
Pico Video Game Driver for SX/B 2.0

The “Pico Game Driver” is an interrupt driven sound and monochrome video driver. By using interrupts to
generate the video and sound, you can focus on the details of your game without having to worry about
timing.

Sound

The sound portion of the driver is very simple. You simply call the subroutine named SND that takes three
parameters, Frequency, Duration , and Volume. Note that the tone is produced by the interrupt driver, so
your program does not stop while the sound is being produced. If you use two SND commands without a
delay between them you will not hear the first SND tone because the program will immediately execute the
second SND command after the first.

Frequency (1 – 255) : This parameter specifies the frequency of the sound produced. The frequency is
15723 / value. If you specify a frequency of 1 the tone will be 15723 Hz. If you specify a value of 255 the
frequency of the tone will be (15723 / 255) or 61.66 Hz.

Duration (0 – 255) : This parameter specifies how many video frames (1/60 second) the tone will continue. A
duration of 60 would last for 1 second. If duration is zero, then the tone continues forever or until another
sound command is issued. You can detect when a sound is finished by checking the driver variable
sndDurCnt. When sndDurCnt is equal to zero, the sound is finished.

Volume (0 – 15) : This parameter specifies the volume of the tone.

Video

The screen is made up of 176 cells. There are 16 cells horizontally and 11 cells vertically. Each cell can
display one of sixteen tiles from a tile set. Each of the 16 tiles consists of an 8x8 monochrome bitmap image.

You can configure the driver to use either one or two tile sets. With one tile set, all of the 11 horizontal lines
displays tiles from the same tile set. If you configure for two tile sets, then the top line displays tiles from the
first tile set, and all other lines displays tiles from the second tile set. Using one tile set will free up 128
program instructions allowing you to create longer more complicated programs.

By default the driver uses two tile sets. To configure the driver for one tile set you must define the word
“TILESETS_1” by using:

‘{$DEFINE TILESETS_1}

The reason for giving the top line it’s own tile set is so you can display values (score, timer, etc) which will
require 10 tiles (for digits 0 thru 9).

The driver includes two routines to increment (ValueInc) and decrement (ValueDec) values. These routines
require that the digits 0 thru 9 be stored in tiles 0 thru 9. Therefore it is advisable to use tile15 for the blank
tile.

Here is the driver memory map when using one tile set:

$000 - $1FF = Game Subroutines and Pico Game Driver Code
$200 - $27F = Tile Set 1 (Line 0-10 tile set bitmaps)
$280 - $7FE = Game program and Pico Game Driver subroutines

Here is the driver memory map when using two tile sets:

$000 - $1FF = Game Subroutines and Pico Game Driver Code
$200 - $27F = Tile Set 1 (Line 0 tile set bitmaps)
$280 - $2FF = Tile Set 2 (Lines 1-10 tile set bitmaps)
$300 - $7FE = Game program and Pico Game Driver subroutines

Screen locations can be specified either by “position” which is a value from 0 (top left) to 175 (bottom right).
The screen positions start in the top left with 0, and increase as you go across the line left to right. So the
position value of the top right cell is 15, then the second line is positions 16 through 31 and so on down the
screen. Or you can simply specify the X and Y screen position. X is horizontal from 0(left) to 15(right), and Y
is vertical from 0(top) to 10(bottom).

The entire screen is stored in an array named “videoScreen” that has 88 elements. Two cells are stored in
each element of the array. The most significant nibble is the cell on the left, the least significant nibble is the
cell on the right.

If you wanted to put tile 0 at position 0, and tile 1 at position 1 you could do:

PutTile 0, 0
PutTile 1, 1

or you could simply do:

videoScreen(0) = $01

Also each line is aliased as an array videoLine0 through videoLine10. These arrays contain 8
elements(bytes) that hold the tile values for that particular line on the screen.

