
Column #147: The Power of Networking Page 1 of 24

Column #147, January 2008 by Jon Williams:

The Power of Networking

For an actor attempting to make his way in Hollywood the word “Networking” takes on a whole host of meanings.
It’s a crazy business, really, and what most of us find is that those with the same goals, e.g., becoming an
established actor, are not abundantly helpful to each other (a few are downright malicious). So, “networking” –
actor to actor, that is – is mostly bupkis in my book. Now, I do have a “Hollywood” network, but the only actors in
it are very well established, if not particularly well known. Most of my friends in the business do other things:
make-up, special FX, etc., and the person that I network with most is a guy named Peter who, like me, is one of those
techno-artistic types. Peter directs TV commercials, has worked for a major studio directing a TV series and doing
special effects and oh, by the way, just happens to be a fantastic electronics engineer who uses the SX in many of his
projects. He even maintains the SX-Key IDE for Parallax – how could we not get along?!

About three or four times a month Peter and I meet at one of our favorite restaurants in downtown Burbank, just a
stone’s throw from the Warner Brothers and Disney lots. The food is great, the service is great, and they never seem
to mind that we will stay at the table long past the pasta, mostly talking about electronics. We usually have a little
show-and-tell for each other, sharing current projects, and exchanging ideas. The meetings are always educational
and, for me, it’s the best way to “do lunch” in Hollywood.

Peter has been incredibly generous with his knowledge, particularly on a subject that I’ve been slow to approach:
microcontroller networking. Sure, I’ve done very simple stuff, but having spent that last two Halloweens at Peter’s
home watching (with hundreds of others) his incredible animatronics display, I am pushing myself to jump in and
give “real” microcontroller networking a go. Lucky for me I have the benefit of Peter’s experience on this topic, as
he’s spent the last several years developing and improving his networked animatronics control system.

Several years back Peter set out to design a very flexible, fully modular animatronics control system that he could
manage from a simple PC. Well, having seen it in action, I can tell you that he succeeded, and you can see for
yourself by visiting his web site at http://www.socalhalloween.com. His system runs on an RS-485 network with
several types of network nodes, the most sophisticated being the animation controller that is able to receive an
animation frame while playing another (the servo control output of the animation controller uses an SX28).

My goals are somewhat less sophisticated than Peter’s, though I’ve had them for quite some time. While I was
living in Texas I read about man who built an enormous custom home; its size was somewhere on the order of
20,000 square feet. When he consulted the utilities companies they estimated that his monthly heating and air
conditioning expenses would be around $4000. He figured for that much money he could create a custom home
management system and when he did, his energy bills were reduced to under $400 per month. Along the way he
discovered that a lot of “energy efficient” appliances were not performing to their stated specifications and he forced
some manufacturers to restate their specs or fix the products.

Column #147: The Power of Networking Page 2 of 24

Today the concept of “going green” is very popular, and it should be – a penny saved is a penny earned, especially
when it’s precious energy. So my system is going to be very straightforward with the ultimate goal to monitor and
control my home from a simple PC; making it “smart” and, if I do it well, energy efficient.

As this is the beginning of what I expect to be a long journey, I’m borrowing another one of Peter’s good ideas: I’m
creating a prototyping system for an SX-based network node. What this means is that my generic network node
PCB will have a processor and the RS-485 interface, and a small breadboarding area to add custom circuitry as
needed for a given node. Let’s have a look at the hardware.

Figure 147.1 shows the SX28 processor and RS-485 interface (MAX489 or equivalent). As you can see, it is in fact
very generic. The design uses port RA for communications and ports RB and RC for I/O that is specific to the node.
For the purposes of the rest of this article my node is going to be a 10-segment LED display. I’m starting with
simple hardware so that I can get my head around the requirements of managing network messages. The node has
dedicated RX and TX pins for the RS-485 link, so we can tie the MAX489 Receive Enable (/RE) pin to ground; that
way the SX will always be “listening.” On the other side, however, we will want to selectively activate the Data
Enable (DE) pin so that RS-485 output from the node is active only when transmitting.

Figure 147.1: The SX28 processor and RS-485 Interface

Column #147: The Power of Networking Page 3 of 24

Figure 147.2: The Power Supply and RS-485 Connections

Figure 147.2 shows the power supply and RS-485 connections. Using RJ-45 jacks allows us to transmit full-duplex
data on inexpensive CAT-5 cables. We can even put power on the cable to handle low-current nodes. When taking
power from the CAT-5 cable jumpers JP1 and JP2 should be installed, otherwise they should be removed. If using
local power you must remove JP1 – please be careful with this.

Jumper JP3 enables the receive line terminator. If a node is the last on the “receive” end then JP3 should be
installed, otherwise is should be removed. I’m using a PC as my master node but there’s no reason we can’t have a

Column #147: The Power of Networking Page 4 of 24

network of SX-only nodes, with one being assigned as the master controller. If you’re using an SX master then its
JP3 should be installed.

Okay, the hardware is very simple, and that’s by design as this is a prototyping system. One problem I did run into
is the hole-count limitation when using ExpressPCB’s mini board service. After getting my components laid out I
just filled as much [logical] space as possible with standard pads. As I went to order boards I got a dialog that
informed me I had too many holes for a mini board – so keep this in mind when you’re prototyping with
ExpressPCB.

Since most of my projects involve the SX I’ve become very comfortable with “virtual peripherals” and have created
several code modules that I plug in as needed. A couple modules that get a lot of use in what I do are the buffered
receive and transmit UARTs; these modules allow us to receive and transmit serial data in “the background” while
our foreground code is doing other things. The receive UART for this project is a buffered version of what we used
in the lighting controller we did last November. This project uses the complementary transmit UART that has a
little addition to manage the MAX489 DE pin. Let’s look at the modifications for controlling the MAX489.

