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A precise control of AC servo motor using neural network PID  
controller 
 
Geum-Bae Cho and Pyoung-Ho Kim  
 
A new control technique based on a neural network, is proposed here for control of AC servo motors. The 
PID control is widely used in servo systems as it has simple structure, safety and reliability. However, it has 
certain problems in a complex system, resulting in imperfect action in the presence of uncertain parameters. 
To solve these problems, a new hybrid control algorithm of the PID controller is proposed, which could 
prove the adequacy of the proposed control algorithm through simulation and experiments after driving the AC 
servo motor system using neural network PID controller. 
 
Advanced developments in microcomputers 
based on microprocessors are making 
them cheaper. AC controllers can be as 
cheap as DC controllers in terms of control. 
An AC controller has easy maintainabi-
lity. The use of DC servo motors for the 
purpose of high-speed and high-torque 
applications is limited due to commutation 
problem. The brush in the DC servo motor 
is subject to wear; hence installation of 
DC servo motor is difficult in places 
where checking or swapping is needed. 
As an AC servo motor does not have any 
brush, it is highly reliable. Besides, the 
AC servo motor is usually used in the 
analogue form due to rapid reaction res-
ponse and precise control is achieved be-
cause of digitalization1. In the industry, 
the PI or PID controller is widely used 
by means of servo system control. These 
controllers enable excellent ability if a 
simple control algorithm be implemented. 
However, these have low reliability be-
cause these control results are sensitive 
to change in system parameters and do 
not react rapidly to parameter changes. To 
solve these problems, the neural network 
controller that adjusts itself to control 
circumstances is studied2,3. 
 Here we describe implementation of a 
PID controller for an AC servo motor, 
based on TMS320C31. One could obtain 
superior and highly precise control res-
ponse than a conventional PID controller, 
which could resolve the disadvantages of 
parameter changes in an inferior environ-
ment4. Contrary to the processing method 
of a digital computer, which carries out a 
single computation at a time in an ALU 
because of parallel and distributed proc-
esses, information stored in neurons is 
processed in parallel and does not affect 
the overall output in case several process 
elements are perturbed or if immeasurable 
disturbances occur5. Therefore, online-

type neural network PID controller, using 
past data as well as current inputs and 
outputs in order to control the AC servo 
motor, can be implemented easily; it is 
considered to be robust to immeasurable 
disturbances of load6. With results from 
both experiments and digital simulation, 
the proposed method could be verified 
and hence utilized for high-performance 
servo-control.  

Design of AC servo motor 

Neural network controller 

The neural network makes process speed 
faster because of hardware implementa-
tion. Also it can be implemented when 
the structure of the circuit net is large7. It 
is closer to a nonlinear control due to ac-
cessibility of actual problem, such as 
function mapping in nonlinear theory. 
The neural network enables parallel and 
distributed processes because of its parallel 
structure8, hence it can be used for con-
trol in real time. It makes synthesis of 
sensor data easy to interface with different 

data, because it is robust to noise compared 
to a conventional control and utilizes 
both qualitative and quantitative data si-
multaneously. Since it has several inputs 
and outputs, it is adequate for multi-input 
and multi-output systems, and it can im-
prove the control through learning. More-
over it is not required to model the plant 
and circumstance because of learning 
ability. Due to the above advantages and 
characteristics, a robot control having the 
neural network controller can solve prob-
lems of a conventional robot control9. 

