Chapter #6: Light Sensitive Navigation with Photoresistors

Chapter #6: Chapter #6: Light Sensitive
Li@ﬂTt Navigation with Photoresistors
sensitive The photoresistors in your kit
Navigation can be used to make your J-Bot
with detect variations in light level.
. With some programming, your J-Bot
Photoresistors can be transformed into a

photophile (a creature attracted to 1light), or a photophobe (a
creature that tries to avoid light).

To sense the presence and intensity of 1light vyou’ll build a
couple of photoresistor circuits on your J-Bot. A photoresistor
is a light-dependent resistor (LDR) that covers the spectral
sensitivity similar to that of the human eye. The active
elements of these photoresistors are made of Cadmium Sulfide
(Cds) . Light enters into the semiconductor layer applied to a
ceramic substrate and produces free charge carriers. A defined
electrical resistance is produced that is inversely proportional
to the illumination intensity. In other words, darkness produces
high resistance, and high illumination produces very small
amounts of resistance.

The specific photoresistors included in the J-Bot kit are EG&G
Vactec (#VT935G). If you need additional photoresistors they are
available from Parallax as well as from many electronic component
suppliers. See Appendix A: J-Bot Parts Lists and Sources. The
specifications of these photoresistors are shown in Figure 6.1:

Photoresistor Specifications

Resistance (Ohms) Peak Response Time
Figure 6.1: EG&G 10 Lux 2850K Dark Spectral Viaax @1fc
Vactec Response (ms, typ.)
Photoresistor Min | Typ. | Max. | min. | Sec. nm Rise (1-1/) | Fall (1fe)
Specifications 20K | 29.0K| 38K | M | 10 550 100 35 5

Illuminance 1s a scientific name for the measurement of incident

light. The unit of measurement of illuminance is commonly the
"foot-candle" in the English system and the "lux" in the metric
system. While wusing the photoresistors we won't be concerned

about 1lux levels, Jjust whether or not illuminance is higher or
lower in certain directions. The J-Bot can be programmed to use
the relative 1light intensity information to make navigation
decisions. For more information about light measurement with a
microcontroller, take a look at Earth Measurements Experiment #4,
Light on Earth and Data Logging.

Chapter #6: Light Sensitive Navigation with Photoresistors

Activity #1: Building and Testing Photosensitive Eves

Parts

Figure 6.2 shows the new
parts introduced in this (g)

1%
their schematic symbols. 2 2

experiment along with
Below 1is a 1list of the

A\N

parts you’ll need. Both
parts types of parts are
nonpolar, meaning that

terminals 1 and 2 as shown
may be swapped without
affecting the circuit.

1

A pF !1;:: :

n— -~

Piezoelectric speaker
Photoresistors

.01 pF 4 ;:

1

0.1 UWF capacitors o

1)
2)
2)
2) 0.01 UF capacitors
2)
mi

o —}—-~

220 Q resistors
isc.) jumper wires
Figure 6.2: Photoresistor and capacitor
circuit symbols and parts.

Build It!

Figure 6.3 shows (a) the resistor/capacitor (RC) circuit for each

photoresistor and (b) a breadboard example of the circuit. A
photoresistor is an analog device. Its wvalue varies continuously
as illuminance, another analog value, varies. The
photoresistor’s resistance is very low when it’s light-sensitive
surface 1is placed in direct sunlight. As the 1light level
decreases, the photoresistor’s resistance increases. In complete
darkness, the photoresistor’s value can increase to more than 1
MQ. Even through the photoresistor is analog, its response to
light is nonlinear. This means if the input source (illuminance)

varies at a constant rate, the photoresistor’s value does not
necessarily vary at a constant rate.

Chapter #6: Light Sensitive Navigation with Photoresistors

Vdd Vdd
:I:.O1pF
P5 —_— .01 pF
220 Q
4
P3 D——AWW
220 Q

(a) (b)

Figure 6.3: (a) Two photoresistor RC circuits for measurement of resistance that
varies with light, and (b) breadboard example of the circuit.

Remember: The servo circuits are not shown in the
schematics any more, but they are still shown in the
breadboard diagrams. All activities from Chapter #2

TIP onward are designed so that the servos’ headers can
remain plugged into servo ports 12 and 13 at all
times.

Programming to Measure the Resistance

The circuit in Figure 6.3 (a) was designed for use with the JAVA

CPU.rcTime method. This command can be used with an RC circuit
where one value, either R or C, varies while the other remains
constant. The CPU.rcTime method lends itself to measuring the
variable values because it takes advantage of a time varying
property of RC circuits. The time it takes for the voltage on an
RC circuit to change voltage depends on R X C, the RC time
constant. The RC time constant is often denoted by the Greek

letter Tau (7).

For one of the RC circuits shown in Figure 6.3 (a), the first
step 1in setting up the CPU.rcTime method measurement is charging
the lower plate of the capacitor to 5 V. Setting the I/O pin
connected to the lower capacitor plate by the 220 Q resistor high
for a few ms takes care of this. Next, the CPU.rcTime method can
be used to take the measurement of the time it takes the lower
plate to discharge from 5 to 1.4 V. Why 1.4 V? Because that’s

Chapter #6: Light Sensitive Navigation with Photoresistors

the Javelin I/0 pin’s threshold voltage. When the voltage at an
I/0 pin set to input is above 1.4 V, the wvalue in the input
register bit connected to that I/O pin is “1.” When the voltage
is below 1.4 V, the value in the input register bit is “0.”

