OPTREX TYP. No. : DMF 608HE

CLIENT TYP. No.:____

PREPERED BY OPTREX

APPROVED BY

OPTREX CORPORATION

3-14-9, Yushima, Bunkyo-ku, Tokyo 113, Japan telephone: (03)832-5357 Marketing Division Telex: OPTREX J34323

Tele-Fax: (03)832-5350 (GШ·GЦ)

1 Scope:

This specification covers the technical data of the undermentioned Liquid Crystal Display(LCD)Module which is delivered from Optrex Corporation to Messrs.

2 Name Product:

Dot Matrix Liquid Crystal Display (LCD) Module.

3 Type No.:

Client Type No. :

OPTREX Type No. : DMF 6 0 8 HE

4 Description of Product:

This module has a structure of dot matrix large panel LCD fixed by cramping with metal holder of SPCC on printed-circuit board on which the following Components are mounted: CMOS LSI and its peripheral descrete Resistors. Capacitors by means of soldering.

This module can display arbitrary characters and graphics on a 128 dots vertical by 160 dots horizontal LCD screen by means of driving signals which are given by external 1-bit 2-section serial data and the decoded inside the module.

As a back-light illumination . Electric luminescent are installed inside of this module .

5 Outline Dimensions:

Refer to the attached outline dimensional drawing No. UE31359.

6 Performances

6-1 Mechanical Data

ITEM	DIMENSIONS	UNIT
MODULE DIMENSIONS	129 (W) × 102 (H) × 11. 2 MAX(D)	m m
Active Area	95.95 (W) × 76.75 (H)	m m
Viewing Area	101(W) ×82(H)	m m
Dot Pixels	160 (W) × 128 (H)	dots
Dot Size	0.55(W) × 0.55(H)	m m
Not Pitch	0.6(W)×0.6(H)	m m

6-2 Electrical Specifications

(1) Absolute Maximum Rating

ITEM	SYMBOL	CONDITION	MIN.	MAX.	UNIT
Logic Supply Voltage	Voo-Vss	-	- 0.3	7	V
LCD Driving Voltage	Voo-Ves	5-1	0	1 8	V
Input Voltage	V ,	-	- 0.3	Vac	V
Operating Temp.	Topr	_	- 1 0	+70	\mathcal{C}
Storage Temp.	Tstg	_	-20	+75	T

(2) Electrical Characteristics

ITEM	SYMBOL	CONDITION	MIN.	MAX.	UNIT
Logic Supply Voltage	Vgg-Vss	_	4.75	5.25	V
LCD Supply Voltage	Vgg-Vee	_	8.75	16	V
D	I oc	Voc=5V:VEE=-8V	-	5	m A
Power Supply	IEE	-	_	15	m A
Input Voltage "H" Level	ViH	"High"レベル	3.6	VCC	V
Input Voltage "L" Level	VIL	"Low " レベル	0	0.8	V
Clock Frequency	f cp	Duty=50%	_	3.3	MHz

6-3 Optical Specification

(1) Optical Specification

ΙΤΕ	М	SYMBOL	CON	DITION		MIN.	TYP.	MAX.	UNIT		
			T a =	- 1 (D °C	13.5	14.7	15.9	V		
LCD Driving Voltage		Voc -Vee	та=	2 8	5 °C	12.0	13.0	14.0	V		
(1/64Du	(1/64Duty)		T a = 70°C		8.3 9.		9.8	V			
Contrast	ratio	CR	∂ = 30 °	$\phi = 9$	0 °		4	_	111		
			CR≧2		0.5		θ	3 0	_	6 0	deg
Viewing Angle			UK	€ 2	ф	6 0		120	deg		
Responce	Rise	τг	Note 1	Ta=25	°C	-	120	200	m S		
Time	Decay	τd	Note 2	Ta=25	°C	_	120	200	m S		

Note 1: The time required which the blacking ratio of segment from 0% to becomes 90% when waveform is switched to selected one from nonselected one.

Note 2: The time required which the blacking ratio of segment from 100% to becomes 10% when waveform is switched to selected one from nonselected one.

(2) Electro-Optical Characteristic Measuring Method

-1 Definition of Viewing angle

Viewing Opposite Direction (Z AXIS)

-2 Apparatus

7 I/O Terminals

(1) Pin No. Layout

(2) Pin Assignment

Pin No	SYMBOL	LEVEL	FUNCTION
1	N C	-	No Conection
2	N C		No Conection
3	N C		No Conection
4	DATA2	H/L	Display Data(Lower) H:ON ,L:OFF
5	DATA1	H/L	Display Data(Upper) H:ON ,L:OFF
6	F R	$H \rightarrow L$	Frame Signal
7	D F	H/L	Alternate Signal for LCD Driving
8	L O	$H \rightarrow L$	Data Latch Signal
9	СР	$H \rightarrow L$	Clock Signal for Shifting Serial Data
1 0	V cc	_	Power Supply for Logic
1 1	Vss		Power Supply (GND)
1 2	VEE		Power Supply for LCD Driving
1 3	N C		No Conection
14	N C		No Conection
1 5	N C		No Conection
1 6	E L 1		Erectric Luminescent Terminal
1 7	EL2		Electric Luminescent Terminal