Structure of PID controller using 
neural network control 

Figure 1 shows the block diagram of PID 
controller using neural network. 
 The proposed controller can tune the 
conventional PID controller using indi-
rect neural network, which can be control-
led by only inputs and outputs even in 
Jacobian of unknown control objects. In-
direct neural network is composed of an 
emulator supervising control object and 
the neural network controller controlling 
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Figure 1. PID controller of neural network. 
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control objects. Here, all variables and 
structure of emulator and controller are 
considered to be the same in order to easily 
design the controller. The disadvantage 
that the parameters of conventional PID 
controller must be adjusted to the system 
is avoided, as the controller adjusts to the 
system through learning of neural network. 
 Figure 2 shows the internal structure 
of the proposed neural controller, which 
explains the number of neurons of each 
stage and threshold function of activation 
output of neuron. Arguments to neural 
controller are composed of time-delay 
component of error between set-up value 
and actual output value, e(n), error variation 
according to time change, ce(n), amount 
of error variation cce(n). e(n) is the time-
delay component of e(n + 1), which is 
expressed as in eq. (1) and ce(n) and 
cce(n) are given by eqs (2) and (3) res-
pectively. 
 
 e(n) = TD[e(n + 1)] = TD[R(n + 1) 
   –Y(n + 1)], (1) 

 ce(n) = e(n) – e(n + 1),  (2) 

 cce(n) = ce(n) – ce(n + 1).  (3) 

Stable neuron output is obtained by in-
putting fourth argument to middle-stage 
neuron as bias. 

 The middle stage of neural network 
controller is a single stage and the number 
of middle-stage neurons is five. Bias is 
applied as in the input stage and the 
threshold function of each neuron is the 
linear function whose slope is unity. The 
number of output-stage neurons, u(n), is 
one. The threshold function of the output-
stage neuron is linear as in the middle 
stage, but its slope can be arbitrarily ad-
justed to control the output gain in order 
to obtain optimum output during learning. 

Simulation 

A digital simulation is made in order to 
consider the feasibility of AC servo motor 
control algorithm using PID controller 
and neural network algorithm. The power 
rating of the servo motor for simulation is 
11 kW and its rated velocity is 3000 rpm. 
The detailed parameters shown in Table 
1 are used with proportional and integral 
velocity controller, whose gain is self-
tuned by reverse neural network. Velocity-
response characteristics are compared in 
servo motor according to self-tuned pro-
portional and integral controller, and 
proportional and integral controller. 
 Assuming that relative velocity of axis 
to sinusoidal AC flow in the motor is 

zero, the servo motor current id is given by 
eq. (4) 
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Figure 3 shows the block diagram of eq. 
(4) using integrator. 
 When the sampling interval of control 
input is maintained constant, the transfer 
function is expressed by eq. (5). 
 

 
1

( ) ( ) .
ste

G z Z G s
s

−− −
=  

  
 (5) 

 
Since G(s) is the transfer function, it can 
be expanded in partial fractions and Z-
transformed, and the result is shown in 
Figure 4. 
 In Figure 4, G(s) = ωm(s)/I0(s) is given by  
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The algorithm is implemented using Bor-
land C++. The roots of the fifth-order 
nonlinear simultaneous equation are ob-
tained by Runge–Kutta method. The period 
of current control and velocity control is 
set to 25 and 250 ms, respectively. The 
learning rate, inertia constant and each 
initial weight are near the optimum value 
by trial and error. The initial connection 
strength is obtained off-line, and later 
obtained on-line using reverse algorithm 
from NNE learning. Figure 5 a shows ve-
locity-response waveform using PID con-
troller of neural network as the velocity is 
changed to 500, 1500 and 0 rpm. The 
servo motor is well followed by self-
tuned proportional integrator. Figure 5 b 
shows velocity-response waveform using 
PID controller under similar condition as 
in Figure 5 a. The PI controller gives good 
performance when the system parameters 
are constant. However, it is difficult to 
tune in the presence of immeasurable 
disturbances in the system parameters. 
 Figure 6 a shows results for slow control 
by PID velocity controller. Figure 6 b 
shows the change in performance for a 
15% change in the stator and rotor induc-
tance. Figure 7 a shows results for slow 
control by PID controller of neural net-
work. Figure 7 b shows steady-state oscil-
lation when inductance of stator and rotor 
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Figure 2. Internal structure of proposed neuro controller. 
 