The CPU.rcTime method for the circuit shown in Figure 6.3 measures
how long it takes for the voltage at the lower plate of the
capacitor to fall from 5 to 1.4 V. This time varies according to
the formula:

t :ln(vmmm)
R><C) \hmm
t —ing 5V s
Rx0.01x10 1.4V

t=In(3.57)xRx0.01x107° s

t=1.27x10°xR s (4.1)

Equation 4.1 indicates that the time it takes the voltage at the
lower plate of the capacitor in one of the Figure 4.3 (a) RC
circuits to drop from 5 to 1.4 V is directly proportional to the

photoresistor’s resistance. Since this resistance varies with
illuminance (exposure to varying levels of light), so does the
time. By measuring this time, relative light exposure can be
inferred.

The CPU.rcTime method changes the I/0 pin from output to input. As
soon as the I/0O pin becomes an input, the voltage at the lower
plate of the capacitor starts to fall according to the time
equation just discussed. The Javelin starts counting in 8.68 WUs
increments until the voltage at the capacitor’s lower plate drops
below 1.4 V.

For Best Results: Eliminate direct sunlight; it’s too
TIP bright for the photoresistor circuits.

O Run Photoresistorl.java. It demonstrates how to wuse the
CPU.rcTime method to read the photoresistors. It uses the
Photoresistor class defined first.

O This program makes use of the Message window and the debugger,
so leave the serial cable connected to the JSDB while

Photoresistorl.java is running.

package JBot ;

Chapter #6: Light Sensitive Navigation with Photoresistors

import stamp.core.*;

>*

/
Basic Photoresistor Class

<p>

Tests the photoresistor circuits using CPU.rcTime.

@version 1.0 10/2/02
Qauthor Parallax, Inc.

* % X X ok ok X X

~

public class Photoresistor {
public int pin ;
public int timeout ;
public int chargeTime ;
public int bias ;
public boolean state ;

/‘k‘k
* Gets RC time value in 8.68us units
*
* @param pin CPU.pin to use
* @param state initial RC state
* @param timeout maximum rcTime return value
* @param chargeTime msec to charge/discharge RC circuit
wy
public Photoresistor (int pin, boolean state, int timeout, int chargeTime,
int bias) {

this.pin = pin ;
this.timeout = timeout ;

this.chargeTime = chargeTime ;
this.state = state ;
this.bias = bias ;

}

/‘k‘k

* Gets RC time value in 8.68us units
*
* @returns RC time
wy
public int rcTime() {
// Measure RC time for photoresistor.
CPU.setOutput (pin) ;

CPU.writePin (pin, state) ; // setup to charge circuit
CPU.delay (chargeTime * 10) ; // charge circuit

int result = CPU.rcTime (timeout, pin, ! state) ;

return (result > 0) ? (result - bias) : bias ;

The Photoresistor class handles most of the work. Each object
handles one pin. The constructor saves the details such as the
pin number. The work is done by the rcTime method. Normally the
RC circuit 1s the same so setting the parameters once 1is
sufficient. The rcTime method initially charges the capacitor
circuit and then uses the CPU.rcTime method to determine how
quickly the circuit recovers.

Chapter #6: Light Sensitive Navigation with Photoresistors

The bias value will be 0 in the first example, Photoresistorl.
The value may change for the second example, Photoresistor2. The
reason for the difference is that the components are may not be
identical. For example, the resistors may be rated at 220 ohms
but this wvalue is actually the desired wvalue. The actual value
can be with 5% to 20% depending upon the part used. The same 1is
true for the other components 1like the photoresistors and
capacitors. The bias wvalue will allow the program to take these
differences into account. This is similar to the calibration of
the servos done in earlier chapters.

The Photoresistorl class file simply uses the Photoresistor class
for each input pin.

import stamp.core.*;
import JBot.* ;

/**

* Basic Photoresistor Test Program

* <p>

* Tests the photoresistor circuits using CPU.rcTime.
*

* @version 1.0 10/2/02

* @Qauthor Parallax, Inc.

*

~

public class Photoresistorl {

public static void main() {
Photoresistor leftPhoto = new Photoresistor (CPU.pinb, true, 250, 2,
Photoresistor rightPhoto = new Photoresistor (CPU.pin3, true, 250, 2,

o O
- —
~

while (true) {
// Measure RC time for right photoresistor.
// Display RC time measurements

System.out.print ("L ") ;
System.out.print (leftPhoto.rcTime()) ;
System.out.print (" R ") ;

(

System.out.println (rightPhoto.rcTime()) ;

How The Photoresistor Display Works

The Photoresistorl program creates a pair of Photoresistor
objects. It then repeatedly prints out the results of the rcTime
method calls.

FYI A result of -1 indicates that the result is out of
range. The timeout wvalue (250) can be increased in
which case the out of range value may show up less
often although the default value used in the program

Chapter #6: Light Sensitive Navigation with Photoresistors

should be sufficient for the experiments and hardware
used in this chapter.

One thing you may notice about the results displayed by the
program is that the wvalues may be quite different even if the
photoresistors are aimed 1in the same direction. A variable
resistor or capacitor could be used to adjust the values for each
sensor so they are the same for similar light conditions but this
tends to be expensive and hard to do. What we do instead is use
the bias value in the Photoresistor class.

The differences between the left and right values tend to be off
by the same relative amount. Keep in mind that there will always
be some difference because making lighting conditions identical
is actually very difficult. Still, it should be relatively
apparent what the difference values are.