8 E L

(1) Absolute Maximum Rating

Input Voltage. A C 1 5 0 V r m s

Input Frequency 1 K H z m a x

(2) Operating Characteristics

ITEM	CONDITION	MIN	ТҮР	MAX	UNIT
Input Voltage			100	-	Vrms
Input frequency		-	400		ΗZ
Current	100V,400Hz	_	9.5	1 3	m A
Life	fe 100V,400Hz		_		Hrs
Operating Temp.		- 1 0	_	+ 5 0	°C
Storage Temp.		-20	_	+ 6 0	°C

9 Timing Characteristics

I T E M	SYM	BOL	MIN.	MAX.	UNIT
Clock Cycle Time	t	CPW	200	_	n S
Clock High Level Width	t	DIS	200	-	n S
Clock Low Level Width	t	DН	4 0	-	n S
Clock Set up Time	t	: 'V	5 0	_	n S
Clock Hold Time	t	Dos	560		n S
Data Set up Time	t	FDS	1 0 0	<u></u>	n S
Data Hold Time	t	FDH	800	-	n S
Frame Data Set up Time	t	DFD	_	1000	n S

12 Reliability (EXCEPT EL PANEL)

(1) Temperature Range

ITEM	SYMBOL.	CONDITION		REGULATION	
Operating Temperature Range	Topr	-10℃ ~ +70℃	No change under the 13-(2)-2).	on display and test conditions	
Storage Temperature Range	Tstg	-20℃ ~ +75℃	No change under the 13-(2)-4).	on display and test conditions	

(2) Others

LTEM	CONDITION	REGURATION
Damp Proof	13-(2)-5)	No change on display and in operation under the test conditions.
Shock	13-(2)-6)	No change on display and in operation under the test conditions.
Vivration	13-(2)-7)	No change on display and in operation under the test conditions.(Note)

Note: Exept Polarizer

13 Test

(1) Test Condition

2) Operation

1) Temperature and Humidity Unless specified otherwise, test will be conducted under the following condition.

Temperature : 20±5 ℃ Humidity : 65 ± 5 %

- Unless specified otherwise, test will be conducted under functioning state.
- 3) Container Unless specified otherwise, vibration and shock test will be conducted on the product itself without putting it in a container.
- 4) Test Frequency In case of test related to deterioration such as shock test. It will be conducted only once.

(2) Test Method

- 1) High Temperature Operation 96 100 Hrs in an environment temperature 70 $\pm 2~\%$ to be measured under same condition.
- 2) Low Temperature Operation After storage of 96 - 100 Hrs in an environment of temperature -10 ±2 ℃ to be measured under the same condition. No dew to be found.
- 3) High Temperature Storage To be measured after storage of 96 100 Hrs under non-operation state in an environment of temperature $75\pm~2\,^\circ\!\mathrm{C}$ and returned to normal temperature humidity.
- 4)Low Temperature Storage To be measured after storage of 96 100 Hrs under non-operation state in an environment of $-20\pm\,2^{\circ}\mathrm{C}$ and after storage of 4 Hrs in an environment of normal temperature and humidity. No dew to be found.
- 5) Damp Proof Test To be measured after storage of 96 100 Hrs under temperature of 40 $\pm 2~\%$ and 90-95 % humidity, then returned under normal temperature and humidity for 4 Hrs. No dew condensation to be found.
- 6) Shock Test (Drop Test)
 To be measureed after dropping from 30cm high onto lauan board of 3cm thick and from 3 directions X. Y. Z. one time each. (Non-operation state).
- 7) Vibration Test
 To be measure after subjecting to total fixed amplitude of 1.5mm.
 vibrating frequency of 10 to 55Hz, one cycle 60 seconds to 3
 direction of X, Y, Z for each 15 minutes (Total 45 Minutes) and
 after removing vibration (Non-operation state).

14 Code System of Production Lot

The production lot of MODULE is specified on the back of PWB as follows:

Example: 8 7 3 4 R 1

15 Appearance

No defects such as stain, scratch discoloration, weak soldering, which may spoil the appearance to be found on the LCDP surface on frontal side of holder/housing.

16 Functions

According to the regulation of functional inspection which is mutually agreed, every single piece is duly inspected.

17 Notice of Application

In case of the following, to be settled by mutual discussion.

- 1) when questions arise concerning items of this specifications.
- 2) when new problems arise not specified in this specifications.