Transmit:
 ASM
 BANK txSerial
 CLRB txDivide.BaudBit
 INC txDivide
 JNB txDivide.BaudBit, TX_Exit
 TEST txCount
 JZ TX_Buffer
 STC
 RR txHi
 RR txLo
 MOVB TX, txLo.6
 DEC txCount
 JMP TX_Done

TX_Buffer:
 TEST txBufCnt
 JZ TX_Exit
 SETB TxEnable
 MOV W, #txBuf
 ADD W, txTail
 MOV FSR, W
 MOV txHi, IND
 CLR txLo
 MOV txCount, #11
 INC txTail
 CLRB txTail.3
 DEC txBufCnt
 JMP TX_Done

TX_Exit:
 JNB TxEnable, TX_Done
 CJA txBufCnt, #0, TX_Done
 CJA txCount, #0, TX_Done
 CLRB TxEnable

TX_Done:
 BANK 0 ENDASM

One of the great aspects of SX/B is the ability to easily fold Assembly code segments into a BASIC program – that’s
what I did here; the UART code is really a modification of that found in Günther Daubachs’ excellent book,
Programming the SX Microcontroller. I modified the buffering to work within the same RAM bank as the other
transmit variables and, for this project, included control of the MAX489.

In the section at TX_Buffer the DE pin (called TxEnable in the program) is taken high with SETB when a byte is
about to be moved from the transmit ring buffer into the transmitter output (txHi). Since this byte won’t start going
out until the next interrupt, there is plenty of time for the DE pin to stabilize. The DE pin will stay high until the
transmit buffer is empty (txBufCnt is 0) and there are no more bits to be transmitted (txCount is 0).

Column #147: The Power of Networking Page 5 of 24

Okay, now that we can receive and transmit bytes in the background it’s time to talk protocol. The neat part about
this is we get to make it up, which in fact turns out to be the tough part too; sometimes it’s just easier to work from
an established specification. In my case I borrowed quite a lot from Peter’s protocol, making a few changes that
simplify the system and tie into my long-term goals.

The protocol is, essentially, peer-to-peer, so any node can talk to any other node. This opens the door to all kinds of
interesting possibilities. The “sender” node will transmit a four-byte header that is followed by a data packet if
required for the specific message.

The entire transmission is configured as follows:

Receiver Receiver node (1 to 127) + $80– to designate start of header
Sender Node sending the packet (1 to 127)
Message Request or Command Message
Packet Size Number of bytes in data packet (0 to n)
Data bytes Data used by Message (optional)

The minimum transmission size will be four bytes (the header): the receiver, the sender, the message, and a zero
when there are no data bytes. The receiver address will have BIT7 set to designate the start of a new header – the
MIDI protocol uses this strategy and we’re going to borrow from it.

The node we’re going to create will be a simple I/O slave that will respond to [valid] commands and requests from
another node. We’ll use a VB program to send the messages from a PC. Since the node is a slave, it waits for bytes
to show up in the receive buffer and then process them accordingly. The first part handles the basic message header.

Main:
 rxNode = RX_BYTE
 IF rxNode.7 = 0 THEN Main

Validate_Start:
 rxNode.7 = 0
 IF rxNode = GLOBAL_NODE THEN Get_Sender_Node
 IF rxNode <> MY_NODE THEN Main

Get_Sender_Node:
 txNode = RX_BYTE
 IF txNode.7 = 1 THEN
 rxNode = txNode
 GOTO Validate_Start
 ENDIF

Validate_Global_Sender:
 IF rxNode = GLOBAL_NODE THEN
 IF txNode <> MASTER_NODE THEN Main
 ENDIF

Get_Message:
 msgNum = RX_BYTE
 IF msgNum.7 = 1 THEN
 rxNode = msgNum
 GOTO Validate_Start
 ENDIF

Get_Packet_Length:
 packLen = RX_BYTE
 IF packLen.7 = 1 THEN
 rxNode = packLen
 GOTO Validate_Start
 ENDIF

When a byte comes in we need to check to see if BIT7 is set as this indicates the start of the header. When we get
such a byte, BIT7 is cleared and we pull the next byte from the input buffer – this is the sender node. If the receive
node was designated as global (address 0) the program ensures that the sender was the master; in my system only the

Column #147: The Power of Networking Page 6 of 24

master node is allowed to send global commands. Finally, the message number and packet length bytes are pulled
from the stream.

Since it is possible for a transmission to be interrupted and then restarted, we must test every byte that comes in for
BIT7 being set. By doing this check we can always re-sync the node with the start of a new header.

If the command or request includes data the packet length byte will be one or greater. I don’t expect to have long
packets in my home control system so the buffers are fairly small. Here’s how we receive any data bytes:

RX_Raw_Packet:
 idx = 0
 DO WHILE idx < packLen
 tmpB1 = RX_BYTE
 IF tmpB1.7 = 1 THEN
 rxNode = tmpB1
 GOTO Validate_Start
 ELSE
 fifo(idx) = tmpB1
 INC idx
 ENDIF
 LOOP

As above each new byte is checked to ensure it’s not a header start byte; if not it gets moved into a temporary array
called fifo().

I know what you’re thinking: “If we can’t use BIT7, how do we transmit values greater than 127?” We’re going to
borrow another strategy from MIDI and use two bytes: the first byte will contain the lower seven bits of the eight-
byte value and the second byte will hold BIT7. Remember, we don’t always need all eight bits for a given
command, so we only use this scheme when an eight-bit value is required.

After receiving the packet and any data bytes we will use a simple routing section to process the incoming
transmission. By doing this we end up simplifying the message handlers.

Route_Message:
 IF msgNum = QRY_REQ THEN Unit_Acknowledge
 IF msgNum = DEV_RST THEN Device_Reset
 IF msgNum = SET_BIT THEN Set_One_Bit
 IF msgNum = GET_BIT THEN Get_One_Bit
 IF msgNum = WR_PORT THEN Write_Port
 IF msgNum = RD_PORT THEN Read_Port

 ' if we get here, message is not used by this node

Bad_Message:
 msgNum = MSG_NAK
 packLen = 0
 GOTO Unit_Reply

No mystery here: if the message is known used by this node then the program is routed to the appropriate handler,
otherwise the response MSG_NAK is returned to the sender. Since we’re now dealing with messages let’s have a
look at what’s defined and explain the logic behind them.

QRY_REQ CON $01
QRY_ACK CON $02
MSG_ACK CON $03
MSG_NAK CON $04
MSG_FAIL CON $05
DEV_RST CON $0F

SET_BIT CON $10
GET_BIT CON $11
GET_BIT_ACK CON $12

WR_PORT CON $20

Column #147: The Power of Networking Page 7 of 24

RD_PORT CON $21
RD_PORT_ACK CON $22

WR_CHAN CON $30
RD_CHAN CON $31
RD_CHAN_ACK CON $32

The first message, QRY_REQ, is used by the sender to “ping” the receiver; if the receiver is present then it responds
with QRY_ACK. The next four messages are used to respond to commands or requests for data from the receiver.
If node is able to complete a request and there is no data to be returned then it will respond with MSG_ACK. If the
message sent isn’t used by the node then the response is MSG_NAK. If a valid message is sent with bad data (e.g.,
a bad port number) then the response will be MSG_FAIL. The final message in this lower group, DEV_RST, will
usually be issued by the master to tell a node to reset itself.