Your Turn

O Try determining the bias value by viewing the results printed
by the Photoresistorl program. The bias value is the absolute
difference between the two sensors under the same lighting
conditions. The Dbias wvalue should be applied to the sensor
that has the higher wvalue.

O Modify the Photoresistorl program so the bias value is printed

at the end of the line showing each sensor result. Hint: Store
the rcTime results in integer variables left and right.

Photoresistor Bias

The Photoresistor2 program, shown below, makes minor changes to
the Photoresistorl program.

import stamp.core.*;
import JBot.* ;

/**

* Basic Photoresistor Test Program

* <p>

* Tests the photoresistor circuits using CPU.rcTime.
*

* @version 1.0 10/2/02

* @author Parallax, Inc.

=Y

public class Photoresistor2 {
public static void main() {
Photoresistor leftPhoto = new Photoresistor (CPU.pinb5, true, 250, 2, 0) ;
Photoresistor rightPhoto = new Photoresistor (CPU.pin3, true, 250, 2, 30)

Chapter #6: Light Sensitive Navigation with Photoresistors

while (true) {
// Measure RC time for right photoresistor.
// Display RC time measurements

n L n)
(leftPhoto.rcTime () +5)/10) ;
n R n)
(rightPhoto.rcTime ()+5)/10) ;

System.out.print
System.out.print
System.out.print
System.out.println

The first change 1is to the bias wvalue. In this case the bias
value is 30 and applied to the right sensor. During the tests
the right sensor generated a wvalue of 61 while the left sensor
generated a 31 under the same conditions.

The second change occurs where the rcTime results are printed.
The equation used divides the results by 10. Adding 5 rounds the
result up. For example, a result of 15 prints as 2 while 12
prints as 1.

The Photoresistor?2 program rounding does not take in
FYI !
account the out of range value of -1.

The reason for reducing the magnitude of the rcTime result 1is
that the accuracy of hardware is limited. Dividing the result by
10 reduces the number of significant digits by 1. One thing that
you will notice is that the change in results occur less often as
small changes are made to the lighting conditions. This can be
done by moving the light source or putting an obstacle in the way
to cast a shadow over the sensors.

Where the original program would print out a range of wvalues for
a particular lighting condition, such as 157 to 161, the new
program would consistently print a value of 16. Differences for
minor changes in lighting conditions would be a difference of 1
or 2 instead of a difference of 1 to 24.

Reducing the sensor variance for minor changes 1in 1lighting
conditions is critical. Otherwise the J-Bot will react too often
to minor changes. Reducing the wvariance within the sensor code
will isolate such differences from the main program that utilizes
the sensors.

Your Turn

Chapter #6: Light Sensitive Navigation with Photoresistors

O Fix Photoresistor2 so it retains the out of range value (-1).
Hint: Create a method that performs the rounding so the code
does not have to be replicated for each sensor.

O Determine an upper threshold wvalue that the sensors return
when aimed at a bright light. This wvalue should be low enough
that it will always Dbe Dbelow either sensor result. For
example, if the left result varies from 21 to 24 and the right
result is 19 to 22 then the threshold should be 18 or 19.

O Try replacing one of the 0.01 WUF capacitors with a 0.1 WuF
capacitor. Which circuit fares Dbetter in bright 1light, the
one with the larger (0.1 MF) or the one with the smaller (0.01
UE) capacitor? What 1s the effect as the surroundings get
darker and darker? Do you notice any symptoms that would
indicate that one or the other capacitor would work better in
a darker environment? Did you have to change the charge or
timeout values?

O Make sure to restore your circuit to its original state before
moving on to the next activity.

Activity #2: Sensor Class — Photoresistors

The problem with Photoresistor class is that utilizes CPU.delay.
Although it uses a small delay value it can impact other tasks in
a multitasking system. Unfortunately, using the rcTime method
will also dimpact other tasks but its delay 1is less than the
charge time. It would Dbe nice to have background virtual
peripheral support but that is not part of the Javelin’s
repertoire.

The PhotoresistorSensor needs a multitasking component,
PhotoresistorSensorTask, to reduce its overhead. The two work in
concert allowing another task to poll each photoresistor sensor.
The sensor object works in a slightly different fashion than the
whisker sensor because the photoresistor does not determine the
range to an object or a light source but rather the intensity.

For our purposes, we assume that the light intensity will be used
to simulate an obstacle. A dark area will be closer to an
obstacle while a bright area will be considered an open area.
Subsequent example programs will try to move the J-Bot toward the
light which would be the same as moving away from an obstacle.
Therefore a bright area should not indicate an obstacle. We will
have to come up with a threshold value which will be done using
the test program that utilizes the PhotoresistorSensor object.
In essence, the high values from the rcTime method will have to
be inverted since a low value would indicate a close obstacle
versus a brigher/higher rcTime value that indicates no obstacle
or one that is farther away.

Chapter #6: Light Sensitive Navigation with Photoresistors

We start our class definitions with the PhotoresistorSensor class
based on the BaseSensor class already presented and used.

package JBot ;

import stamp.core.*;
import java.lang.Math.* ;

*

/
Photoresistor Sensor Class

<p>

Tests the photoresistor sensors using PhotoresistorTask.

Indicates there is no obstacle if light intensity is below a threshold.

@version 1.0 10/2/02
Qauthor Parallax, Inc.