Here are the I/O pins that are defined by the driver
LEDs PIN RA OUTPUT
JStkUp PIN RB.0 INPUT PULLUP ' Joystick input pins
JStkDown PIN RB.1 INPUT PULLUP ' Joystick input pins
JStkLeft PIN RB.2 INPUT PULLUP ' Joystick input pins
JStkRight PIN RB.3 INPUT PULLUP ' Joystick input pins
JStkFire PIN RB.4 INPUT PULLUP ' Joystick input pins
IO_0 PIN RB.5 INPUT PULLUP
IO_1 PIN RB.6 INPUT PULLUP
IO_2 PIN RB.7 INPUT PULLUP
AVPort PIN RC OUTPUT ' Connects to Audio/Video R2R DACs
AVBlack PIN RC.2 OUTPUT ' Make high for black output
AVWhite PIN RC.3 OUTPUT ' Make high (along with black) for white output

Here are the constants that are defined by the driver
Pressed CON 0 ' Buttons go to zero when pressed

VidMode_VSync CON 0 ' Video modes: 0 = Generating Vertical Sync
VidMode_TBlank CON 1 ' 1 = Generating Top Blank Lines
VidMode_Active CON 2 ' 2 = Generating Active Video Lines
VidMode_BBlank CON 3 ' 3 = Generating Bottom Blank Lines

Line0 CON 0 ' Offset for video line 0
Line1 CON 16 ' Offset for video line 1
Line2 CON 32 ' Offset for video line 2
Line3 CON 48 ' Offset for video line 3
Line4 CON 64 ' Offset for video line 4
Line5 CON 80 ' Offset for video line 5
Line6 CON 96 ' Offset for video line 6
Line7 CON 112 ' Offset for video line 7
Line8 CON 128 ' Offset for video line 8
Line9 CON 144 ' Offset for video line 9
Line10 CON 160 ' Offset for video line 10

Here are the variables that are defined by the driver
videoScreen VAR BYTE(88) SPAN ' Whole screen lines 0 through 10
videoLine0 VAR BYTE(8) @ $30 ' 1st line of text (line 0)
videoLine1 VAR BYTE(8) @ $38 ' 2st line of text (line 1)
videoLine2 VAR BYTE(8) @ $50 ' 3rd line of text (line 2)
videoLine3 VAR BYTE(8) @ $58 ' 4th line of text (line 3)
videoLine4 VAR BYTE(8) @ $70 ' 5th line of text (line 4)
videoLine5 VAR BYTE(8) @ $78 ' 6th line of text (line 5)
videoLine6 VAR BYTE(8) @ $90 ' 7th line of text (line 6)
videoLine7 VAR BYTE(8) @ $98 ' 8th line of text (line 7)
videoLine8 VAR BYTE(8) @ $B0 ' 9th line of text (line 8)
videoLine9 VAR BYTE(8) @ $B8 ' 10th line of text (line 9)
videoLine10 VAR BYTE(8) @ $D0 ' 11th line of text (line 10)
vidCnt VAR BYTE (1) ' vsync=6, topblank=40, active=240, botblank=24
vidMode VAR BYTE (1) ' 0=vsync, 1=topblank, 2=active, 3=botblank
vidLineRpt VAR BYTE (1) ' Repeat each line counter
vidTileLine VAR BYTE ' Current line within 1 tile (cannot be an array)
tileAddr VAR BYTE ' RAM address of tile (cannot be an array)
tileDots VAR BYTE ' Tile line dot pattern (cannot be an array)
sndDurCnt VAR BYTE (1) ' Counts frames for sound duration
sndToneCnt VAR BYTE (1) ' Counts video lines for sound
sndTone VAR BYTE (1) ' Current sound tone value
sndVol VAR BYTE (1) ' Volume of current sound
intFlag VAR BIT ' Cleared by video interrupt

Here are the subroutines that are included in the driver

Snd generates tones

Snd Freq(1-255), Duration(0-255), Volume(0-15)

PutTile is used to place tiles on the screen.