For a simple I/O node I’ve defined three sets of commands: one for bit-level control, one for port-level control, and
a third for setting values (called channels) within the program space. The set and write commands will respond with
MSG_ACK, MSG_NAK, or MSG_FAIL as appropriate. The get and read commands have dedicated responses for
the return data; the logic being this aids the “sender” side of the exchange when a lot of packets are flying around.

Let’s have a look at a few of the handlers.

Unit_Acknowledge:
 msgNum = QRY_ACK
 packLen = 0
 GOTO Unit_Reply

The Unit_Acknowledge handler is the simplest: is sets the message the QRY_ACK, the return packet length to
zero, and then sends the reply. The reason for this process is to allow a “master” to poll all the expected “slave”
devices to ensure that they’re actually online; there is no reason for sending command messages to a node that is not
connected.

Now for something a little more interesting: we’ll accept a level for one of the I/O pins on the node. I happened to
find a 10-segment bar-graph LED in my junk drawer so I soldered that onto the PCB. With just ten LEDs on the
node the handler will only accept bit numbers between 0 (on RB.0) and 9 (on RC.1) – if you use more outputs be
sure to adjust the code accordingly.

Set_One_Bit:
 tmpB1 = fifo(0)
 tmpB2 = fifo(1)

 IF tmpB1 < 10 THEN
 IF tmpB1 < 8 THEN
 tmpB1 = 1 << tmpB1
 IF tmpB2.0 = 1 THEN
 RB = RB | tmpB1
 ELSE
 tmpB1 = ~tmpB1
 RB = RB & tmpB1
 ENDIF
 ELSE
 tmpB1 = tmpB1 - 8
 tmpB1 = 1 << tmpB1
 IF tmpB2.0 = 1 THEN
 RC = RC | tmpB1
 ELSE
 tmpB1 = ~tmpB1
 RC = RC & tmpB1
 ENDIF
 ENDIF
 msgNum = MSG_ACK
 packLen = 0
 ELSE
 msgNum = MSG_FAIL
 packLen = 0

Column #147: The Power of Networking Page 8 of 24

 ENDIF
 GOTO Unit_Reply

The Set_One_Bit handler pulls the bit number and bit level from the fifo() array. This message doesn’t use
“stuffed” data bytes as the 127 limit exceeds the pin count on the SX48. Now, if you want to add shift-registers so
that there are more than 128 discrete outputs on the node then you’ll need to modify this handler to accommodate
the expansion.

The first test is of the bit number. Assuming it’s valid for the node the program determines which I/O port (RB or
RC) holds that bit. A mask is created and if BIT0 of the specified level is 1 the mask is ORed with the control port
which makes the I/O pin go high. If BIT0 of the specified level is zero the mask is inverted and then ANDed with
the control port which makes the I/O pin go low. The node will return MSG_ACK after the bit is manipulated –
unless the bit number was bad, then it will return MSG_FAIL.

The WR_PORT and RD_PORT message deal with eight-byte values, so let’s see how we receive and return them
using the 7-bit container bytes in the packet.

Write_Port:
 tmpB1 = fifo(0)

 IF tmpB1 < 2 THEN
 tmpB2 = PACKW_TO_VAL fifo(1), fifo(2)
 IF tmpB1 = 0 THEN
 RB = tmpB2
 ELSE
 RC = tmpB2 & %00000011
 ENDIF
 msgNum = MSG_ACK
 packLen = 0
 ELSE
 msgNum = MSG_FAIL
 packLen = 0
 ENDIF
 GOTO Unit_Reply

The WR_PORT message requires three data bytes: the port number and two (seven-bit) bytes that make up the
eight-bit value for the specified port. The first check, of course, is the port number. On my little I/O node RB is
defined as port 0 and RC as port 1. If the specified port number is greater than one then we will abort with a
MSG_FAIL response.

When the port number is valid then we’ll use fifo(1) and fifo(2) to reconstruct the eight-bit value with
PACKW_TO_VAL. This function expects two seven-bit bytes passed LSB, then MSB, and will return a properly-
reconstructed word. In our program we’ll only be using the low byte of the returned word, but you can reuse this
code in a MIDI application as it will properly handle 14-bit values.

FUNC PACKW_TO_VAL
 tmpW1 = __WPARAM12

 tmpW1_LSB = tmpW1_LSB << 1
 tmpW1 = tmpW1 >> 1
 RETURN tmpW1
 ENDFUNC

Reconstructing a clean, 14-bit value from two seven-bit bytes is pretty easy. We move the bytes into tmpW1 and
then shift the lower byte left by one to close the gap at BIT7. Now we can shift the entire word right by one to re-
align everything to BIT0. That’s it; the 14-bit value is reconstructed and can be returned to the caller.

The Write_Port handler will route the reconstructed byte to the appropriate port based on the contents of fifo(0).
Since I’m only using two bits on RC the value is masked before it’s written to that port.

Column #147: The Power of Networking Page 9 of 24

The Read_Port handler allows us to read the state of a port on the SX. The sender will pass the port number and
expects to get three data bytes back: the port number and two seven-bit bytes that will be reconstructed into a single
eight-bit port value.

Read_Port:
 tmpB1 = fifo(0)

 IF tmpB1 < 2 THEN
 IF tmpB1 = 0 THEN
 tmpB2 = RB
 ELSE
 tmpB2 = RC & %00000011
 ENDIF
 tmpW1 = VAL_TO_PACKW tmpB2
 msgNum = RD_PORT_ACK
 packLen = 3
 fifo(1) = tmpW1_LSB
 fifo(2) = tmpW1_MSB
 ELSE
 msgNum = MSG_FAIL
 packLen = 3
 fifo(1) = 0
 fifo(2) = 0
 ENDIF
 GOTO Unit_Reply

This routine uses the VAL_TO_PACKW function to split the byte value into two seven-bit containers. To keep
things simple we’ll use a word variable to receive the return value from VAL_TO_PACKW.