* % X X ok ok X X o

~

public class PhotoresistorSensor extends BaseSensor {
protected PhotoresistorSensorTask sensorTask ;

protected int direction ;

protected int distance ;

protected boolean obstacleDetected = false ;
protected int lowerLimit ;

protected int deadband ;

/‘k‘k
* Create photoresistor sensor object and support task
*
* @param leftPin CPU.pin to use
* @param rightPin CPU.pin to use
* @param state initial RC state
* @param timeout maximum rcTime return value
* @param chargeTime msec to charge/discharge RC circuit
* @param bias offset, subtract from left side >0, right <0
* @param lowerLimit lowest distance value for no obstacle
wy
public PhotoresistorSensor (int leftPin

, int rightPin
, boolean state
, int timeout
, int chargeTime
, int bias
, int lowerLimit
, int deadband) {
sensorTask = new PhotoresistorSensorTask
(this
, leftPin
, rightPin
, state
, timeout
, chargeTime
, bias) ;
this.lowerLimit = lowerLimit ;
this.deadband = deadband ;

/**

* Indicate whether an obstacle has been detected.

Chapter #6: Light Sensitive Navigation with Photoresistors

* Normally used when polling versus using an event.
*

* @returns obstacle detected

wy
public boolean obstacleDetected () {
sensorTask.checkSensors () ;

return obstacleDetected ;

—

/‘k‘k

* Indicate initial obstacle position.

* For simple detection systems the detection of an object

* on the right and left will return front.

*

* @returns obstacle's relative direction (left, right, etc.)
wy

public int obstacleDirection () {
return direction ;

}

~
*

* % X X ok % X X

~

@param direction to get range for

public int obstacleDistance (int direction) {
return distance ;

}

*

/
Update results based on sensor information.
Called by sensor task when results available.

* X X % %

@param resultLeft photoresistor rcTime result
* @param resultRight photoresistor rcTime result

*/

protected void saveResults (int resultlLeft, int resultRight)

// Current results are valid
// Save obstacle status

switch (((resultLeft > lowerLimit) 2 1 : 0)
+ ((resultRight > lowerLimit) 2?2 2 : 0)) {

default:
case 0:

obstacleDetected = false ;

break;
case 1:

direction = left ;

distance = resultlLeft ;
obstacleDetected = true ;
break;

case 2:
direction = right ;
distance = resultRight ;
obstacleDetected = true ;
break;

case 3:

Get the distance to an obstacle in the specified direction.
A value of <code>none</code> indicates no object detected.

@returns distance to an obstacle for the specified direction

{

Chapter #6: Light Sensitive Navigation with Photoresistors

// Both sensors indicate an obstacle
if (Math.abs (resultlLeft - resultRight) < deadband) {

// Both distances are close together

direction = front ;

distance = (resultlLeft > resultRight) ? resultLeft : resultRight ;
} else if (resultlLeft > resultRight) {

// Left sensor has a higher value

direction = left ;
distance = resultleft ;
} else {

// Right sensor has a higher wvalue
direction = right ;
distance = resultRight ;

}
obstacleDetected = true ;
break;

This class creates an object that maintains details about the
last obstacle reading. It creates a PhotoresistorSensorTask using
the parameters passed to the constructor so the object that
creates the PhotoresistorSensor object only needs to deal with
one object. The task remains hidden.

The BaseSensor abstract methods are defined here and simply
return the last obstacle readings. The obstacleDetected method
also calls the task’s checkSensors method. From the sensor
object’s standpoint, the method does something but what is does
is irrelevant. In reality the method makes sure the task 1is
working to generate new obstacle information.

The saveResults method is used by the task to set the latest
values. The results are already adjusted for bias and rounding so
the method only needs to contend with out-of-range results and
the brightness threshold.

The PhotoresistorSensorTask class definition follows.

package JBot ;

import stamp.core.*;
import stamp.util.os.* ;

>*

/
Photoresistor Sensor Class

<p>

Supports PhotoresistorSensor.

Should not be called directly by another other object.

@version 1.0 10/2/02
Qauthor Parallax, Inc.

* % X ok ok X X ok o

~

public class PhotoresistorSensorTask extends Task {

Chapter #6: Light Sensitive Navigation with

Photoresistors

protected PhotoresistorSensor sensor ;
leftPin ;

rightPin ;

int timeout ;

int chargeTime ;

boolean pinState ;

int resultlLeft ;

int bias ;

int
int

protected
protected
protected
protected
protected
protected
protected

final static int startChecking = 1 ;
final static int startLeftPin = 2 ;
final static int startRightPin = 3 ;

protected PhotoresistorSensorTask

(PhotoresistorSensor sensor

, int leftPin

, int rightPin

, boolean pinState

, int timeout

, int chargeTime

, int bias) {
sensor = sensor ;
leftPin = leftPin ;
rightPin = rightPin ;
this.timeout = timeout ;
this.chargeTime = chargeTime ;
this.pinState = pinState ;
this.bias = bias ;

this.
this.
this.

/**
* Check sensors if not already doing so
wy
protected void checkSensors () {
if (state == stopped) {
// Task was done. Start it again.
nextState (startChecking) ;
start () ;

—

*

Check photoresistor sensor.
Round and adjust for bias.
Handless out of range condition.

