show method
in the TaskStatus class. The method walks the semaphorelList and
the waitingTaskList of each semaphore providing details about the
tasks 1involved. The printTaskStatus method provides a more
detailed report compared to the TaskStatus method of the same
name. While the show methods of both are normally called together
the SemaphoreStatus.printTaskStatus 1is normally used alone since
it is a superset of the information provided by the TaskStatus
class. In general, the SemaphoreStatus class is not required if
semaphores are not used by an application.

Finally we have the WatchHeapTask. This task is designed to track
memory usage and report any changes (which will always be an
increase). The class definition is as follows.

package stamp.util.os;

import stamp.core.*;
import stamp.util.os.*;

/‘k*
* Watch heap space task.
* <p>
* Start this task after all memory has been allocated.
* It will track free memory and report any changes.
*
* @version 1.0 8/15/02
*
* @author Parallax Inc.
*/
public class WatchHeapTask extends Task {
protected int freeMemory = 0 ;
protected boolean enable = true ;
public Event event ;
/‘k*

* Create WatchHeapTask.
* Errors reported on System.out
=Y

public WatchHeapTask () {

}

/‘k*
* Control error checking
%Y

public void enable (boolean enableNow) {
enable = enableNow ;

if (enableNow) {
freeMemory = 0 ;
}
}

/**

* Return task name

Chapter #4: Adding Multitasking To The J-Bot

=Y
public String name () {
return "WatchHeap" ;

}

/‘k‘k
* Create WatchHeapTask.

* Errors reported by notifying the event.
*

* @param event Event to notify when heap grows

wy
public WatchHeapTask (Event event) {
this.event = event ;

}

protected void execute () {
/* Memory.freeMemory is stack point dependent
* so it must be called at the same point each
* time to provide consistent information
wy

int latestFreeMemory = Memory.freeMemory () ;
// Exit if this is the only task running
if (nextTask == this) {

stop () ;
return ;

}

if (enable) {

if (freeMemory == 0) {
freeMemory = latestFreeMemory ;
} else if (freeMemory != latestFreeMemory) {

// Memory usage has increased (cannot decrease)

if (event == null) {
System.out.println ("Error: Memory leak") ;
System.out.print (" Last: ") ;
System.out.println (freeMemory) ;
System.out.print (" Now: ") ;
System.out.println (latestFreeMemory) ;

} else {
event.notify () ;

}

// Reset low water mark
freeMemory = latestFreeMemory ;

The execute method is a bit unique in that it does not use the
state wvariable because there is no need. The task can be used
with an Event or System.out which is wused if no event is
provided. The Memory class 1is used to obtain the amount of free
memory available. This wvalue must be taken at the same point in
the program each time because it is Dbased on the Java stack
pointer and heap limit. As it turns out, the stack pointer will

Chapter #4: Adding Multitasking To The J-Bot

always be 1in the same spot when the task’s execute method 1is
called. This is why the free memory wvalue 1is saved 1in
latestFreeMemory.

The task simply stores off the current free memory value the
first time through. This should allow other applications to
perform their initial memory allocation. After that point memory
allocation normally ceases. If not, the task can be started later
or initial error messages can be ignored. The task resets its
freeMemory variable each time a memory increase is detected.

The memory checking can be enabled and disabled using the enable
method. Enabling checking will reset the freeMemory variable so
it will be set the next time the task executes. Note, this 1is
different than suspending the task. In the latter case, the
freeMemory variable will not be reset but the task will not be
able to detect any changes until the task is resumed.

So what can we do with all this new found information. Looking
back to the original multitasking demo program we come up with
the following.

import stamp.core.*;
import stamp.util.os.*;

*

Multitasking Test 1

/

@version 1.0 8/15/02

Qauthor Parallax Inc.

/

L I A

public class MutlitaskingTest6 extends Task {
// execute () states
final static int statel 1
final static int state2 2
final static int state3 = 3

~e Ne N

static Semaphore semaphore = new Semaphore () ;
String name ;

MutlitaskingTest6 (String name) {
this.name = name ;

}
/‘k‘k

* Get task name.
*
* @return name of task.
=Y

public String name () {
return name ;

}

public void show (String text) {
System.out.print (name) ;

Chapter #4: Adding Multitasking To The J-Bot

System.out.print (": ") ;
System.out.println (text) ;
}

protected void execute () {
switch (state) {
case initialState:

show ("Initial state") ;
nextState (statel) ;
break ;

case statel:
show ("State 1")

new Integer (0) ; // memory leak !!!

nextState (state2) ;
break ;

case state2:

show ("State 2")

if (! semaphore.acquire (state3))
stop () ;

}

break ;

case state3:

show ("State 3")

default: // terminate should be the default to catch bad states
stop () ;
break;

}

public static void main() {

Task taskl = new MutlitaskingTest6
Task task2 = new MutlitaskingTest6
Task task3 = new MutlitaskingTest6

Task task4 = new WatchHeapTask

// Show general status
TaskStatus.show () ;
SemaphoreStatus.show () ;

// Run tasks
Task.TaskManager () ;

// Show general status
TaskStatus.show () ;
SemaphoreStatus.show () ;

// Show task status

SemaphoreStatus.printTaskStatus
SemaphoreStatus.printTaskStatus
SemaphoreStatus.printTaskStatus
SemaphoreStatus.printTaskStatus

System.out.println ("All done"

0)

("Task 1"
("Task 2"
("Task 3"

’

taskl
task?2
task3
task4

—_— — — —

Chapter #4: Adding Multitasking To The J-Bot

The MultitaskingTest6 objects all have a unique name assigned to
them. This is often done in the class definition if only one
instance of the class will be created. In this case there are
three so differentiating the tasks is useful in debugging. There
is only one Semaphore so its name is left as the default.