FUNC VAL_TO_PACKW
 IF __PARAMCNT = 1 THEN
 tmpW1 = __PARAM1
 ELSE
 tmpW1 = __WPARAM12
 ENDIF

 tmpW1 = tmpW1 << 1
 tmpW1_LSB = tmpW1_LSB >> 1
 tmpW1_MSB = tmpW1_MSB & $7F
 RETURN tmpW1
 ENDFUNC

This function is setup to accommodate bytes or words so that we can also use it in future MIDI applications. The
value to split is moved into tmpW1 and then shifted left. This moves BIT7 of the lower byte into BIT0 of the upper.
The next step is to shift the lower byte right by one to re-align its BIT0; BIT7 of the low byte will now be 0 as
required by the protocol. The final step is to ensure that BIT7 of the high byte is clear before returning the new
value.

We will move the low byte of the return value to fifo(1) and the high byte to fifo(2) – fifo(0) already holds the port
number so we don’t have to change that. The message is set to RD_PORT_ACK, the packet length to three, and
then we send the response.

While chatting with Peter about networking he told me – and he was right – that designing these kinds of projects
can turn into a bit of a chicken-and-egg dilemma. Testing a node requires another node, and writing the code for
that requires specifications on both ends. Case in point is when I was sending a bad port number from my PC node;
the slave node originally sent a MSG_FAIL packet (just four bytes) but my PC node was expecting success and
waiting for seven. To keep things easy, and easy is usually best, the slave node will always have a three-byte packet
for RD_PORT, even if the return message is MSG_FAIL. The port number is maintained so the master node can
deal with it, and the incoming transmission processing is simplified by assigning an expected return message length
to each command.

You’ve probably noticed that all message handlers jump to a routine called Unit_Reply. Here it is:

Column #147: The Power of Networking Page 10 of 24

Unit_Reply:
 IF rxNode = MY_NODE THEN
 rxNode = txNode | $80
 TX_BYTE rxNode
 TX_BYTE MY_NODE
 TX_BYTE msgNum
 TX_BYTE packLen
 idx = 0
 DO WHILE idx < packLen
 TX_BYTE fifo(idx)
 INC idx
 LOOP
 ENDIF
 GOTO Main

The only time a node will send a response is when the node is individually addressed. A node could, for example,
send a message to the global address of 0 that all nodes react to; in this case there will be no responses from the
nodes as they would likely end up stomping on each other and the messages would be trashed. You can see that
Unit_Reply takes the sender node address and turns it into the header start byte by setting BIT7.

Okay, now we have the makings of a reasonably sophisticated control network using the SX, and can do all kinds of
cool things with it. Figure 147.3 shows my first prototype node along with a port-powered RS-485 interface, and
Figure 147.4 shows the VB test node for experimenting with messages (the compiled program and source code is
included in the download files for the article).

In the Query frame you can see four primary values; these comprise the message header. The middle row of inputs
allows for uncompressed data. The lower row of [red] boxes show the actual packet bytes transmitted to the
receiver node. The Response frame is similarly constructed, except that the middle line holds seven-bit “packed”
values and the lower [green] boxes hold the reconstructed bytes.

Figure 147.3: Prototype Node and Port-Powered RS-485 Interface

Column #147: The Power of Networking Page 11 of 24

Figure 147.4: The VB Test Node for Experimenting with Messages

The Big Squeeze
At some point you will probably want to create a node that requires more than one eight-bit value for a message and
you don’t want to use two bytes for each. Peter came up with a neat compression solution for his network and I’ve
created so I can use it. Have a look at Figure 5 to see how Peter compresses several eight-bit values into seven-bit
containers.

Figure 147.5

Since we will typically manipulate blocks of values I created a subroutine called UNSQUEEZE that will take two
bytes from an input buffer and move them into a single byte of an output buffer. To use this routine we will pass a
pointer to the start of the input buffer, an offset for the desired value, and a pointer to the start of the output buffer.

SUB UNSQUEEZE
 src = __PARAM1
 offset = __PARAM2
 dest = __PARAM3

Column #147: The Power of Networking Page 12 of 24

 src = src + offset
 dest = dest + offset
 dByte = __RAM(src)
 dByte = dByte >> offset
 INC src
 dbMSB = __RAM(src)
 offset = 7 - offset
 dbMSB = dbMSB << offset
 dByte = dByte | dbMSB
 __RAM(dest) = dByte
 ENDSUB

The actual source and destination addresses are incremented by the offset to get to the LSB of the target byte. By
doing this math in the subroutine we simplify the interface to it – we don’t have to remember the @ (address of)
operator with the array name, we just use the name on its own. The low bits of the output byte are retrieved using
the __RAM() array and shifted right by the offset to re-align BIT0. The source address is then incremented to get to
the upper bits. This value is shifted left to move the bits to the correct position and then the two bytes are ORed
together to reconstruct the eight-bit value. Finally, the __RAM() array is used to move the reconstituted value to the
desired output address.

The complement of UNSQUEEZE is – no big surprise – SQUEEZE; we can use this to create a compressed packet
to send to another node.

SUB SQUEEZE
 src = __PARAM1
 offset = __PARAM2
 dest = __PARAM3

 src = src + offset
 dest = dest + offset
 dByte = __RAM(src)
 dbCopy = dByte
 destVal = __RAM(dest)
 dByte = dByte << offset
 dByte = dByte & $7F
 destVal = destVal | dByte
 __RAM(dest) = destVal
 INC dest
 offset = 7 - offset
 destVal = dbCopy >> offset
 __RAM(dest) = destVal
 ENDSUB

With SQUEEZE the eight-bit value will be split based on its position in the output array, with the lower half ORed
into the output array so that any previous values there are not disturbed. Let me suggest that the FILL subroutine be
used to clear the output array before looping through the input array – in order – to create the compressed packet.
It’s a little bit of code but now we can send seven full bytes using eight instead of 14, and this can be important if we
have a lot of network traffic.

Okay, I think we should probably wrap it up right here. Order your boards, build a simple node, and start
experimenting. I’d love to hear your ideas on home control, especially those ideas that allow us to conserve energy.

Until next time, Happy Networking with the SX!