@param pin pin to check
@param bias bias value to be subtracted if positive

@result adjusted rcTime result (-1 is out of range)

* % X X ok ok X X ok o

~

protected int rcTime (int pin, int bias) {
int result = CPU.rcTime (timeout, pin, ! pinState) ;

// Handle out of range condition. Time exceeds timeout.

if (result == -1) {
result = timeout*2 ; // use big number
} else if (bias > 0) {
// Adjust bias if value is positive
result -= bias ;

Chapter #6: Light Sensitive Navigation with Photoresistors

return (result+5)/10 ;

}

/‘k*
* Multitasking support
wy
public void execute () {
switch (state) {
case startChecking:
// Setup to charge circuit
CPU.setOutput (leftPin) ;
CPU.setOutput (rightPin) ;
CPU.writePin (leftPin, pinState) ;
CPU.writePin (rightPin, pinState) ;

// Setup delay for charging circuit
sleep(chargeTime, startLeftPin);
break;

case startlLeftPin:
// Measure RC time for photoresistor.

resultLeft = rcTime (leftPin, -bias) ;
nextState (startRightPin);
break;

case startRightPin:
// Post results
sensor.saveResults (resultlLeft, rcTime (rightPin, bias)) ;
// Falls through for stop()
default:
case initialState:
stop () ;
break;

}

The constructor saves off the parameters including the matching
PhotoresistorSensor object. The sensor object also maintains a
reference to the task so the two can interact with each other.

The task has three methods: checkSensors, execute and rcTime. The
checkSensors method 1s called periodically by the matching
PhotoresistorSensor object when the sensor object is polled using
the obstacleDetected method. The checkSensors method restarts the
task in the startChecking state.

The execute task is where the task runs. The initialState stops
the task. It is restarted 1in the startChecking state by the
checkSensors method. This state sets the pins wused with the
photoresistor circuits so they charge the capacitor. There is a
delay while the charging occurs but instead of bring the Javelin
to a halt, the multitasking system allows other tasks to run. The
charging may run longer than necessary but that does not really
matter since the capacitor cannot be overcharged.

Chapter #6: Light Sensitive Navigation with Photoresistors

The startLeftPin state is executed when the sleep timeout occurs.
The rcTime method is called to check the left sensor pin. The
task then yields control and will execute the startRightPin state
after any other tasks have had a chance to run. At this point the
right sensor pin is monitored and the results from both sensors
are given to the sensor object by calling the saveResults method.
The task then stops. Note that the switch case “falls through” to
the initialState case where the stop method is actually called.

The task object is periodically started by the sensor object but
the task only runs long enough to generate one set of results.
This allows the J-Bot program to perform major actions in
response to sensor changes without the overhead to check the
photoresistor sensors if the sensor object is not used by these
actions.

There is a significant amount of complexity using the two object,
multitasking approach. Still, the overhead is on par with the
Photoresistor class that uses CPU.delay except that the
PhotoresistorSensor works nicely in a multitasking environment.
It also works well with the BaseSensor interface that can be used
with wvarious multitasking J-Bot applications presented in this
book.

Two parameters to the PhotoresistorSensor constructor control the
sensitivity of the system. These are the lowerLimit and the
deadband parameters. The lowerLimit sets the boundary between no
obstacle and an obstacle being detected. The deadband controls
the sensitivity between a left and right obstacle indication or a
front obstacle indication. The higher the value, the more likely
an obstacle detection will be indicated in the front instead of
one of the sides.

To test these two classes we use the PhotoresistorSensorl class
file presented next.

import stamp.core.*;
import stamp.util.os.* ;
import JBot.* ;

/‘k‘k

* Basic Photoresistor Test Program

* <p>

* Tests the photoresistor circuits using CPU.rcTime.
*

* @version 1.0 10/2/02

* @Qauthor Parallax, Inc.

=Y

public class PhotoresistorSensorl extends Task {
PhotoresistorSensor sensor =

new PhotoresistorSensor (CPU.pinb // left pin
, CPU.pin3 // right pin
, true // pin state
r

250 // rcTime limit

Chapter #6: Light Sensitive Navigation with Photoresistors

;2 // timeout
7 30 // bias
, 3 // lower limit
r 5) i // deadband
public void execute () {
// Only uses one state
if (sensor.obstacleDetected ()) {
System.out.print ("Dir=") ;
System.out.print (sensor .obstacleDirection()) ;
System.out.print (" Dist=")
System.out.println (sensor.obstacleDistance (sensor.obstacleDirection())) ;

} else {
System.out.println (".") ;
}
}

public static void main() {
new PhotoresistorSensorl () ;

Task.TaskManager () ;
}
}

As with prior multitasking applications, this class definition
combines a Task <class and a main method that runs the
Task.TaskManager. The execute method for the task is very simple.
It checks to see if an obstacle is detected and prints out the
current status. The PhotresistorSensorl task object has one
object wvariable, sensor.

Your Turn

O You will need an area that is well 1lit and where you can cast
a shadow over the photoresistors. This 1is necessary to test
the program properly. Start the program and watch how the
display information changes as you cast a shadow with your
hand over one or both of the sensors.

O Make a record of the direction and approximate distance
results as you adjust the amount of light falling on each
sensor. The distance value will be higher when the amount of
light falling on the sensor is low.

O Make sure the left and right sensors are setup properly. If
the left sensor is in the shadows and the left is not then the
obstacle direction will be 45 degrees. If both sensors are in
the shadows then the angle will be 90 and if the right sensor
is in the shadows and the left is not then the angle is 135.
No other wvalues will be presented since the sensor object only
returns these fixed values.

Activity #3: A Light Compass

Chapter #6: Light Sensitive Navigation with Photoresistors

If you focus a flashlight beam in front of the J-Bot, the circuit
and programming technigques just discussed can be used to make the
J-Bot turn so that it’s pointing at the flashlight beam. Make
sure the photoresistors are pointed so that they can make a light

comparison. Aside from each being pointed 45° outward from the
center-line of the J-Bot, they also should be oriented so they
are pointing 45° downward from horizontal. In other words, point

the faces of the photoresistors down toward the table top. Then,
use a bright flashlight to make the J-Bot track the direction of
the light.

