
How to obtain angular velocity and angular acceleration
values directly from 3D accelerometer array data using

simple matrix operations in Propeller/SPIN

 ...the merit of service is seldom attributed
 to the true and exact performer.
 William Shakespeare (1564-1616)
 All's Well That Ends Well, Act III, scene vi

In the followings we shall reproduce the algorithm described in

K. Parsa, J. Angeles and A. K. Misra
Rigid-body pose and twist estimation using an accelerometer array
In Applied Mechanics, 74 (2004) pp. 223-236.

without the agonizing pain of abstract tensor and matrix algebra. The method
will be demonstrated with many numeric examples. To calculate these examples I
used only Propeller/SPIN and the FPU_Matrix_Driver.SPIN object from OBEX
(http://obex.parallax.com/objects/317/). First the arrangement of four 3-axis
acceleration sensors will be described, then the algorithm will be introduced and
exercised via numeric examples.

The arrangement of the sensors
Let us put two H48C 3D accelerometers at the opposite corners of a square plate
as shown in Fig. 1.

x

yz

x

yz

Plate A

Figure 1. The z-axis of the H48C accelerometers are pointing towards the reader.

Let us make another square plate, equipped with two other sensors, like in Fig.
2.

x

yz

x

yz

Plate B

Figure 2. The z-axis of the H48C accelerometers are pointing towards the reader.

Now let us mount Plate A on top of Plate B to form a regular cube as shown in
Fig. 3.

Plate A

Plate B

C

x

y

z1

2

3

4

Figure 3. The four H48Cs arranged at the vertices of a tetrahedron.

The three corresponding axis of the sensors are parallel, and, by design,
mutually orthogonal. The centroid of the pickup points is denoted by C and the
sensors are numbered as shown.

Definition of matrices
Let us define two [3 by 4] matrices. These are matrix R of the relative
positions and matrix A of the relative accelerations. The position of the

sensors is related to the centroid C. Let us take the length of the side of the
cube as one, then the coordinates of the sensors are

r1 = [-0.5, -0.5, 0.5]
r2 = [0.5, 0.5, 0.5]
r3 = [0.5, -0.5, -0.5]
r4 = [-0.5, 0.5, -0.5]

as you can verify this in Fig. 3. The R matrix contains the coordinates of the
sensors in its columns

 r1 r2 r3 r4

[[-0.5 0.5 0.5 -0.5]
 R = [-0.5 0.5 -0.5 0.5] [3 by 4] matrix

 [0.5 0.5 -0.5 -0.5]]

The A matrix is the matrix of the relative accelerations. The acceleration
vectors measured by the sensors are

a1 = [a1x, a1y, a1z]
a2 = [a2x, a2y, a2z]
a3 = [a3x, a3y, a3z]
a4 = [a4x, a4y, a4z]

How to make relative acceleration values from these? Let us first calculate the
average acceleration vector aC

aC = 0.25
.[a1x+a2x+a3x+a4x, a1y+a2y+a3y+a4y, a1z+a2z+a3z+a4z]

Then subtract aC from the acceleration vectors to obtain relative accelerations

ar1 = [a1x-aCx, a1y-aCy, a1z-aCz]
ar2 = [a2x-aCx, a2y-aCy, a2z-aCz]
ar3 = [a3x-aCx, a3y-aCy, a3z-aCz]
ar4 = [a4x-aCx, a4y-aCy, a4z-aCz]

And the A matrix is

 ar1 ar2 ar3 ar4

 [[ar1x ar2x ar3x ar4x]
 A = [ar1y ar2y ar3y ar4y] [3 by 4] matrix

 [ar1z ar2z ar3z ar4z]]

By the way, aC is the linear acceleration vector measured by the sensor array. So
half of the 6DOF IMU job done. Now, we have to calculate the angular acceleration
and the angular velocity values. In other words we will get 9DOF data, won't we?
Up till now the operations were reading the sensors, adding, subtracting dividing
values, some housekeeping to arrange values in arrays. So, we encountered not too
many complications.