Column #147: The Power of Networking Page 13 of 24

SX-Net Prototyping Node Bill of Materials

Designator Value Source
C1, C2 47µF Mouser 647-UVR1V470MDD
C3, C4 0.1 µF Mouser 80-C315C104M5U
D1 LED Mouser 859-LTL-4222N
J1 2.1mm barrel Mouser 806-KLDX-0202-A
J2-J3 RJ-45 R/A Mouser 571-5202514
J4 Machine pin Mouser 506-510-AG91D
JP1-JP4 Pin Strip Header Mouser 517-6111TG
Jumpers 0.1" shunt Mouser 538-15-29-1024
PB1 N.O. button Mouser 612-TL59F160Q
PCB ExpressPCB.com
R1 1 K Mouser 299-1K-RC
R2-R4 10 K Mouser 299-10K-RC
R5 100 1/2 W Mouser 293-100-RC
R6-R7 120 Mouser 291-120-RC
RES1 20 MHz Parallax 250-02060
S1 28-pin DIP Mouser 571-1-390261-9
S2 14-pin DIP Mouser 571-1-390261-3
SW1 slide switch Mouser 506-SSA12
U1 SX28AC/DP Parallax SX28AC/DP
U2 MAX489 Mouser 837-ISL8489IP
VR1 LF50CP Mouser 511-LF50CP
X1 R/A Header Mouser 517-5111TG

' ===
'
' File...... SX-NET.SXB
' Purpose...
' Author.... Jon Williams, EFX-TEK
' Copyright (c) 2007 EFX-TEK
' Some Rights Reserved
' -- see http://creativecommons.org/licenses/by/3.0/
' E-mail.... jwilliams@efx-tek.com
' Started...
' Updated... 18 NOV 2007
'
' ===

' ---
' Program Description
' ---

' ---
' Conditional Compilation Symbols
' ---

'{$DEFINE TESTING_OFF}

' ---
' Device Settings
' ---

Column #147: The Power of Networking Page 14 of 24

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX, BOR42
FREQ 20_000_000
ID "SX-Net"

' ---
' I/O Pins
' ---

RX PIN RA.0 INPUT PULLUP
TX PIN RA.1 OUTPUT
TxEnable PIN RA.2 OUTPUT
UnusedRA3 PIN RA.3 INPUT PULLUP

Port0 PIN RB
 Led0 PIN Port0.0 OUTPUT
 Led1 PIN Port0.1 OUTPUT
 Led2 PIN Port0.2 OUTPUT
 Led3 PIN Port0.3 OUTPUT
 Led4 PIN Port0.4 OUTPUT
 Led5 PIN Port0.5 OUTPUT
 Led6 PIN Port0.6 OUTPUT
 Led7 PIN Port0.7 OUTPUT

Port1 PIN RC
 Led8 PIN Port1.0 OUTPUT
 Led9 PIN Port1.1 OUTPUT
 UnusedP1_2 PIN Port1.2 INPUT PULLUP
 UnusedP1_3 PIN Port1.3 INPUT PULLUP
 UnusedP1_4 PIN Port1.4 INPUT PULLUP
 UnusedP1_5 PIN Port1.5 INPUT PULLUP
 UnusedP1_6 PIN Port1.6 INPUT PULLUP
 UnusedP1_7 PIN Port1.7 INPUT PULLUP

' ---
' Constants
' ---

GLOBAL_NODE CON $00 ' all units listen
MY_NODE CON $01 ' slave addres (1 - 126)
MASTER_NODE CON $7F ' master is #127

' network messages
' -- those marked with * use compressed data

QRY_REQ CON $01 ' unit query
QRY_ACK CON $02 ' query ackowledge
MSG_ACK CON $03 ' msg okay
MSG_NAK CON $04 ' msg not used by node
MSG_FAIL CON $05 ' msg had bad data
DEV_RST CON $0F ' unit reset

SET_BIT CON $10 ' pass bit# + level
GET_BIT CON $11 ' pass bit#
GET_BIT_ACK CON $12

WR_PORT CON $20 ' pass port# + value (*)
RD_PORT CON $21 ' pass port#
RD_PORT_ACK CON $22

WR_CHAN CON $30 ' pass chan# + value (*)
RD_CHAN CON $31 ' pass chan#
RD_CHAN_ACK CON $32

' Bit dividers for 6.51 uS interrupt

Baud2400 CON 6 ' for ISR bit divisor
Baud4800 CON 5
Baud9600 CON 4

Column #147: The Power of Networking Page 15 of 24

Baud19K2 CON 3
Baud38K4 CON 2

BaudBit CON Baud38K4 ' set baud rate
Baud1x0 CON 1 << BaudBit ' calculate # ISR cycles
Baud1x5 CON Baud1x0 * 3 / 2 ' start bit cycles

IsOff CON 0
IsOn CON 1

' ---
' Variables
' ---

flags VAR Byte
 isrFlag VAR flags.0 ' marks start of ISR
 rxReady VAR flags.1 ' indicates rx byte ready

rxNode VAR Byte ' intended receiver
txNode VAR Byte ' source node (1 - 127)
msgNum VAR Byte ' msg number (1 - 127)
packLen VAR Byte ' bytes in packet

idx VAR Byte

tmpW1 VAR Word ' for subs/funcs
tmpW2 VAR Word
tmpB1 VAR Byte
tmpB2 VAR Byte
tmpB3 VAR Byte
tmpB4 VAR Byte
tmpB5 VAR tmpW1_LSB
tmpB6 VAR tmpW1_MSB
tmpB7 VAR tmpW2_LSB
tmpB8 VAR tmpW2_MSB

' aliases for SQUEEZE / UNSQUEEZE

src VAR tmpB1
offset VAR tmpB2
dest VAR tmpB3
dByte VAR tmpB4 ' 8-bit data byte
dbCopy VAR tmpB5 ' copy of data byte
dbMSB VAR tmpB6 ' for (unpack)
destVal VAR tmpB7 ' value in dest(offset)

rxSerial VAR Byte (16)
 rxBuf VAR rxSerial(0) ' 8-byte buffer
 rxCount VAR rxSerial(8) ' rx bit count
 rxDivide VAR rxSerial(9) ' bit divisor timer
 rxByte VAR rxSerial(10) ' recevied byte
 rxHead VAR rxSerial(11) ' buffer head (write to)
 rxTail VAR rxSerial(12) ' buffer tail (read from)
 rxBufCnt VAR rxSerial(13) ' # bytes in buffer

txSerial VAR Byte (16) ' tx serial data
 txBuf VAR txSerial(0) ' eight-byte buffer
 txCount VAR txSerial(8) ' tx bit count
 txDivide VAR txSerial(9) ' bit divisor timer
 txLo VAR txSerial(10) ' holds start bit
 txHi VAR txSerial(11) ' tx output reg
 txHead VAR txSerial(12) ' buffer head (write to)
 txTail VAR txSerial(13) ' buffer tail (read from)
 txBufCnt VAR txSerial(14) ' # bytes in buffer

fifo VAR Byte (8)
packet VAR Byte (8)