Programming the J-Bot to Point at the Light

Getting the J-Bot to track a 1light source 1is a matter of
programming it to compare the value measured at each
photoresistor. Remember that as the 1light gets dimmer, the
photoresistor’s wvalue increases. So, if the photoresistor wvalue
on the right is larger than that of the photoresistor on the
left, it means it’s Dbrighter on the left. This comparison 1is
already done by the PhotoresistorSensor object. It will indicate
an obstacle direction of 45 degrees if there is more light on the
right side than the left. Likewise, there is more light on the
left side if the obstacle direction is 135 degrees. The object
also has a deadband when it reports an obstacle directly in
front, or 90 degrees. In this case both sensors must detect light
but they do not have to be identical.

O Enter and run PhotoCompassl program.

O Shine a bright flashlight in front of the J-Bot. When you
move the flashlight, the J-Bot should rotate so that it’s
pointing at the flashlight beam.

O Instead of using a flashlight, use your hand to cast a shadow
over one of the photoresistors. The J-Bot should rotate away
from the shadow.

import stamp.core.*;
import stamp.util.os.* ;
import JBot.* ;

*

~

* % X o ok X X o

Basic Photoresistor Compass Test Program
<p>
Tests the photoresistor circuits using CPU.rcTime.

@version 1.0 10/2/02
Qauthor Parallax, Inc.

~

public class PhotoCompassl extends Task {
protected JBotInterface jbot = new BasicJBot (new MultitaskingJdBot ()) ;
protected PhotoresistorSensor sensor =

Chapter #6: Light Sensitive Navigation with Photoresistors

new PhotoresistorSensor (CPU.pinb // left pin
, CPU.pin3 // right pin
, true // pin state
, 250 // rcTime limit
;2 // timeout
’ 30 // bias
, 3 // lower limit
;B) g // deadband
public void execute () {
// Only uses one state
if (sensor.obstacleDetected ()) {
if (sensor.obstacleDirection() <= 45) {

// Obstacle to the left, turn right
jbot.pivot (jbot.continuousRight) ;
} else if (sensor.obstacleDirection() >= 135) {
// Obstacle to the right, turn left
jbot.pivot (jbot.continuouslLeft) ;
} else {
// Directly in front
jbot.stop () ;
}
} else {
// No obstacle located
jbot.stop () ;
}
}

public static void main() {
new PhotoCompassl () ;

Task.TaskManager () ;
}

How the Light Compass Works

The PhotoCompassl program utilizes the multitasking system but
not the AvoidObstacleTask used earlier. This 1s because the
AboidObstacleTask uses fixed movements while the PhotoCompassl
task uses fine grain movements that are not part of an integral
rotation. The PhotoCompassl task still uses the
PhotoresistorSensor object but adds the BasicJBot object for
motor control.

The execute method handles the interface between the
PhotoresistorSensor and the BasicJBot objects. The execute method
does not use the state variable since it remains in one state
forever so the initialState works just fine.

The execute method checks to see if an obstacleDetected returns
true. It then checks to see if the obstacle is located in front,
to the left or to the right. In this case the obstacle is where
it is darker. If the obstacle is not in front then the J-Bot
pivots in the opposite direction. It stops when no light is
detected or the light is directly in front.

Chapter #6: Light Sensitive Navigation with Photoresistors

The pivotLeft and pivotRight methods start the J-Bot turning in
the respective direction. It does not stop until it detects no
light or the light is directly in front so usually the J-Bot does
not pivot indefinitely. Note that calling either method will not
cause a pulse to be generated. Instead the underlying PWM object
will Dbe generating the pulses Dbased on the last setting.
Resetting the wvalues only causes the values to be used when the
next pulse will be generated. All this is hidden by the BasicJBot
class.

Your Turn

In a darker area, not only will the photoresistor values be
larger, so will the difference between them. The sensitivity of
the PhotoresistorSensor object is Dbased on the lowerLimit
parameter. It is possible to raise and lower this wvalue.

The lowerLimit value is currently set to “3nr in
PhotoresistorSensor constructor.

O Experiment with different ambient 1light levels and their
effect on lowerLimit by trying this experiment in lighter and
darker areas. In lighter areas, the lowerLimit wvalue can be
made smaller, even zero. In darker areas, the lowerLimit wvalue
should be increased.

O Swap the pivotLeft and pivotRight method «calls in the
PhotoCompassl program. Then re-run the program. Now your J-

Bot points away from the light.

Activity #4: Follow the Light!

Simply by adding some forward motion to your J-Bot, you can turn
it into a 1light-seeking robot, a photophile. An interesting
experiment to try 1s to program the J-Bot to move forward and
seek out light. Then, take it into a dark room with the door
open to a brighter room. Assuming there are no obstacles in its
way, the J-Bot will make its way to the door and exit the dark
room.