An offline task to be solved only once
Before we proceed, we have to calculate the Moore-penrose inverse P of matrix R.
This is easy and has to be done only once for a given sensor arrangement. You can
do it with the FPU_Matrix_Driver object. Some of the comments of the Matrix_SVD
(Singular Value Decomposition) procedure will guide you. Or, you can use some
simple matrix algebra as follows

P = RT.(R.RT)-1

Again, every step can be done with the FPU_Matrix_Driver, like for example

Matrix_Transpose(@RT,@R,3,4) 'This calculates RT
Matrix_Multiply(@RRT,@R,@RT,3,4,4,3) 'This calculates R.RT
Matrix_Inverse(@RRTI,@RRT,3) 'This calculates inverse of (R.RT)
Matrix_Multiply(@P,@RT,@RRTI,4,3,3,3) 'This calculates P = RT.(R.RT)-1

For our sensor arrangement the result is

[[-0.5 -0.5 0.5]
 P = [0.5 0.5 0.5] [4 by 3] matrix

 [0.5 -0.5 -0.5]
 [-0.5 0.5 -0.5]]

Verify that the R.P matrix product gives a [3 by 3] identity matrix. O.K. We have
P, we have to store it somewhere as we shall use it frequently.

A little bit of physics shouldn't hurt
From rigid body kinematics, a very compact formula can be derived for the ai
accelerations. This formula contains the acceleration aC of the centroid C, the
angular velocity  of the body's rotation around an axis containing the centroid
and the time derivative  of the angular velocity, the so called angular
acceleration. Note that these are just the IMU quantities we would like to
measure. Before I write down the formula, I emphasize again, that our sensor
array estimates directly all these three basic kinematic vectors. In other
words, neither we have to derivate  to obtain , or, nor we have to integrate 
to obtain . Beware of the following formula, because it is so simple that you
can even remember it, if you are not careful enough. The formula is

ai = aC +  x ri + x (x ri)

where x denotes the vector product. In SPIN using the FPU_Matrix_Driver, e.g.
for a1, it goes as

Vector_CrossProduct(@wr1,@omega,@r1,3,1) 'This calculates xr1
Vector_CrossProduct(@wwr1,@omega,@wr1,3,1) 'This calculates x(xr1)
Vector_CrossProduct(@alphar1,@alpha,@r1,3,1) 'This calculates xr1
Matrix_Add(@alphar1wwr1,@alphar1,@wwr1,3,1) 'This calculates xr1+x(xr1)
Matrix_Add(@a1,@ac,@alphar1wwr1,3,1) 'This calculates a1

Of course, here we use this formula only to calculate correct ai values for our
sensor array for different types of motion of the body to numerically check the
decoding algorithm. Now, we have prepared the tests, let's get back to the
decoding algorithm.

How to decode the angular acceleration?
Well, we have decoded the linear acceleration of the sensor array. That is simply
aC. To get the angular acceleration, we have first to multiply the A matrix of
the relative accelerations with P. The matrix A was calculated from the measured
ai values before and P was stored somewhere.

W = A.P

W has a name, it is called the angular acceleration tensor. But it doesn't
matter. We got it. W is a small [3 by 3] matrix, nine nicely arranged float
values, nothing else from now on. The angular acceleration vector is simply

 = 0.5.[W32-W23, W13-W31, W21-W12]

where the double subscript of W denotes the corresponding element of the W
matrix. For example W32 is the second element of the third row.

Yes, yes, but what about the angular velocity?
We'll get it quickly. First we have to calculate the symmetric part WS of our
simple [3 by 3] W matrix

WS = 0.5
.(W + WT)

In SPIN version

Matrix_Transpose(@WT,@W,3,3) 'This calculates WT
Matrix_Add(@WWT,@W,@WT,3,3) 'This calculates W + WT
Matrix_ScalarMultiply(@WS,@WWT,3,3,0.5) 'This calculates WS

Again, we have nine float values stored in WS. In preparation of the final result
we calculate the quantity

sp = 0.5.(WS11 + WS22 + WS33)

and finally

 = [SQR(WS11-sp), SQR(WS22-sp), SQR(WS33-sp)]

Where SQR denotes the square root operation. These were three additions, three
subtractions, a multiplication and three square roots. The correct sign of the
components can be obtained easily as described, for example, in the original
paper. We shall discuss the sign determination later. Now we continue with some
practical considerations and than with the numerical tests.