PutTile Position, TileID

PutTile X, Y, TileID

GetTile is used to retrieve the TileID at a certain screen location.

var = GetTile Position, TileID

var = GetTile X, Y, TileID

If var is a BYTE is will be set to the TileID the position, if var is a WORD, the LSB will be set to the TileID,
and the MSB will be set to the RAM location of the position specified.

Delay is used to pause or slow down the program.

Delay value

Delays for about "value" milliseconds.

WaitSync is used to wait until the screen has been sent to the TV.

WaitSync
WaitSync is useful to avoid changing the screen while it is being sent to the TV.

ClearScreen is used to fill all or part of the screen with a specified tile.

ClearScreen TileID

ClearScreen TileID, StartLine

If “StartLine” is specified, only lines from that line down are filled with “TileID”

ScrollUp is used to move the screen up one line.

ScrollUp

ScrollUp TileID

If “TileID” is given, the bottom line is filled with this tileID, otherwise the bottom line is left intact.

ScrollDown is used to move the screen down one line.

ScrollDown

ScrollDown TileID

If “TileID” is given, the top line is filled with this tileID, otherwise the top line is left intact.

ScrollLeft is used to move the screen left one column.

ScrollLeft TileID

The right column is filled with tileID.

ScrollRight is used to move the screen right one column.

ScrollRight TileID

The left column is filled with tileID.

ValueInc is used to increase a value that is displayed on the screen. A score for example.

ValueInc Position

ValueInc X, Y

The position given must be the location of the digit in the value that you wish to increment. The digit MUST
match the TileID (TileID 0 must be the bitmap of zero, etc). When the digit specified reaches “9”, it is made a
“0” and the previous position (if it’s tileID is 0 to 9) is incremented.

ValueDec is used to decrease a value that is displayed on the screen. A timer for example.

ValueDec Position

ValueDec X, Y

The position given must be the location of the digit in the value that you wish to decrement. The digit MUST
match the TileID (TileID 0 must be the bitmap of zero, etc). When the digit specified reaches “0”, it is made a
“9” and the previous position (if it’s tileID is 0 to 9) is decremented.

PlotXY is used to plot pixels when using the pixel tile sets. The pixel tile sets use all 16 tiles with various
quarters of the tiles filled. These tile sets are loaded by defining LOAD_PIXEL_TILESET_1 and/or
LOAD_PIXEL_TILESET_2 before loading “PicoNTSC_INC.SXB’.

PlotXY PixelX(0-31), PixelY(0-21)

Plot makes the pixel black.

PlotXY is used to plot pixels when using the pixel tile sets. The pixel tile sets use all 16 tiles with various
quarters of the tiles filled. These tile sets are loaded by defining LOAD_PIXEL_TILESET_1 and/or
LOAD_PIXEL_TILESET_2 before loading “PicoNTSC_INC.SXB’.

UnPlotXY PixelX(0-31), PixelY(0-21)

UnPlotXY makes the pixel white.

There are a number of conditional defines that are used to configure the driver

‘{$DEFINE LOAD_PIXEL_TILESET_1}

This will load the bitmaps for tile set 1 that work with the PlotXY and UnPlotXY commands.

‘{$DEFINE LOAD_PIXEL_TILESET_2}

This will load the bitmaps for tile set 2 that work with the PlotXY and UnPlotXY commands.

‘{$DEFINE TILESETS_1}

This will use tile set 1 for ALL video lines. This frees 128 program instructions for your game.
NOTE: This must be defined BEFORE PicoNTSC_DEF.SXB is loaded.

The best way see how the driver works is by examining the demo programs that are provided.

BrickOut.SXB is a simple breakout type game
Drive Game.SXB is a simple car “stay on the road” type game (scrolls down)
Flip-It.SXB is a simple board game
Pong.SXB is a simple pong game
Sketch.SXB is a simple drawing game
SX Invaders.SXB is a simple space invaders type game
Template.SXB is a bare template program (doesn't do anything)

The “Pico Video Game Driver” was written by:

Terry Hitt
Hitt Consulting
www.HittConsulting.com
terry@hittconsulting.com

Comments and suggestions are welcome.