Chapter #6: Light Sensitive Navigation with Photoresistors

Programming for Light Following

Programming the J-Bot to follow light requires that only a few
modifications to the PhotoCompassl class be made. The two
changes occur where the jbot object was stopped. Let’s see how it
works.

import stamp.core.*;
import stamp.util.os.* ;
import JBot.* ;

/‘k‘k
* Basic Photoresistor Compass Test Program
* <p>
* Tests the photoresistor circuits using CPU.rcTime.
*
* @version 1.0 10/2/02
* @author Parallax, Inc.
wy
public class PhotoCompass2 extends Task {
protected JBotInterface jbot = new BasicJBot (new MultitaskingJdBot ()) ;
protected PhotoresistorSensor sensor =
new PhotoresistorSensor (CPU.pinb // left pin
, CPU.pin3 // right pin
, true // pin state
, 250 // rcTime limit
;2 // timeout
’ 30 // bias
, 3 // lower limit
;5) i // deadband

public void execute () {
// Only uses one state
if (sensor.obstacleDetected ()) {
if (sensor.obstacleDirection() <= 45) {
// Obstacle to the left, turn right
jbot.pivot (jbot.continuousRight) ;
} else if (sensor.obstacleDirection() >= 135) {
// Obstacle to the right, turn left
jbot.pivot (jbot.continuouslLeft) ;
} else if (sensor.obstacleDistance (90) > 20) {
// Too dark. Just stop and wait
jbot.stop () ;
} else {
// Directly in front
jbot .move (jbot.continuousForward) ;
}
} else {
// No obstacle located
jbot .move (jbot.continuousForward) ;

}

public static void main() {
new PhotoCompass2 () ;

Task.TaskManager () ;

Chapter #6: Light Sensitive Navigation with Photoresistors

How the Light Follower Program Works

First the easy one. The jbot.stop() method for the else clause of
the initial obstacleDetected call is replaced by a jbot.forward()
call. This allows the J-Bot to move forward when there is a
bright light in front of it.

The second change provides a bit more control. In this case, the

sensor .obstacleDistance method is called when the
obstacleDirection 1is 90 (actually not under 45 or over 135
degrees). The if statement that checks the distance either stops

the J-Bot or has it move forward. The distance threshold allows
the J-Bot to stop when it reaches an area that is too dark. The
condition can be eliminated and only the jbot.forward call used
if the J-Bot should not stop moving. Changing the distance
threshold controls when the J-Bot will stop.

The PhotoCompass programs can be tested with the J-
FYI Bot tethered to the PC if it is raised so the wheels
do not touch the ground.

Your Turn

O Repeat the previous Your Turn exercise. You can now lead your
J-Bot around with a flashlight.

O Instead of pointing the photoresistors at the surface directly
in front of the J-Bot, point them upward and outward as shown
in Figure 4.3 on Page xxX. With the photoresistors adjusted
this way, the J-Bot will roam on the floor and try to always
find the brightest place.

Activity #5: Line Following

If the J-Bot can be programmed to follow a flashlight Dbeam
focused in front of it, why can’t it follow a white stripe on a
black background? The answer is, there’s no good reason. The J-
Bot can follow a white stripe on a black background, and it’s a
project in this chapter’s Projects section. By the same token,
the J-Bot should be able to follow a black stripe on a white
background. Regardless of the color of the stripe, this activity
is generically referred to as “line following.”

The recommended width for the black stripe is about 5 cm. Either
construction paper or electrical tape works fine. With some
calibration along with controlled lighting conditions, the J-Bot
is a very faithful stripe follower.

Chapter #6: Light Sensitive Navigation with Photoresistors

O Shadows and bright lights can be misleading, so try to keep
the lighting as uniform as possible. For example, overhead
fluorescent lights with no light from windows will work well.

O Also, make sure to bend the photoresistors as far over the
front of the J-Bot as possible. In other words, readjust the
photoresistors from flashlight beam following.

Programming for Line Following

By changing various parameters from the previous example program,
the J-Bot <can now follow bold, Dblack stripes on a white
background. The LineFollowerl program demonstrates this. The
lowerLimit and deadband parameters for the PhotoresistorSensor
constructor were reduced. When the difference 1is larger, the
deadband will have to Dbe increased for better performance. In
some 1instances, the sensitivity reduction done within the
PhotoresistorSensor class may have to be increased so the
lowerLimit and deadband parameters provide more control.

In brightly 1lit rooms, decreasing the deadband
value may not be enough. The 0.1 UF capacitors can
be substituted for the 0.01 UF capacitors in the J-

TIP Bot’s RC circuits. This will increase the RC times
by a factor of 10. Keep this in mind when
adjusting the deadband.

import stamp.core.*;
import stamp.util.os.* ;
import JBot.* ;

/**

* Basic Photoresistor Compass Test Program

* <p>

* Tests the photoresistor circuits using CPU.rcTime.
*

* @version 1.0 10/2/02

* @author Parallax, Inc.

*/

public class LineFollowerl extends Task {
protected JBotInterface jbot = new RampingJBot (new MultitaskingdBot ()) ;
protected PhotoresistorSensor sensor =

new PhotoresistorSensor (CPU.pinb // left pin
, CPU.pin3 // right pin
, true // pin state
, 250 // rcTime limit
;2 // timeout
’ 30 // bias
p; A4 // lower limit
;2) 8 // deadband

public void execute () {
// Only uses one state

Chapter #6: Light Sensitive Navigation with Photoresistors

if (sensor.obstacleDetected ()) {
if (sensor.obstacleDirection() <= 45) {
// Obstacle to the left, turn right
jbot.pivot (jbot.continuousRight) ;
} else if (sensor.obstacleDirection() >= 135) {
// Obstacle to the right, turn left
jbot.pivot (jbot.continuouslLeft) ;

} else if (sensor.obstacleDistance (90) > 20) {
// Too dark. Just stop and wait
jbot.stop () ;

} else {

// Directly in front
jbot .move (jbot.continuousForward) ;
}
} else {
// No obstacle located
jbot .move (jbot.continuousForward) ;
}
}

public static void main() {
new LineFollowerl () ;

Task.TaskManager () ;
}

How the Black Stripe Follower Program Works

The line follower ©program just required changes to the
sensitivity because the actions being performed by the photo
compass programs were already correct. The main difference was
the intensity of the light being used, or, in this case, the
difference in the amount of light being reflected from the floor.