O.K. But how long does this decoding take?
Well, in PASM this decoding takes 4-5 msec. In the FPU it takes less than 2 msec.
Whichever you choose, you can handle 100 Hz (10 msec period) acceleration data.
In SPIN you can cope with 20 Hz data easily.

First example: Sensor resting on a table
Let us assume that the table is horizontal and is resting on the ground. We have
gravity of course (9.81 m/sec2), but we don't have angular rotation and angular
acceleration of the sensor array. The  and  vectors are zero and the sensed ai
vectors are as follows

a1 = [0.0, 0.0, 9.81]
a2 = [0.0, 0.0, 9.81]
a3 = [0.0, 0.0, 9.81]
a4 = [0.0, 0.0, 9.81]

First we calculate aC

aC = [0.0, 0.0, 9.81]

Then the A matrix is

 [[0.0 0.0 0.0 0.0]
 A = [0.0 0.0 0.0 0.0]
 [0.0 0.0 0.0 0.0]]

The W matrix is

 [[0.0 0.0 0.0]
 W = A.P = [0.0 0.0 0.0]

 [0.0 0.0 0.0]]

So, both the measured  and  are null vectors.

Sensor array accelerating but not rotating
Let us push the sensor array in the x direction with 1 m/sec2 linear
acceleration. The  and  vectors are zero again , but we have a linear aC
acceleration of the whole sensor in the x direction. According to our formula

ai = aC +  x ri + x (x ri)

we calculate ai values, taking into account the sensed g, of course

a1 = [1.0, 0.0, 9.81]
a2 = [1.0, 0.0, 9.81]
a3 = [1.0, 0.0, 9.81]
a4 = [1.0, 0.0, 9.81]

The measured aC, the average of the four ai vectors, is

aC = [1.0, 0.0, 9.81]

Then the A matrix is

 [[0.0 0.0 0.0 0.0]
 A = [0.0 0.0 0.0 0.0]
 [0.0 0.0 0.0 0.0]]

The W matrix is

 [[0.0 0.0 0.0]
 W = A.P = [0.0 0.0 0.0]

 [0.0 0.0 0.0]]

So, both the measured  and  are null vectors, again.

Let us take some increasing spin
Now, we accelerate the sensor array as in the previous example, but this time we
start to rotate it with

 = [0.0, 0.0, 0.5]

[rad/sec2] angular acceleration around the z axis. According to our formula

ai = aC +  x ri + x (x ri)

we calculate ai values again. First let us calculate the  x ri vectors

 x r1 = [0.25, -0.25, 0.00]
 x r2 = [-0.25, 0.25, 0.00]
 x r3 = [0.25, 0.25, 0.00]
 x r4 = [-0.25, -0.25, 0.00]

then the ai vectors

 a1 = [1.25, -0.25, 9.81]
 a2 = [0.75, 0.25, 9.81]
 a3 = [1.25, 0.25, 9.81]
 a4 = [0.75, -0.25, 9.81]

The aC vector, the average of ai is the same as before

aC = [1.0, 0.0, 9.81]

But the A matrix of the relative accelerations is filled not only with zeroes
now

 [[0.25 -0.25 0.25 -0.25]
 A = [-0.25 0.25 0.25 -0.25]

 [0.00 0.00 0.00 0.00]]

The W matrix is

 [[0.0 -0.5 0.0]
 W = A.P = [0.5 0.0 0.0]

 [0.0 0.0 0.0]]

From this, using the formula for the decoded (measured) 

 = 0.5.[W32-W23, W13-W31, W21-W12]

we obtain

 = [0.0, 0.0, 0.5]

Right. Now let us look for the decoded (measured) The symmetric part WS of our
W matrix is

 [[0.0 0.0 0.0]
WS = 0.5.(W + W

T) = [0.0 0.0 0.0]
 [0.0 0.0 0.0]]

So, the decoded (measured) angular-velocity vector is

 = [0.0, 0.0, 0.0]

Well, so far so good.

