Experimental Flight Computer
My purpose of this project is to create a flight computer to be able to experiment with the electronics commonly used in rocket payloads. I will also gain some experience laying out a PCB and using surface mount components.

For this project I will use the Basic Stamp (Available from Parallax) to read the output of 2 analog sensors. In this case a 70g and a 250g accelerometer. This information is then stored on an external EPROM.

Visual Basic is used to create a user interface to receive the information and to perform a few diagnostic functions.
Hardware

I have broken the schematic down into each individual circuit. I will give a description of each along with example code for each one. Then I will bring it all together for a Flight program.

Power Circuit

The main component in the power circuit is the 5v regulator. Two bipolar filtering capacitors are used to deal with ripple. A 100 uF cap was used on the input and a 10uF cap on the output.

I used epoxy to help hold the caps in place. It should be noted that bipolar caps are probably not the best choice in this situation. They are large and bulky and should be replaced with tantalum capacitors.

The PTC and 1N4001 diode are added for circuit protection. The PTC acts like a fuse. When to much current passes through, the PTC will heat up and limit the current. Once the PTC cools down the current can then flow again. The diode protects against reverse polarity.

The last thing is a visual indicator for power. This is accomplished with a resistor and LED.

Serial Port

The serial port is the method in which the Stamp can be reprogrammed. It can also be used to send or receive asynchronous serial data.

The example program COMM will send out “Program Running” followed by “How old are you”. It then waits to receive the incoming data. Once the data is received the Stamp will respond with “Wow you are” age “years old”.

Max 187 ADC

The Max 187 analog to digital converter is from Analog Devices. It is a 12 bit 1 input ADC that has an internal voltage reference of 4.096v.

To figure the ADC’s resolution: resolution = voltage ref / counts. So if the internal voltage reference is used and the 12 bit ADC has 4096 counts then each count equals 1mv.

The three wire interface allows for multiple ADCs that can share data and clock lines. This lowers the number of Stamp pins that need to be used.
Analog Sensors

The first analog sensor is the ADXL 78 70g accelerometer from Analog Devices. The data sheet specifies an output of 27mv per g. That means 27 counts = 1g.

The second analog sensor is the MMA 2300 accelerometer. This 250g accelerometer from Freescale outputs 8mv per g.

The example code ADC1 reads the first ADC and displays the value in the debug window of the IDE.

The example code BothAnalog will read both ADCs and display the value in the debug window.

One thing to notice is the difference in output between the two accelerometers. At rest they both put out around 2.5 volts or 2500 counts. When upward acceleration is applied the output on the ADXL decreases but that of the MMA 2300 increases.
DS1602 RTC

The DS1602 is an elapsed time counter from Dallas Semiconductor. It has 2 32 bit counters that can count seconds. This IC will give a time reference to the accelerometer data.

The example code RTC starts by clearing the counter. It will then read the RTC and display the seconds in the debug window.

25LC256 EPROM

The external EPROM is a 256k SPI EPROM from Microchip. It has 32,768 x 8 bit organization and 64 byte pages.

The example code EPROM will increment three word (two bytes) sized variables and save them to EPROM for 200 cycles. It will then read in and display the saved data in the debug window.

One thing to notice is that every time through the loop the EPROM address is incremented by eight. This is done to avoid writing a data stream to the end of one page and the start of another.

Expansion Header and Buzzer

A six pin expansion header was added for future experiments. Four of the pins connect to I\O pins of the Stamp. The other two supply 5v and ground.

A buzzer was also added as an audible status indicator. The example code Buzzer will beep out a few different tones.

Requirements for a Flight Computer

For everything to come together as a flight computer there are a few tasks that need to be executed.

Launch Flag

The first is to be able to determine if previous data is present. This is accomplished using the DATA command and setting up a launch flag.

This bit is stored in the Stamps internal EPROM. When 0 no launch data present when 1 data is present. This bit is set to 1 after launch detection and is set to 0 when data is cleared.

At Rest Readings

The next thing that needs to happen is to determine at rest readings for both accelerometers. The accelerometers are sampled and the samples averaged together. This happens three times with each sample and the product stored in the Stamps internal EPROM for later retrieval.
I have run out of variable space on the Stamp so I had to re use some variables adding some unneeded complexity to the at rest routine.

Liftoff detection

The Stamp needs to be able to detect liftoff. To do this I use the ADXL accelerometer. A calculated threshold is determined by taking the at rest reading for the ADXL and subtracting the threshold constant. (Remember upward acceleration decreases ADXL output). The ADXL is then monitored until it experiences an upward acceleration just over 1g or 30 counts.
Once launch is detected the Stamp will start sampling and saving the accelerometer data until buffer is full with buffer being a program constant.