If you turn the lights out the J-Bot should stop. This is because
of the range test when an obstacle is detected in front. This can
be used to stop the J-Bot when it reaches the end of a path. You
may have to adjust the value in the range test depending upon the
light conditions.

Your Turn
Try a black stripe with a 45° turn in the middle of it.

Try a black strip with a 90° turn in it, and see if you can pick
a deadband that will navigate it.

Remember, vyou may need to adjust your deadband to succeed in
these maneuvers.

Chapter #6: Light Sensitive Navigation with Photoresistors

For either or both of the maneuvers above, find the upper and
lower limits of deadband values with which the J-Bot still can
successfully navigate.

Chapter #6: Light Sensitive Navigation with Photoresistors

Summary This chapter focused on measuring the

and difference in 1light intensity and using

)) it as a guide for the J-Bot. The JAVA

Applicatl cpy.rcrime method was used in conjunction

ons with an RC circuit to measure each
photoresistor. The exact resistance

value of each photoresistor was

disregarded in favor of the relative difference between the two
values. This difference is a simple subtraction problem, but it

can be used to gage which direction is brighter.

Real World Example

Light has many applications in robotics and industrial control.
Some examples include sensing the edge of a roll of fabric in the
textile industry, determining when to activate streetlights at
different times of the year, when to take a picture, or when to
deliver water to a crop of plants.

Deadband is often a problem in navigation control systems. In
terms of tracking and controlling machinery, deadband can result
from the uncertainty in measurements due to mechanical
connections. The result is that deadband is the area you don'’t
know about and try to develop creative ways of dealing with it.
On the other hand, deadband is also the way a thermostat works.
In the context of maintaining temperature, differential gap
control uses a built-in deadband region where no correction is
made to the temperature.

J-Bot Application

As you can see, the J-Bot can do an interesting variety of tricks
with a pair of photoresistors as its guide. It can point at
light, move itself from a dark place into a light place, follow a
guiding flashlight beam and follow a black stripe with turns in
it on a white piece of paper. That’s not Dbad for some
inexpensive photoresistors, capacitors and resistors.

Chapter #6: Light Sensitive Navigation with Photoresistors

Questions and
Projects

Questions

. Name and describe the element in the photoresistors that

changes resistance in response to illuminance.

2. What does the Javelin measure to infer the resistance in an
RC circuit? What wvalue must remain fixed in an RC circuit
to infer a variable resistance? Why?

3. What are the increments of the CPU.rcTime measurement?

4. When the value of a photoresistor increases, what does that
indicate?

5. How does the program for a 1light following J-Bot differ
from that of a dark following J-Bot?

6. What role does deadband play in the J-Bot’s tendency to
move forward? What role does it play in the J-Bot’s
tendency to change direction?

Exercises

1. If you have a 10 MUF capacitor and your CPU.rcTime value 1is
150, what is the resistance of the photoresistor? Hint:
Use equation 4.1.

2. Re-derive Equation 4.1 using a 0.1 WF capacitor. What kinds
of problems arise if the 0.1 UF capacitors replace the 0.01
UE capacitors? What effect does the increased RC value have
on the measurement time? What effect does the measurement
time have on servo performance?

Projects
1. Add sound to the J-Bot PhotoCompass2 program so a tone 1is

sounded for a fixed duration after the J-Bot has been
moving forward for at least one second. Use the
TaskToneGenerator class to generate a half second tone.

The PhotoCompass2 task timer can be used since there are no
sleep methods called that wutilize the timer. Hint: Call
timer .mark () when the J-Bot moves forward. A

Chapter #6: Light Sensitive Navigation with Photoresistors

timer.timeoutSec(l) will indicate when at least one second
has elapsed.

Use Dboolean variables to keep track when the timer 1is
running and a tone has occurred.

This program should never generate a continuous tone. Why?
Hint: Consider the tone and the timeout duration.

Implement the previous exercise wusing different states
instead of boolean variables to keep track of when forward

movement is being tracked and if a tone has been played.

. Add Whiskers to the J-Bot. Develop a line following track

with obstacles placed in the way. Program the J-Bot to
follow the line and also to check the whiskers to monitor
for obstacles. Develop routines that guide the J-Bot

around obstacles and back to the line.

Make sure to wrap each whisker with electrical
tape around any part that might contact other
circuits. The only things a whisker should be
allowed to touch are obstacles and its own
three-pin header post.

TIP

. One of the interesting facets of relying on deadband for
line following 1is that it can Dbe adjusted purely in
software. This project explores the relationship between
deadband settings and stripe width.

Repeat the Your Turn exercises in Activity #4 with a 3.75

cm. wide Dblack stripe. Do not adjust the width of your
photoresistors; Jjust the deadband settings. Repeat this
activity again for a 2.5 cm. wide stripe. Make notes on

the upper and lower deadband limits for each stripe width.
In other words, find the highest and lowest deadband
settings that work for successful stripe following. Graph
your results. Is there any apparent mathematical
relationship between deadband and stripe width? Use the
graph to approximate a linear relationship, and develop a
deadband equation. Test the equation on a 4.4 cm. wide
stripe.