Column #147: The Power of Networking Page 16 of 24

' ===
 INTERRUPT NOPRESERVE 153_600 ' run every 6.51 uS
' ===

' --------------------------------
' Mark ISR - use for timing events
' --------------------------------
'
Marker:
 ASM
 SETB isrFlag ' (1)
 ENDASM

' -------
' RX UART
' -------

Receive:
 ASM
 BANK rxSerial ' (1)
 JB rxBufCnt.4, RX_Done ' (2/4) skip if buffer is full
 MOVB C, RX ' (4) sample serial input
 TEST rxCount ' (1) receiving now?
 JNZ RX_Bit ' (2/4) yes, get next bit
 MOV W, #9 ' (1) no, prep for next byte
 SC ' (1/2)
 MOV rxCount, W ' (1) if start, load bit count
 MOV rxDivide, #Baud1x5 ' (2) prep for 1.5 bit periods

RX_Bit:
 DJNZ rxDivide, RX_Done ' (2/4) complete bit cycle?
 MOV rxDivide, #Baud1x0 ' (2) yes, reload bit timer
 DEC rxCount ' (1) update bit count
 SZ ' (1/2)
 RR rxByte ' (1) position for next bit
 SZ ' (1/2)
 JMP RX_Done ' (3)

RX_Buffer:
 MOV W, #rxBuf ' (1) point to buffer head
 ADD W, rxHead ' (1)
 MOV FSR, W ' (1)
 MOV IND, rxByte ' (2) move rxByte to head
 INC rxHead ' (1) update head
 CLRB rxHead.3 ' (1) keep 0..7
 INC rxBufCnt ' (1) update buffer count
 SETB rxReady ' (1) set ready flag

RX_Done:
 BANK 0 ' (1)
 ENDASM

' -------
' TX UART
' -------
'
Transmit:
 ASM
 BANK txSerial ' (1)
 CLRB txDivide.BaudBit ' (1) clear tx bit flag
 INC txDivide ' (1) update tx bit timer
 JNB txDivide.BaudBit, TX_Exit ' (2/4)
 TEST txCount ' (1) transmitting now?
 JZ TX_Buffer ' (2/4) if txCount = 0, no
 STC ' (1) set for stop bit
 RR txHi ' (1) rotate TX buf
 RR txLo ' (1)
 MOVB TX, txLo.6 ' (4) output the bit

Column #147: The Power of Networking Page 17 of 24

 DEC txCount ' (1) update the bit count
 JMP TX_Done ' (3)

TX_Buffer:
 TEST txBufCnt ' (1) anything in buffer?
 JZ TX_Exit ' (2/4) exit if empty
 SETB TxEnable ' (1) enable transmitter
 MOV W, #txBuf ' (2) point to buffer tail
 ADD W, txTail ' (1)
 MOV FSR, W ' (1)
 MOV txHi, IND ' (2) move byte to TX reg
 CLR txLo ' (1) clear for start bit
 MOV txCount, #11 ' (2) start + 8 + 2 stop
 INC txTail ' (1) update tail pointer
 CLRB txTail.3 ' (1) keep 0..7
 DEC txBufCnt ' (1) update buffer count
 JMP TX_Done ' (3)

TX_Exit:
 JNB TxEnable, TX_Done ' (2/4) skip if enable clear
 CJA txBufCnt, #0, TX_Done ' (4/6) skip if buffer not empty
 CJA txCount, #0, TX_Done ' (4/6) skip if still transmitting
 CLRB TxEnable ' (1) disable TX

TX_Done:
 BANK 0 ' (1)
 ENDASM

 RETURNINT

' ===
 PROGRAM Start
' ===

' ---
' Subroutine / Function Declarations
' ---

DELAY_MS SUB 1, 2 ' delay in milliseconds
DELAY_TIX SUB 1, 2 ' delay in 6.51 uS units

RX_BYTE FUNC 1, 0 ' receive a byte
TX_BYTE SUB 1 ' transmit a byte

VAL_TO_PACKW FUNC 2, 1, 2 ' value to packed word
PACKW_TO_VAL FUNC 2, 2 ' packed word to byte

FILL SUB 3 ' fill RAM with value
SQUEEZE SUB 3 ' compress bytes (8 --> 7)
UNSQUEEZE SUB 3 ' decompress bytes (7 --> 8)

' ---
' Program Code
' ---

Start:
 TX = 1 ' set TX to idle state

Main:
'{$IFDEF TESTING_ON}
 GOTO Testing_123
'{$ENDIF}

 rxNode = RX_BYTE ' get receiver node
 IF rxNode.7 = 0 THEN Main ' try again if no start

Validate_Start:
 rxNode.7 = 0 ' strip start flag

Column #147: The Power of Networking Page 18 of 24

 IF rxNode = GLOBAL_NODE THEN Get_Sender_Node ' respond to global node
 IF rxNode <> MY_NODE THEN Main ' validate node #

Get_Sender_Node:
 txNode = RX_BYTE ' rx sender node #
 IF txNode.7 = 1 THEN ' restart of packet?
 rxNode = txNode ' yes, send back to top
 GOTO Validate_Start
 ENDIF

Validate_Global_Sender:
 IF rxNode = GLOBAL_NODE THEN ' if receiver is all
 IF txNode <> MASTER_NODE THEN Main ' validate source is master
 ENDIF

Get_Message:
 msgNum = RX_BYTE ' rx message #
 IF msgNum.7 = 1 THEN
 rxNode = msgNum
 GOTO Validate_Start
 ENDIF

Get_Packet_Length:
 packLen = RX_BYTE ' rx packet length
 IF packLen.7 = 1 THEN
 rxNode = packLen
 GOTO Validate_Start
 ENDIF

RX_Raw_Packet:
 idx = 0
 DO WHILE idx < packLen
 tmpB1 = RX_BYTE ' get packet byte
 IF tmpB1.7 = 1 THEN ' check for restart
 rxNode = tmpB1
 GOTO Validate_Start
 ELSE
 fifo(idx) = tmpB1 ' move to buffer
 INC idx
 ENDIF
 LOOP