Serial Command

There needs to be a way of sending and receiving information from the Stamp. This is done with the serial port and the Serial Command routine.

After launch detection and after all the readings have been stored in EPROM the program jumps to this routine. Once here the Stamp will send “CMD” across the serial port. It then waits to receive a command. If no command is sent after one second “CMD is sent again. This process is repeated until a command is received.

Once a command is received it is compared to the command set. If a match the program will jump to the appropriate routine for that command. If there is no match the input is disregarded and the Stamp will send “CMD” and wait for another input.

Command List
11 Dump Data

22 Clear Data

33 Send Live Data

44 Send Settings

55 Send At Rest Readings

11 Dump Data

When this command is sent the Stamp will read the data from the EPROM and send it out the serial port. The format is: RTC, MMA2300, ADXL at rest, MMA2300 at rest (at 9600bps). After all information is sent the program returns to the Serial Command routine and sends “CMD”.

22 Clear Data

This command sends “Data Cleared” across the serial port and writes a 0 to the launch flag location. The program will then return to the Serial Command routine. However if power is toggled the Stamp will read the launch flag that has now been reset. This will make the program jump to the launch detect routine.

33 Send Live Data

A 33 will cause the Stamp to send live sensor data across the serial port. The loop will execute 200 times and then return to Serial Command.

44 Send Settings

Sending a 44 will return the buffer size (Number of times main loop executes) and the calculated threshold. Then program the returns to Serial Command.
55 Send At Rest Readings

When this command is received by the Stamp the at rest readings are sent through the serial port. Once sent the program returns to Serial Command.
Computer Interface

With the Flight computer finished there needs to be a way of retrieving and interpreting the information. To do this I used Visual Basic 2008.net to create an interface program.

The interface can be broke down into four parts. Comm. port settings, Serial window, Commands and Displayed data.

The interface will also save all data that is sent or received from the com port. All flight data is saved to the file called “test data”. All other information is saved to the “settings” file.

Comm. Port Settings

In this section the user is able to select baud rate and available com ports. The connect and Disconnect buttons perform the respective task as it applies to the comm. Port.

Serial Window

The serial window will display all the information that is sent or received across the serial port. Selecting the clear button will clear the serial window.

Commands

This section allows the ability to send commands to the Stamp. When each button is pushed it sends the corresponding command along with a line feed.

 Button

Command Sent
 Download

11 + LF

 Clear Data

22 + LF

 Test Sensors

33 + LF

 Settings

44 + LF

 At Rest

55 + LF

Clicking the Close File button will close the “test data” and “settings” files. This must be done before exiting the application or else the files will contain no information.

Displayed Data

This is the section that splits the data stream into individual cells. Once split into cells the data can be processed. To confirm this each cell is displayed in the five array cell boxes.

The new data can now be interpreted. Raw acceleration data is converted to g’s and displayed in the Calculated G’s text box.

The g’s from both accelerometers are averaged together to give an ACCELaverage reading. The accelerometers are also compared to each other to determine the difference between the two. The ACCELaverage and difference are not displayed but they are saved to the “test data” file.

Files

The two files are saved in the same location as the application program. To keep from over writing the files need to be renamed before the application is run again.

Settings File

This file saves everything that is sent or received through the serial port except for flight data.

Test Data File

This file saves all flight data along with the interpreted flight data. The file is comma separated. The format is: ADXL G’s, MMA G’s, Difference, ACCELaverage, RTC, Raw ADXL, Raw MMA, ADXL at rest, MMA at rest.

Test Flights

The payload has had two test flights so far. The first flight was in a three inch rocket loaded with an I-315 skid mark motor. The second flight was in a four inch rocket loaded with a J-415 W.

On the first flight I was unable to reach the power switch with the rocket vertical. So I decided to power up with the rocket horizontal. This threw off the at rest readings. Surprisingly the ADXL was not severely affected by this. The MMA 2300 on the other hand was.

Other than being powered up horizontal everything else worked fine. The payload was connected to the application for download of data. Once the information was received the files were closed and renamed. The launch flag was then reset with the Clear Data command and the payload was ready to fly again.

On the second flight I made sure I could reach the power switch. Once again everything worked the way it should. Rocket was recovered and the data downloaded.

It wasn’t until I looked at the data that I noticed there was a problem with the output of the MMA 2300. At apogee the output of the MMA continued to climb. As of now I am not sure the cause of this rise in output.