 

Table 1. Ratings of 11 kW servo motor 

Rated voltage 220 V Rotor resistance Rr 5 Ù 
Rated current 35 A Stator resistance RS 4.5 Ù 
Rated speed 3000 rpm  Rotor inductance Lr 0.243 H 
Stator inductance LS 0.244 H Moment of inertia Jm 0.082 kg m2 
Mutual inductance Lm 0.239 H   
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Figure 3. Block diagram of d-axis current control. 
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Figure 4. Discrete model of AC servo motor. 

 
 

  
 

Figure 5. Speed characteristics with (a) PID controller using neural network and (b) PID controller. 
 

  
 

Figure 6. Low-speed characteristics with (a) PID controller and (b) as in (a) with 15% variation in inductance of stator and rotor. 
 
 

  
 
Figure 7. Speed characteristics with (a) self-tuning PID controller using neural network and (b) as in (a) with 15% variation in induc-
tance of stator and rotor. 
 
 

  

 
 

Figure 8. Starting characteristics by (a) PI controller, (b) PID controller and (c) PID control by neural network. 
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Figure 9. Block diagram of servo system. 
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Figure 10. Configuration of AC servo system. 
 
 

is changed by 15%. From Figure 7 a and 
b, it is clear that the PID controller using 
neural network is more robust to change 
in environment than a PI controller. De-
lay in simulation results occurs when in-
ertia coefficient, friction coefficient and 
integral coefficient I are not proper. Fig-
ure 8 a–c compares the systems imple-
mented by PI, PID controller and PID 
controller with neural network. It can be 
seen that the rising time of the general 
controller is faster than the PID control-
ler with neural network, wherever over-
shoot of the former occurs. Although gain 
tuning of the controller can eliminate 
overshoot, it is difficult to tune automati-
cally the gain coefficients on-line accord-

ing to the change in work process and 
surrounding environment. The PID con-
troller using neural network has slow ris-
ing time, but can approach steady state 
without overshoot. Since the torque is 
not constant, if an overshoot occurs in a 
servo system used in an industrial robot, a 
PID control using neural network is better 
than conventional P, PI, PID controls.  

Experiments  

Experimental equipment 

Figure 9 shows the block diagram of a 
servo system using PID tuning of indirect 

neural network. In the digital servo struc-
ture, the instruction given by the program 
is processed by the controller to position 
each axis. This instruction is transferred 
to the high-performance microprocessor. 
The microprocessor batch-processes the 
control of position, velocity and current 
based on the information and outputs the 
PWM control signal. This signal inputs 
the servo amplifier equipped separately, 
which amplifies the PWM control signal 
and supplies power to the AC servo motor. 
The driving current of the motor passes 
the servo amplifier and its position and 
velocity are fed back by the controller 
through the pulse coder, and so on. As 
mentioned above, after the microprocessor 
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Figure 11. Flow chart of system. 
 
 
detects the position and velocity it selects 
and performs the operation. 
 Figure 10 shows the system structure. 
The AC servo motor, which is the control 
object, is a synchronous motor and the 
load is an induction motor. In order to 
supply power to the control object motor, 
the inverter and controller are composed 
and the load is supplied by the voltage 
transposed in the three-phase transformer 
and is let contrary to rotate motor. The 
power inverter has Insulated Gate Bipolar 
Transistor (IGBT) in order to reduce the 
current ripple of Pulse Width Modulation 
(PWM). The control algorithm of velo-
city and position, neural network control 
algorithm and PID control algorithm are 
processed digitally by the microproces-
sor. DSP TMS320C31 which operates at 
33 MHz and is capable of 32 bit floating-
point, is used. 