' ----------------
' Manual Test Data
' ----------------
'
Testing_123:
'{$IFDEF TESTING_ON}
 rxNode = MY_NODE
 txNode = MASTER_NODE
 msgNum = WR_PORT
 packLen = 3
 fifo(0) = 0
 fifo(1) = $70
 fifo(2) = $01
'{$ENDIF}

' --------------
' Message Router
' --------------

Route_Message:
 IF msgNum = QRY_REQ THEN Unit_Acknowledge
 IF msgNum = DEV_RST THEN Device_Reset
 IF msgNum = SET_BIT THEN Set_One_Bit
 IF msgNum = GET_BIT THEN Get_One_Bit
 IF msgNum = WR_PORT THEN Write_Port
 IF msgNum = RD_PORT THEN Read_Port

Column #147: The Power of Networking Page 19 of 24

 ' if we get here, message is not used by this node

Bad_Message:
 msgNum = MSG_NAK
 packLen = 0
 GOTO Unit_Reply

' ***************
' QRY_REQ
' ***************
'
Unit_Acknowledge:
 msgNum = QRY_ACK ' send a response
 packLen = 0
 GOTO Unit_Reply

' ***************
' DEV_RESET
' ***************
'
Device_Reset:
 IF txNode = MASTER_NODE THEN ' only the master can reset me
 Port0 = IsOff ' clear the leds
 Port1 = IsOff
 msgNum = MSG_ACK
 packLen = 0
 ELSE
 msgNum = MSG_NAK
 packLen = 0
 ENDIF
 GOTO Unit_Reply

' ***************
' SET_BIT
' ***************
' -- bit # in fifo(0)
' -- value in fifo(1).0
'
Set_One_Bit:
 tmpB1 = fifo(0) ' get bit #
 tmpB2 = fifo(1) ' level (in bit 0)

 IF tmpB1 < 10 THEN ' valid?
 IF tmpB1 < 8 THEN ' on RB
 tmpB1 = 1 << tmpB1 ' create bit mask
 IF tmpB2.0 = 1 THEN ' if set
 RB = RB | tmpB1 ' do it
 ELSE
 tmpB1 = ~tmpB1 ' otherwise invert mask
 RB = RB & tmpB1 ' clear selected bit
 ENDIF
 ELSE
 tmpB1 = tmpB1 - 8 ' adjust for RC
 tmpB1 = 1 << tmpB1
 IF tmpB2.0 = 1 THEN
 RC = RC | tmpB1
 ELSE
 tmpB1 = ~tmpB1
 RC = RC & tmpB1
 ENDIF
 ENDIF
 msgNum = MSG_ACK ' bit # okay, output updated
 packLen = 0
 ELSE
 msgNum = MSG_FAIL ' invalid bit # sent
 packLen = 0
 ENDIF
 GOTO Unit_Reply

Column #147: The Power of Networking Page 20 of 24

' ***************
' GET_BIT
' ***************
' -- bit # in fifo(0)
' -- returns bit # in fifo(0) and value (0 or 1) in fifo(1)
'
Get_One_Bit:
 tmpB1 = fifo(0) ' bet bit #

 IF tmpB1 < 10 THEN ' valid?
 IF tmpB1 < 8 THEN ' RB?
 tmpB1 = 1 << tmpB1 ' create mask
 tmpB1 = RB & tmpB1 ' read the bit
 ELSE
 tmpB1 = tmpB1 - 8 ' adjust for RC
 tmpB1 = 1 << tmpB1
 tmpB1 = RC & tmpB1
 ENDIF
 msgNum = GET_BIT_ACK
 packLen = 2 ' bit and value
 IF tmpB1 > 0 THEN
 fifo(1) = 1 ' put into buffer
 ELSE
 fifo(0) = 0
 ENDIF
 ELSE
 msgNum = MSG_FAIL ' bad bit #
 packLen = 2
 FILL fifo, 0, 2 ' clear unused return bytes
 ENDIF
 GOTO Unit_Reply

' ***************
' WR_PORT
' ***************
' -- port # in fifo(0), compressed value in fifo(1),fifo(2)
'
Write_Port:
 tmpB1 = fifo(0) ' get port #

 IF tmpB1 < 2 THEN ' valid?
 tmpB2 = PACKW_TO_VAL fifo(1), fifo(2) ' convert to byte
 IF tmpB1 = 0 THEN
 RB = tmpB2
 ELSE
 RC = tmpB2 & %00000011 ' update available bits
 ENDIF
 msgNum = MSG_ACK
 packLen = 0
 ELSE
 msgNum = MSG_FAIL
 packLen = 0
 ENDIF
 GOTO Unit_Reply

' ***************
' RD_PORT
' ***************
' -- port # in fifo(0)
' -- returns port# in fifo(0), compressed value in fifo(1),fifo(2)
'
Read_Port:
 tmpB1 = fifo(0) ' get port #

 IF tmpB1 < 2 THEN ' valid?
 IF tmpB1 = 0 THEN
 tmpB2 = RB

Column #147: The Power of Networking Page 21 of 24

 ELSE
 tmpB2 = RC & %00000011 ' mask unused bits
 ENDIF
 tmpW1 = VAL_TO_PACKW tmpB2 ' pack bits
 msgNum = RD_PORT_ACK
 packLen = 3
 fifo(1) = tmpW1_LSB
 fifo(2) = tmpW1_MSB
 ELSE
 msgNum = MSG_FAIL ' bad port #
 packLen = 3
 fifo(1) = 0
 fifo(2) = 0
 ENDIF
 GOTO Unit_Reply

' Send reply and any data to originator node
' -- only when message was for this node
'
Unit_Reply:
 IF rxNode = MY_NODE THEN
 rxNode = txNode | $80 ' return to sender
 TX_BYTE rxNode
 TX_BYTE MY_NODE
 TX_BYTE msgNum
 TX_BYTE packLen
 idx = 0
 DO WHILE idx < packLen
 TX_BYTE fifo(idx)
 INC idx
 LOOP
 ENDIF
 GOTO Main

' ---
' Subroutine / Function Code
' ---

' Use: DELAY_MS duration
' -- delay in milliseconds
' -- ideal 1 ms timer reload value is 153.6; code attempts to compensate

