
How to obtain angular velocity and angular acceleration 
values directly from 3D accelerometer array data using 

simple matrix operations in Propeller/SPIN 
 
 
 
                                   ...the merit of service is seldom attributed 
                                                to the true and exact performer. 
                                                 William Shakespeare (1564-1616) 
                                    All's Well That Ends Well, Act III, scene vi 
 
 
 
In the followings we shall reproduce the algorithm described in  
 
K. Parsa, J. Angeles and A. K. Misra 
Rigid-body pose and twist estimation using an accelerometer array 
In Applied Mechanics, 74 (2004) pp. 223-236. 
 
without the agonizing pain of abstract tensor and matrix algebra.  The method 
will be demonstrated with many numeric examples. To calculate these examples I 
used only Propeller/SPIN and the FPU_Matrix_Driver.SPIN object from OBEX 
(http://obex.parallax.com/objects/317/). First the arrangement of four 3-axis 
acceleration sensors will be described, then the algorithm will be introduced and 
exercised via numeric examples. 
 
The arrangement of the sensors 
Let us put two H48C 3D accelerometers at the opposite corners of a square plate 
as shown in Fig. 1. 
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Figure 1. The z-axis of the H48C accelerometers are pointing towards the reader. 
 
Let us make another square plate, equipped with two other sensors, like in Fig. 
2. 
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Figure 2. The z-axis of the H48C accelerometers are pointing towards the reader. 
 
Now let us mount Plate A on top of Plate B to form a regular cube as shown in 
Fig. 3. 
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Figure 3. The four H48Cs arranged at the vertices of a tetrahedron. 
 
The three corresponding axis of the sensors are parallel, and, by design, 
mutually orthogonal. The centroid of the pickup points is denoted by C and the 
sensors are numbered as shown. 
 
Definition of matrices 
Let us define two [3 by 4] matrices. These are matrix R of the relative 
positions and matrix A of the relative accelerations. The position of the 



sensors is related to the centroid C. Let us take the length of the side of the 
cube as one, then the coordinates of the sensors are 
 

r1 = [-0.5, -0.5,  0.5]   
r2 = [ 0.5,  0.5,  0.5]   
r3 = [ 0.5, -0.5, -0.5]   
r4 = [-0.5,  0.5, -0.5]   

 
as you can verify this in Fig. 3. The R matrix contains the coordinates of the 
sensors in its columns 
                                
                               r1    r2    r3     r4 
 

[[ -0.5   0.5   0.5   -0.5 ] 
                R =  [ -0.5   0.5  -0.5    0.5 ]     [3 by 4] matrix 

  [  0.5   0.5  -0.5   -0.5 ]] 
 
 
The A matrix is the matrix of the relative accelerations. The acceleration 
vectors measured by the sensors are 
 

a1 = [ a1x,  a1y,  a1z]   
a2 = [ a2x,  a2y,  a2z]   
a3 = [ a3x,  a3y,  a3z]   
a4 = [ a4x,  a4y,  a4z]   

 
How to make relative acceleration values from these? Let us first calculate the 
average acceleration vector aC 
 

aC = 0.25
.[a1x+a2x+a3x+a4x, a1y+a2y+a3y+a4y, a1z+a2z+a3z+a4z] 

 
Then subtract aC from the acceleration vectors to obtain relative accelerations 
 

ar1 = [ a1x-aCx,  a1y-aCy,  a1z-aCz]   
ar2 = [ a2x-aCx,  a2y-aCy,  a2z-aCz] 
ar3 = [ a3x-aCx,  a3y-aCy,  a3z-aCz] 
ar4 = [ a4x-aCx,  a4y-aCy,  a4z-aCz] 

 
And the A matrix is 
 
                                  ar1    ar2    ar3    ar4 
 

    [[ ar1x  ar2x  ar3x  ar4x ] 
                    A =  [ ar1y  ar2y  ar3y  ar4y ]     [3 by 4] matrix 

      [ ar1z  ar2z  ar3z  ar4z ]] 
 
 
By the way, aC is the linear acceleration vector measured by the sensor array. So 
half of the 6DOF IMU job done. Now, we have to calculate the angular acceleration 
and the angular velocity values. In other words we will get 9DOF data, won't we? 
Up till now the operations were reading the sensors, adding, subtracting dividing 
values, some housekeeping to arrange values in arrays. So, we encountered not too 
many complications. 
 



