AVR OBDII Code Reader
Entry Number: AT2810
Processor: AT90CAN128
Table of Contents

1Table of Contents

2Handheld OBDII Code Reader

3Background:

4OBDII Emissions Inspections:

5Problems with OBDII inspections:

6Hardware:

7Power Supply

8USB Interface

9SD Card

10SD Card FAT Interfacing

10External Flash

10ISO Protocol

11ISO Bus Bit Format

12ISO Collision Detection

14ISO Packet format

15ISO Initiation of Communication

16Autobaud

16VPW bus

16PWM bus

16CAN bus

16OBDII packets basics

16Optional ATMEGA48

17Cost Saving and Optimizations

17Compiler

17Soldering and Assembly

21Enclosure

21Testing

22Estimated Bill of Material Costs

22Work to Be Done

Handheld OBDII Code Reader

My project was to design an handheld OBDII code reader which not only allows the user to read diagnostic trouble codes from cars but also displays engine parameters.

Background:

Starting 1996 the EPA mandated that all cars produced for the US market must meet the On Board Diagnostic standard, level or part 2. This standard quickly became know as the OBD2 or OBDII standard. The EPA’s motivation in requiring cars to meet the standard was that with all the electronic controls on the cars repair shops were having a hard time fixing the cars. This problem was due to the small shops not having the diagnostic tools to read data from the car’s computers. Thus the EPA stepped in and made the OBDII standard such that shops only needed to purchase one scanner to diagnose cars. The EPA also add a provision which required the car’s computer to be able to know if the car passes the emissions standards. That is on all 1996 and newer cars if part fails which will make the car not pass emissions standards the check engine light will come on.

The EPA and local state governments have taken advantage of the OBDII standard and have come up with the OBDII emissions inspection. Here if you have a 1996 or newer car which you take in for emissions and safety inspection rather than sniffing the exhaust gases to determine if the car passes emission they can instead just read the data from the car’s computer and know if passes inspection. This reduces the time it takes to do inspections as well as makes it harder to circumvent the emissions inspection process.

This OBDII code reader is small hand held device with a large LCD for displaying engine information as well as LEDs for indicating the state of the readiness monitors. The AVR AT90CAN128 processor is the heart of the system. To understand why the AVR processor is perfect for this application let me explain the OBDII bus system.

The OBDII standard actually incorporates four different communication systems. By the time OBDII standard was under development most auto manufactures had created a communication bus for their cars. The manufactures did not want to spend the money to change their communication system so the OBDII standard incorporated them. For example Ford motor company uses a pulse width modulated (PWM) system, GM uses a variable pulse width (VPW) both of which are covered in the J1850 standard. Most other cars use an ISO9141-2 standard which is a 10400 baud serial link. The fourth protocol is a controller area network (CAN) protocol which is used on some newer vehicles starting in 2004.
This article is broken up into five parts, first part is basic understanding of the hardware, the other four cover the four protocols used with in the OBDII standard.

Hardware:

The heart of the OBDII scanner is the AT90CAN128 processor. This processor with the CAN interface and large memory seemed to be a good choice for this project. For user interface I wanted something cheap and easy thus a simple 2 line LCD and a rotary encoder seemed like a perfect combination. However most of the people I talked with wanted a really easy method to see if the car was ready to be inspected thus LEDs were also added for a quick indication of readiness monitors. Additionally I wanted a simple way to record data and get it off the unit so I designed the hardware with USB interface as well as a SD Card connector.

Once the requirements were nailed down the next step was to find an OBDII cable, after a brief search on the web I found that there are several suppliers for OBDII cables and most of them use a common DB9
interface.
Power Supply

After having the cable the next step was to design the power supply and the interface circuits. For the power supply I used a simple linear regulator as that the power consumption of the device is fairly low. The VPW protocol requires 8 volts for the bus logic levels thus the power supply consists of a 5V and 8V linear regulator. For additional safety a diode is used in the main power feed from the OBDII connector to prevent possible reverse connections. To provide additional storage requirement an external flash chip was added, since the SD Card and the external flash required a 3.3V power rail a couple of diodes in series from the 5V rail makes a simple and cheap regulator.

[image: image1.emf]
USB Interface
There are several USB to UART conversion chips on the market, however Silicon Labs makes the CP2101 which takes few external components, which helps me keep the cost of the board down, additionally it is in a QFN package which saves on PCB real estate. The USB interface is shown below. Specifically if you have used a USB to UART chip before you might notice that there is no crystal which saves a significant amount of board space and component costs.
[image: image2.emf]
SD Card

Since SD cards are so cheap these days I added the capability to my hardware design as shown below. However the software implementation is not complete. But since Atmel has published some FAT code it should be a relatively easy port.
[image: image3.emf]
SD Card FAT Interfacing

I still need to add this documentation and code.
External Flash
To store recorded data and diagnostic trouble codes with descriptions I added an Atmel AT45DB041 chip. This chip is easy to interface to using the SPI bus and it also pin compatible with large models.

ISO Protocol

All the OBDII protocols are designed to have multiple talkers and listeners connected to the bus. Having multiple talkers and listeners on a bus require some method of collision detection, the ISO bus uses a passive and active logic levels. Specifically the ISO bus is pulled up through 510 ohm resistor to battery voltage for a passive level and then pulled low using an open collector to create the active level. This is a simple interface requiring only a few resistors and a transistor. However the ISO protocol actually has two buses a K line and a L line, both use the same interface.
[image: image4.emf]3

2

1

3

2

1

As simple as the driver circuit is there are a few items which should be mentioned. Specifically Volkswagon made a few pre OBDII cars with a wiring mistake in which the K and L lines were actually wired directly to battery power. The result was that when a scan tool with the simple interface shown above was connected it would fry the transistors. To prevent this from happening on my scan tool, I included some poly fuses on the K and L line which will open long before the transistors are damaged.