SUB DELAY_MS
 IF __PARAMCNT = 1 THEN
 tmpW1 = __PARAM1 ' save byte parameter
 ELSE
 tmpW1 = __WPARAM12 ' save word parameter
 ENDIF
 DO WHILE tmpW1 > 0
 tmpB1 = 153 + tmpW1_LSB.0 ' load 1 ms timer
 DO WHILE tmpB1 > 0 ' let timer expire
 \ CLRB isrFlag ' clear ISR flag
 \ JNB isrFlag, @$ ' wait for flag to be set
 DEC tmpB1 ' update 1 ms timer
 LOOP
 DEC tmpW1 ' update delay timer
 LOOP
 ENDSUB

' ---

' Use: DELAY_TIX units
' -- delay 6.51 uS units

SUB DELAY_TIX
 IF __PARAMCNT = 1 THEN
 tmpW1 = __PARAM1 ' save byte parameter
 ELSE
 tmpW1 = __WPARAM12 ' save word parameter

Column #147: The Power of Networking Page 22 of 24

 ENDIF
 DO WHILE tmpW1 > 0
 \ CLRB isrFlag ' clear ISR flag
 \ JNB isrFlag, @$ ' wait for flag to be set
 DEC tmpW1 ' update delay timer
 LOOP
 ENDSUB

' ---

' Use: aByte = RX_BYTE
' -- returns "aByte" from 8-byte circular buffer
' -- will wait if buffer is presently empty
' -- rxBufCnt holds byte count of receive buffer (0 to 8)

FUNC RX_BYTE
 ASM
 BANK rxSerial
 TEST rxBufCnt ' check buffer count
 JZ @RX_BYTE ' wait if empty
 MOV W, #rxBuf ' point to tail
 ADD W, rxTail
 MOV FSR, W
 MOV __PARAM1, IND ' get byte at tail
 INC rxTail ' update tail
 CLRB rxTail.3 ' keep 0..7
 DEC rxBufCnt ' update buffer count
 TEST rxBufCnt ' check the count
 SNZ ' exit if not zero
 CLRB rxReady ' else clear ready flag
 BANK 0
 ENDASM
 ENDFUNC

' ---

' Use: TX_BYTE aByte
' -- moves "aByte" to 8-byte circular buffer (when space is available)
' -- will wait if buffer is presently full
' -- txBufCnt holds byte count of transmit buffer (0 to 8)

SUB TX_BYTE
 ASM
 BANK txSerial ' point to tx vars
 JB txBufCnt.3, @TX_BYTE ' prevent buffer overrun
 MOV W, #txBuf ' point to buffer head
 ADD W, txHead
 MOV FSR, W
 MOV IND, __PARAM1 ' move byte to tx buf
 INC txHead ' update head pointer
 CLRB txHead.3 ' keep 0..7
 INC txBufCnt ' update buffer count
 BANK 0
 ENDASM
 ENDSUB

' ---

' Use: FILL *target, value, count
' -- fills RAM locations at "target" with "value"
' -- "target" is a RAM pointer

SUB FILL
 tmpB1 = __PARAM1 ' pointer to target
 tmpB2 = __PARAM2 ' value to write
 tmpB3 = __PARAM3 ' byte count

 DO WHILE tmpB3 > 0
 __RAM(tmpB1) = tmpB2
 INC tmpB1
 DEC tmpB3

Column #147: The Power of Networking Page 23 of 24

 LOOP
 ENDSUB

' ---

' Use: wResult = VAL_TO_PACKW value
' -- MIDI style byte packing (puts 14-bit value into two 7-bit bytes)

FUNC VAL_TO_PACKW
 IF __PARAMCNT = 1 THEN
 tmpW1 = __PARAM1 ' byte value
 ELSE
 tmpW1 = __WPARAM12 ' word value
 ENDIF

 tmpW1 = tmpW1 << 1 ' shift upper bits
 tmpW1_LSB = tmpW1_LSB >> 1 ' correct lower bits
 tmpW1_MSB = tmpW1_MSB & $7F ' mask MSB of uppter bits
 RETURN tmpW1
 ENDFUNC

' ---

' Use: value = PACKW_TO_VAL packed
' -- MIDI-style unpacking

FUNC PACKW_TO_VAL
 tmpW1 = __WPARAM12

 tmpW1_LSB = tmpW1_LSB << 1 ' close "gap"
 tmpW1 = tmpW1 >> 1 ' re-align value
 RETURN tmpW1
 ENDFUNC

' ---

' Use: SQUEEZE *source, offset, *destination
' -- source(offset) is 8-bit data byte
' -- destination(offset), destination(offset+1) holds 7-bit packed value

SUB SQUEEZE
 src = __PARAM1 ' pointer to src(0)
 offset = __PARAM2 ' offset into src
 dest = __PARAM3 ' poiner to dest(0)

 src = src + offset ' point to dByte
 dest = dest + offset ' point to dest (LSB)
 dByte = __RAM(src) ' get 8-bit value
 dbCopy = dByte ' make a copy (for high bits)
 destVal = __RAM(dest) ' get current dest value
 dByte = dByte << offset ' adjust low bits
 dByte = dByte & $7F ' strip MSB
 destVal = destVal | dByte ' overlay new bits
 __RAM(dest) = destVal ' write updated des (low bits)
 INC dest ' point to dest + 1
 offset = 7 - offset ' fix offset
 destVal = dbCopy >> offset ' adjust high bits
 __RAM(dest) = destVal ' write high bits
 ENDSUB

' ---

' Use: UNSQUEEZE *source, offset, *destination
' -- source(offset) is LSB of 7-bit (packed) network byte
' -- destination will hold 8-bit data bit

SUB UNSQUEEZE
 src = __PARAM1 ' pointer to src(0)
 offset = __PARAM2 ' offset into src
 dest = __PARAM3 ' poiner to dest(0)

Column #147: The Power of Networking Page 24 of 24

 src = src + offset ' point to dByte (LSB)
 dest = dest + offset ' point to output
 dByte = __RAM(src) ' get packed LSB
 dByte = dByte >> offset ' unpack LSB
 INC src ' point to MSB
 dbMSB = __RAM(src) ' get it
 offset = 7 - offset
 dbMSB = dbMSB << offset ' unpack
 dByte = dByte | dbMSB ' reconstitute dByte
 __RAM(dest) = dByte
 ENDSUB

' ---
' User Data
' ---