An offline task to be solved only once 
Before we proceed, we have to calculate the Moore-penrose inverse P of matrix R. 
This is easy and has to be done only once for a given sensor arrangement. You can 
do it with the FPU_Matrix_Driver object. Some of the comments of the Matrix_SVD 
(Singular Value Decomposition) procedure will guide you. Or, you can use some 
simple matrix algebra as follows 

P = RT.(R.RT)-1 
 
Again, every step can be done with the FPU_Matrix_Driver, like for example 
 
Matrix_Transpose(@RT,@R,3,4)            'This calculates RT 
Matrix_Multiply(@RRT,@R,@RT,3,4,4,3)    'This calculates R.RT 
Matrix_Inverse(@RRTI,@RRT,3)            'This calculates inverse of (R.RT) 
Matrix_Multiply(@P,@RT,@RRTI,4,3,3,3)   'This calculates P = RT.(R.RT)-1 
 
For our sensor arrangement the result is 
 

[[-0.5 -0.5  0.5 ] 
                    P = [ 0.5  0.5  0.5 ]        [4 by 3] matrix 

 [ 0.5 -0.5 -0.5 ] 
  [-0.5  0.5 -0.5 ]] 

 
Verify that the R.P matrix product gives a [3 by 3] identity matrix. O.K. We have 
P, we have to store it somewhere as we shall use it frequently. 
 
A little bit of physics shouldn't hurt   
From rigid body kinematics, a very compact formula can be derived for the ai 
accelerations. This formula contains the acceleration aC of the centroid C, the 
angular velocity  of the body's rotation around an axis containing the centroid 
and the time derivative  of the angular velocity, the so called angular 
acceleration. Note that these are just the IMU quantities we would like to 
measure. Before I write down the formula, I emphasize again, that our sensor 
array estimates directly all these three basic kinematic vectors. In other 
words, neither we have to derivate  to obtain , or, nor we have to integrate  
to obtain . Beware of the following formula, because it is so simple that you 
can even remember it, if you are not careful enough. The formula is 
 

ai = aC +  x ri + x (x ri) 
 
where x denotes the vector product. In SPIN using the FPU_Matrix_Driver, e.g. 
for a1, it goes as 
 
Vector_CrossProduct(@wr1,@omega,@r1,3,1)     'This calculates xr1 
Vector_CrossProduct(@wwr1,@omega,@wr1,3,1)   'This calculates x(xr1) 
Vector_CrossProduct(@alphar1,@alpha,@r1,3,1) 'This calculates xr1 
Matrix_Add(@alphar1wwr1,@alphar1,@wwr1,3,1)  'This calculates xr1+x(xr1) 
Matrix_Add(@a1,@ac,@alphar1wwr1,3,1)         'This calculates a1 
 
Of course, here we use this formula only to calculate correct ai values for our 
sensor array for different types of motion of the body to numerically check the 
decoding algorithm. Now, we have prepared the tests, let's get back to the 
decoding algorithm. 
 



How to decode the angular acceleration? 
Well, we have decoded the linear acceleration of the sensor array. That is simply 
aC. To get the angular acceleration, we have first to multiply the A matrix of 
the relative accelerations with P. The matrix A was calculated from the measured 
ai values before and P was stored somewhere. 
 

W = A.P 
 
W has a name, it is called the angular acceleration tensor. But it doesn't 
matter. We got it. W is a small [3 by 3] matrix, nine nicely arranged float 
values, nothing else from now on. The angular acceleration vector is simply 
 

 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 
  
where the double subscript of W denotes the corresponding element of the W 
matrix. For example W32 is the second element of the third row. 
 
Yes, yes, but what about the angular velocity? 
We'll get it quickly. First we have to calculate the symmetric part WS of our 
simple [3 by 3] W matrix 
 

WS = 0.5
.(W + WT) 

  
In SPIN version 
 
Matrix_Transpose(@WT,@W,3,3)               'This calculates WT 
Matrix_Add(@WWT,@W,@WT,3,3)                'This calculates W + WT  
Matrix_ScalarMultiply(@WS,@WWT,3,3,0.5)    'This calculates WS 
 
Again, we have nine float values stored in WS. In preparation of the final result 
we calculate the quantity 
 

sp = 0.5.(WS11 + WS22 + WS33) 
 
and finally 
 

 = [SQR(WS11-sp), SQR(WS22-sp), SQR(WS33-sp)] 
 
Where SQR denotes the square root operation. These were three additions, three 
subtractions, a multiplication and three square roots. The correct sign of the 
components can be obtained easily as described, for example, in the original 
paper. We shall discuss the sign determination later. Now we continue with some 
practical considerations and than with the numerical tests.  
 