Accelerating and rotating sensor array
Four seconds have passed and the sensor array is rotating now with

 = [0.0, 0.0, 2.0]

[rad/sec] angular velocity, while accelerating linearly and angularly as before

aC = [1.0, 0.0, 9.81]

 = [0.0, 0.0, 0.5]

The constituents to the ai accelerations at the pickup points are

aC = [1.0, 0.0, 9.81]

 x r1 = [0.25, -0.25, 0.00]
 x r2 = [-0.25, 0.25, 0.00]
 x r3 = [0.25, 0.25, 0.00]
 x r4 = [-0.25, -0.25, 0.00]

x (x r1) = [2.00, 2.00, 0.00]
x (x r2) = [-2.00, -2.00, 0.00]
x (x r3) = [-2.00, 2.00, 0.00]
x (x r4) = [2.00, -2.00, 0.00]

These are sensed accelerations at the pickup points and they are added
(scrambled) in the sensors

 a1 = [3.25, 1.75, 9.81]
 a2 = [-1.25, -1.75, 9.81]
 a3 = [-0.75, 2.25, 9.81]
 a4 = [2.75, -2.25, 9.81]

Now let us see, how the algorithm unscrambles the aC,  and  vectors. The aC is
simply the average of the four ai vectors

aC = [1.0, 0.0, 9.81]

The A matrix of the relative accelerations is

 [[2.25 -2.25 -1.75 1.75]
 A = [1.75 -1.75 2.25 -2.25]

 [0.00 0.00 0.00 0.00]]

We obtain the [3 by 3] W matrix with a simple matrix multiplication

 [[-4.0 -0.5 0.0]
 W = A.P = [0.5 -4.0 0.0]

 [0.0 0.0 0.0]]

And we unscramble immediately, using the formula

 = 0.5.[W32-W23, W13-W31, W21-W12]

the angular acceleration vector

 = [0.0, 0.0, 0.5]

Then we compute the symmetric part of the W matrix

WS = 0.5
.(W + WT)

It is

 [[-4.0 -0.0 0.0]
 WS = [0.0 -4.0 0.0]

 [0.0 0.0 0.0]]

Then we calculate the quantity

sp = 0.5.(WS11 + WS22 + WS33) = -4.0

And finally, from the formula

 = [SQR(WS11-sp), SQR(WS22-sp), SQR(WS33-sp)]

we get the unscrambled  vector

 = [0.0, 0.0, 2.0]

Right, again.

Summarizing the steps of the algorithm
To check and to follow the steps of the numeric examples one can use the
Propeller/SPIN language and the FPU_Matrix_Driver. Some practice will ensure the
user how simple it is and how easy to program the algorithm in Propeller/SPIN.
Now I summarize briefly the main steps of the process.

The four sensor readings (ai vectors) are stored in a [3 by 4] matrix, column
wise.

The average of the vectors gives the linear acceleration aC of the sensor array.

This average vector is subtracted from each column of the matrix, and the
resulting matrix is multiplied with a precomputed one.

The [3 by 3] product matrix is used to estimate the  and the  vectors.

 is obtained directly from this matrix with a simple formula.

 is obtained from the easily computed symmetric part of this matrix, again with
simple formulas.

A numerically robust way to get the sign of the components of the  vector is to
store the sum of the  components. The sign of the stored sums will yield the
sign of the measured  components at any moment. Yes, I know that this is
something like an integration. But the difference between using the sign of a
value, or using the value itself, is huge.

Some words about calibration
It is beyond the scope of this document to discuss the calibration of the sensor
array in details. I will describe the calibration process and the simple math of
that later. Now I just mention, that each of the H48C sensors should be
calibrated statically. After that the whole sensor array can be calibrated
kinematically as described in the original paper. This kinematic calibration will
improve the precision of the sensor array with several orders of magnitude! The
kinematic calibration can be done en-route during an arbitrary maneuver of the
body that carries the sensor array.

cessnapilot, 03.03.2009