Control software  

The software has an initializing program 
and interrupt routine carrying out the 
control algorithm in the constant period. 
Figure 11 is the overall flowchart of control 

software. The initializing program de-
cides the initial global variables and the 
controller gain, and initializes the ele-
ments which belong to the control board. 
Because the routine for control keeps the 
period of sampling constant time, it is 
composed of the interrupt routine. The 
interrupt can be divided into the timer 
interrupt (TINTO) for current control, the 
external interrupt (INTO) for the M/T 
and external interrupt (INT1) for velocity 
control.  
 The sampling period for the current 
control is set to 90 µs because of the DSP 
speed. Sampling for velocity control oc-
curs ten times that of the current control 
loop. The current control interrupt makes 
the gating for the inverter and executes 
the modulation routine of spatial voltage 
vector. The interrupt to calculate the actual 
velocity is M/T-type and the sampling 
period of velocity measurement is proc-
essed after ÄT later than sampling period 
of current sampling. The velocity control 
interrupt estimates velocity using intelli-
gence control algorithm and then executes 
the indirect vector control after calculat-
ing the current instruction value in the 
velocity controller. The slope of learning 

rate and output-stage neuron is set to 0.059 
and 0.0039 respectively, using experi-
mental data. 

Experimental results 

Figure 12 shows results of the experiment 
to change in load using PID control with 
neural network. Figure 12 a shows speed 
response characteristics of increasing and 
decreasing speed for change in reference 
speed from 500 to 1500 rpm. It responds 
to 1500 rpm after 10 s and decreases to 
500 rpm after 7 s. Response speed of the 
motor converges within 100 ms when 
reference speed is 500 rpm. It converges 
to the steady state without overshooting 
within 200 ms when increased to 1500 rpm 
after 0 s, and within 200 ms, when de-
creased to 500 rpm after 500 ms. The res-
ponse characteristics of increasing and 
decreasing speed are nearly the same, 
which is similar to the simulation wave-
form. Figure 12 b shows speed response 
results for change in reference speed from 
1500 to 0 rpm. Figure 12 c shows speed 
response characteristics of 85% rating 
load and 6% changing load injection at 
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Figure 12. Speed response characteristics for change in reference speed from (a) 500 to 1500 rpm and (b) 1500 to 0 rpm; (c) Speed 
response characteristics of 85% rating load and 6% changing load injection at 100 rpm. Speed response characteristics for change in 
reference speed from (d) 0 to 500 rpm with 140% load and 500 rpm with 6% load; (e) 0 to 1000 rpm with 141% load and 1000 rpm 
with 17% load; and (f ) 0 to 1500 rpm with 141% and 1500 rpm with 23% load. 
 
 
 
100 rpm. Figure 12 d shows speed response 
characteristics for change in reference 
speed from 0 to 500 rpm with 140% load 
and 500 rpm with 6% load. Figure 12 e 
shows speed response characteristics for 
change in reference speed from 0 to 
1000 rpm, with 141% load and 1000 rpm 
with 17% load. Figure 12 f shows speed 
response characteristics for change in 
reference speed from 0 to 1500 rpm with 
141% and 1500 rpm with 23% load. This 

system has a little overshoot and delay 
occurs in changing speed, but it appro-
aches near to instruction value.  

Conclusions 

In this note, the PID controller using 
neural network is implemented by the 
proposed algorithm. The speed character-
istics to reference speed are studied by PI 

control and PID control with neural net-
work. It is concluded that the PID control 
using neural network is superior. The AC 
servo motor controller without informa-
tion on model structure is implemented 
by TMS320C31 and compared with con-
ventional PID controller. The optimum 
control value according to error detection 
value can be obtained by PID controller 
using neural network differently than from 
conventional control method. Since the 

a b 

c d 

e f 
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PID controller using neural network has 
learning ability of nonlinear function 
without mathematical modelling and is 
robust to changeable parameters, it can 
identify complex systems such as nonlinear 
systems by learning. If the neural net-
work follower by conventional reverse 
learning method is applied to the proposed 
algorithm, the speed control characteristics 
are excellent. However, the speed estimate 
is not stable, and is improved when the 
back-propagation neural network and load 
observer applied machine constant are 
added. Each coefficient of machine tool 
is applied to the servo system, and hence 
the characteristics of PID controller using 
neural network can be improved. 
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