The TaskStatus and SemaphoreStatus show methods are used to
provide a general overview before and after the task manager
starts running the programs. These methods can be called while
the system is running as well. Individual task status information
is presented at the end using the printTaskStatus method.

A WatchHeapTask object is also created. We include a memory leak
in statel of the MultitaskTest6 by allocating an Integer object.
This could be any Java object since they all reduce the amount of
free space.

Running the main method generates quite a bit of text in the
message window. The 1initial status information shows the four
tasks that are running. The WatchHeapTask will also report a
memory leak although it will do so only once since all three
tasks will allocate memory at almost the same time. The
WatchHeapTask task will only notice one increase but it does
notify you of the problem.

The information at the end shows off two errors that were
programmed in the execute method. The first is that Task 1 is
stopped while it has acquired the lone semaphore. The second
problem is that the other two tasks are waiting on this semaphore
which will never be released. This means the other two tasks
would never continue.

The MultitaskingTest6 class shows off two common programming
errors and how they can be detected. The status classes were also
presented. These can provide insight into the operation of a
multitasking application.

Chapter #4: Adding Multitasking To The J-Bot

Summary Congratulations, understanding
multitasking is not an easy task!
. . Through following the procedures in this
Applicati chapter, you may have had your first
ons taste of testing and troubleshooting a

multitasking system. Most of the classes

will be wused in the following chapters
although the test programs will not.

and

Activity #3 presented a basic obstacle avoidance system that was
coupled with a psuedo sensor system that used random numbers to
simulate obstacle detection. Subsequent chapters will use real
Sensors.

Activity #4 introduce the garbage collection problem. While the
solution 1s good programming techniques, a sample task that
checks for memory leaks was presented. This task can be used as a
debugging tool by incorporating it into other applications where
memory leakage have become a problem.

Real World Example

Multitasking is used in many embedded systems and most robots. It
allows a processor to control many devices at the same time. For
example, a system that controls the heating plant in an office
may have a number of temperature sensors that need to be
monitored along with temperature settings. There would also be
fans to control air movement and heating and cooling units to
control as well.

J—-Bot Application

The Projects section challenges you to make the J-Bot do more
than was presented in this chapter. Adding more tasks to the
system reduces the amount of time each has to execute but it
allows more functions to be performed. In this case the J-Bot
gets to walk (roll actually) and chew gum (play a tune) at the
same time.

Chapter #4: Adding Multitasking To The J-Bot

Questions and
Projects

Questions

1. Explain the difference between preemptive and non-
preemptive multitasking systems.

2. Explain the difference between background virtual
peripheral multitasking and the non-preemptive, state
machine multitasking classes.

3. What happens to the other tasks if a task calls
CPU.delay (30000)°7

4. Why would you use a semaphore object?

Exercises

1. Setup two tasks to control the J-Bot. Use a semaphore
object to limit access to one task at a time.

2. Use a CallableTask to control the J-Bot so a called state
machine subroutine handles part of the arc movement within
a figure 8 path. Use this so the J-Bot will circumscribe a
figure 8. Try other complex figures wusing the same
technique.

3. Create a DistributeEvent class that allows zero or more
events to be added (and deleted) to a DistributeEvent
object. Each of these events should be notified when the
notify method of the DistributeEvent object is called.

4. Add a timer-based task to the AvoidObstacleTaskTestl
program. The timer task should sleep for a fixed amount of
time such as 15 seconds and then stop the other tasks
controlling the J-Bot.

5. The WatchHeapTask currently checks for memory leaks. It
could also check to see if the amount of free memory 1is
getting very low. Add this type of check to the execute
method so it generates an error if the amount of free
memory goes below 1000 bytes. Create enough objects so this
error occurs to verify the test. Then modify the class so
the limit value is maintained in a variable.

Chapter #4: Adding Multitasking To The J-Bot

Projects

1. A multitasking J-Bot application uses only a couple tasks.
Add another task that uses the TaskTonGenerator to play a
tune while the J-Bot roams around the floor.

Does the tone generation affect the movement of the J-Bot?

2. Unfortunately, the J-Bot will normally be disconnected from
the PC when the J-Bot is moving. It was difficult to keep
the J-Bot connected to the PC when the J-Bot was programmed
for limited movement. Running programs like those in the
prior activity make it impractical to do so. The J-Bot may
simply stop if an error occurs. Use the WatchHeapSpace task
so it will sound an audible tone when an leakage error
occurs. Hint: Use FREQOUT instead of TaskToneGenerator.

3. It is often useful to provide status information on demand.
This could Dbe provided wvia a task that waits for PC
keyboard input to the message window. Add a task that will
poll for input and deliver the status information when the
spacebar is pressed.