O.K. But how long does this decoding take? 
Well, in PASM this decoding takes 4-5 msec. In the FPU it takes less than 2 msec. 
Whichever you choose, you can handle 100 Hz (10 msec period) acceleration data. 
In SPIN you can cope with 20 Hz data easily. 
 
First example: Sensor resting on a table 
Let us assume that the table is horizontal and is resting on the ground. We have 
gravity of course (9.81 m/sec2), but we don't have angular rotation and angular 
acceleration of the sensor array. The  and  vectors are zero and the sensed ai 
vectors are as follows 
 



a1 = [ 0.0, 0.0, 9.81] 
a2 = [ 0.0, 0.0, 9.81] 
a3 = [ 0.0, 0.0, 9.81] 
a4 = [ 0.0, 0.0, 9.81] 

 
 
First we calculate aC 
 

aC = [ 0.0, 0.0, 9.81] 
 
Then the A matrix is 
 
 

     [[ 0.0  0.0  0.0  0.0 ] 
 A =  [ 0.0  0.0  0.0  0.0 ] 
       [ 0.0  0.0  0.0  0.0 ]] 

 
The W matrix is 
 
 
 

           [[ 0.0  0.0  0.0 ] 
 W = A.P =  [ 0.0  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
So, both the measured  and  are null vectors. 
 
 
Sensor array accelerating but not rotating 
Let us push the sensor array in the x direction with 1 m/sec2 linear 
acceleration. The  and  vectors are zero again , but we have a linear aC 
acceleration of the whole sensor in the x direction. According to our formula 
 

ai = aC +  x ri + x (x ri) 
 
we calculate ai values, taking into account the sensed g, of course 
 

a1 = [ 1.0, 0.0, 9.81] 
a2 = [ 1.0, 0.0, 9.81] 
a3 = [ 1.0, 0.0, 9.81] 
a4 = [ 1.0, 0.0, 9.81] 

 
The measured aC, the average of the four ai vectors, is 
 

aC = [ 1.0, 0.0, 9.81] 
 
Then the A matrix is 
 
 

     [[ 0.0  0.0  0.0  0.0 ] 
 A =  [ 0.0  0.0  0.0  0.0 ] 
       [ 0.0  0.0  0.0  0.0 ]] 

 
The W matrix is 
 



 
 

           [[ 0.0  0.0  0.0 ] 
 W = A.P =  [ 0.0  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
So, both the measured  and  are null vectors, again. 
 
Let us take some increasing spin 
Now, we accelerate the sensor array as in the previous example, but this time we 
start to rotate it with 
 

 = [ 0.0, 0.0, 0.5] 
 
[rad/sec2] angular acceleration around the z axis. According to our formula 
 

ai = aC +  x ri + x (x ri) 
 
we calculate ai values again. First let us calculate the  x ri vectors 
 

 x r1 = [  0.25, -0.25, 0.00 ] 
 x r2 = [ -0.25,  0.25, 0.00 ] 
 x r3 = [  0.25,  0.25, 0.00 ] 
 x r4 = [ -0.25, -0.25, 0.00 ] 

 
then the ai vectors 
 

 a1 = [ 1.25, -0.25, 9.81 ] 
 a2 = [ 0.75,  0.25, 9.81 ] 
 a3 = [ 1.25,  0.25, 9.81 ] 
 a4 = [ 0.75, -0.25, 9.81 ] 

 
The aC vector, the average of ai is the same as before 
 

aC = [ 1.0, 0.0, 9.81] 
 
But the A matrix of the relative accelerations is filled not only with zeroes 
now 
 

          [[  0.25 -0.25  0.25 -0.25 ] 
      A =  [ -0.25  0.25  0.25 -0.25 ] 

            [  0.00  0.00  0.00  0.00 ]] 
 
The W matrix is 
 

           [[ 0.0 -0.5  0.0 ] 
 W = A.P =  [ 0.5  0.0  0.0 ]   

             [ 0.0  0.0  0.0 ]] 
 
From this, using the formula for the decoded (measured)  
 

 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 
 
 



we obtain 
 

 = [ 0.0, 0.0, 0.5 ] 
 
Right. Now let us look for the decoded (measured) The symmetric part WS of our 
W matrix is 
 

                   [[ 0.0  0.0  0.0 ] 
WS = 0.5.(W + W

T) = [ 0.0  0.0  0.0 ]  
                     [ 0.0  0.0  0.0 ]] 

 
So, the decoded (measured) angular-velocity vector is 
 

 = [ 0.0, 0.0, 0.0 ] 
 
Well, so far so good. 
 
Accelerating and rotating sensor array 
Four seconds have passed and the sensor array is rotating now with 
 

 = [ 0.0, 0.0, 2.0 ] 
 
[rad/sec] angular velocity, while accelerating linearly and angularly as before 
 

aC = [ 1.0, 0.0, 9.81 ] 
 

 = [ 0.0, 0.0, 0.5  ] 
  
The constituents to the ai accelerations at the pickup points are 
 

aC = [ 1.0, 0.0, 9.81 ] 
 

 x r1 = [  0.25, -0.25, 0.00 ] 
 x r2 = [ -0.25,  0.25, 0.00 ] 
 x r3 = [  0.25,  0.25, 0.00 ] 
 x r4 = [ -0.25, -0.25, 0.00 ] 

 
x (x r1) = [  2.00,  2.00, 0.00 ] 
x (x r2) = [ -2.00, -2.00, 0.00 ] 
x (x r3) = [ -2.00,  2.00, 0.00 ] 
x (x r4) = [  2.00, -2.00, 0.00 ] 

 
These are sensed accelerations at the pickup points and they are added 
(scrambled) in the sensors 
 

 a1 = [  3.25,  1.75, 9.81 ] 
 a2 = [ -1.25, -1.75, 9.81 ] 
 a3 = [ -0.75,  2.25, 9.81 ] 
 a4 = [  2.75, -2.25, 9.81 ] 

 
Now let us see, how the algorithm unscrambles the aC,  and  vectors. The aC is 
simply the average of the four ai vectors 
 



aC = [ 1.0, 0.0, 9.81 ] 
 
The A matrix of the relative accelerations is  
 

          [[  2.25 -2.25 -1.75  1.75 ] 
      A =  [  1.75 -1.75  2.25 -2.25 ] 

            [  0.00  0.00  0.00  0.00 ]] 
 
We obtain the [3 by 3] W matrix with a simple matrix multiplication 
 

           [[ -4.0 -0.5  0.0 ] 
 W = A.P =  [  0.5 -4.0  0.0 ]   

             [  0.0  0.0  0.0 ]] 
 
And we unscramble immediately, using the formula 
 

 = 0.5.[ W32-W23, W13-W31, W21-W12 ] 
 
the angular acceleration vector 
 

 = [ 0.0, 0.0, 0.5 ] 
 
Then we compute the symmetric part of the W matrix 
 

WS = 0.5
.(W + WT) 

 
It is 
 

      [[ -4.0 -0.0  0.0 ] 
 WS =  [  0.0 -4.0  0.0 ]   

        [  0.0  0.0  0.0 ]] 
 
Then we calculate the quantity 
 

sp = 0.5.(WS11 + WS22 + WS33) = -4.0 
 
And finally, from the formula 
 

 = [SQR(WS11-sp), SQR(WS22-sp), SQR(WS33-sp)] 
 
we get the unscrambled  vector 
 

 = [ 0.0, 0.0, 2.0 ] 
 
Right, again. 
 
Summarizing the steps of the algorithm  
To check and to follow the steps of the numeric examples one can use the 
Propeller/SPIN language and the FPU_Matrix_Driver. Some practice will ensure the 
user how simple it is and how easy to program the algorithm in Propeller/SPIN. 
Now I summarize briefly the main steps of the process. 
 
The four sensor readings (ai vectors) are stored in a [3 by 4] matrix, column 
wise. 
 



The average of the vectors gives the linear acceleration aC of the sensor array. 
 
This average vector is subtracted from each column of the matrix, and the 
resulting matrix is multiplied with a precomputed one. 
 
The [3 by 3] product matrix is used to estimate the  and the  vectors. 
 
 is obtained directly from this matrix with a simple formula. 
 
 is obtained from the easily computed symmetric part of this matrix, again with 
simple formulas. 
 
A numerically robust way to get the sign of the components of the  vector is to 
store the sum of the  components. The sign of the stored sums will yield the 
sign of the measured  components at any moment. Yes, I know that this is 
something like an integration. But the difference between using the sign of a 
value, or using the value itself, is huge. 
 
Some words about calibration 
It is beyond the scope of this document to discuss the calibration of the sensor 
array in details. I will describe the calibration process and the simple math of 
that later. Now I just mention, that each of the H48C sensors should be 
calibrated statically. After that the whole sensor array can be calibrated 
kinematically as described in the original paper. This kinematic calibration will 
improve the precision of the sensor array with several orders of magnitude! The 
kinematic calibration can be done en-route during an arbitrary maneuver of the 
body that carries the sensor array. 
 
 
cessnapilot, 03.03.2009 
 