Now that the driver circuits are done it on to the receiver functions for the ISO. A simple solution might seem to be a circuit as shown below:

[image: image5.emf]
In fact on the first OBDII system I made had a similar circuit. The problem is that the ISO specification states that threshold for logic 0 is when the K line is less than 10% of the battery voltage. Thus the circuit above would work on most cars but not all as I discovered. The solution is to use a comparator which compares the K or L line with the battery reference.

[image: image6.emf]
ISO Bus Bit Format

The ISO protocol uses an asyn serial transfer here if we look at the data bus as shown below, during a transmission.

[image: image7.emf]S

t

a

r

t

B

i

t

S

t

o

p

B

i

t

L

S

B M

S

B

The bus when nothing is being transmitted is at a logic high level, battery voltage (12V) for the ISO bus. When a device transmits some data it starts with a start bit which is always active low. Then it sends the 8 bits of data starting with the least significant bit first. Thus in this example we send out the data bits 01001001 or hex 45h. One can imagine that the start bit is needed to signal the start of the data transmission, the stop bit is needed such that if another byte (8 bits) of data follow it needs to have a high bus to signal before the start bit goes low.

ISO Collision Detection
ISO protocol uses a simple method of collision detection, specifically when a device is attempting to communicate on the bus it will wait a predetermined time for the bus to become idle, which is when the bus stays at a passive state (12V on K/L line). Then it will start communicating by pulling the K line low for one bit time as a start bit. After which the device will start sending out it’s data, however if the device is sending out a passive bit, then it must check to see if the K line is indeed passive. This is used for collision detection, to understand it lets imagine that we have two devices attempting to use the bus at the same time.

[image: image8.emf]12V

K-Line

12V

K-Line

Device 1

Device 2

For example if we have two devices like above and each device is trying to clock out data at the same time we can get a situation as shown below:

[image: image9.emf]Device 1

Device 2

Actual Data

Transmitted

S

t

a

r

t

B

i t S

t

a

r

t

B

i

t

S

t

a

r

t

B

i

t

S

t

o

p

B

i

t

S

t

o

p

B

i

t

S

t

o

p

B

i

t

L

S

B M

S

B

From the schematic and the above example it is easy to see that the simple solution is that when a device transmits a passive bit, logic high in example above, the device should verify that the bus is at passive level. When the bus is not at the passive level the device should stop transmitting wait for idle bus and then try again. For the above example if the devices checked for bit collisions our example would become.

[image: image10.emf]Device 1

Device 2

Actual Data

Transmitted

Device 2

Checks Bus

and

Gives up

Here what happens is that device 2 gives up the bus to device 1 when it realizes that it requested the bus to be at a logic high level (passive state) and it was actually at logic low (active state). Thus device 1’s data got out on the bus where as before garbage was transmitted. This bit level collision detection requires a buss to have an active and passive state as noted above. When we discuss the other protocols we will revisit this again as they all use a similar method for bit level collision detection. To implement the collision detection in software the code will need to monitor the bus when the code reader is transmitting a logic high bit. Thus what happens is that when a logic high bit is transmitted we wait half the bit time and check to make sure the bus is still high. If the bus is not high we assume that someone else got the bus and we give up and try again after bus goes idle.
ISO Packet format

The data packet specification that the ISO bus uses is referenced in J1979 standard. The packet is made up of a three byte header followed by up to 7 data bytes and single byte checksum as shown below.

	Message Header
	Data Bytes
	CheckSum

	1
	2
	3
	1
	2
	3
	4
	5
	6
	7
	1

	68h
	6Ah
	F1h
	
	
	
	
	
	
	
	

ISO Initiation of Communication

When the OBDII code reader connects to the cars computer system it must follow some detail steps in order to initiate the communications.

1. The code reader must first send out 33h on the K and L lines at rate of 5 baud, which 5 bits/sec.

2. The ECU response is 55h at rate of 10400 bits/sec (baud). At this point all further communications is at 10400 bits/sec on the K line only unless other wise noted.

3. The ECU then sends out keyword 1, 08h

4. The ECU then sends out keyword 2, 08h

5. The OBDII code reader response with which the inverse of last keyword or F7h.

6. The ECU response with a CCh

7. At this point the code reader can now send out a request for information using the packet format above.

Of course with all protocols the steps above need to be followed with in certain timing parameters.

	Source
	Tester
	W1
	ECU
	W2
	ECU
	W3
	ECU
	W4
	Tester
	W4
	ECU
	P3

	Parameter
	33h
	
	55h
	
	08h
	
	08h
	
	F7h
	
	CC
	

The above table show the initiation sequence where W1,W2,W3,W4, and P3 are timing requirements shown below.

	Parameter
	min (ms)
	max (ms)

	W0
	2
	∞

	W1
	60
	300

	W2
	5
	20

	W3
	0
	20

	W4
	25
	50

	W5
	300
	

	P1
	0
	20

	P2
	0
	50

	P3
	55
	5 secs

	P4
	5
	20

Additionally when sending out a data packet there are some additional timing parameters. When the OBDII code reader (tester) is sending out a data packet for example:

	69h
	6Ah
	F1h
	01h
	00h
	C5h

Then the time between each byte is required to be P4 from the table above. Once the ECU gets the message it will send a response with in P2. Finally the code reader must make any further requests with in P3 time period. If the code reader waits any long than 5 seconds between requests it must go through the 5 buad initiation again. Finally before the tester can send out a packet of data it must wait at least W5 time period.

Autobaud

As a side note you will notice that when the ECU response to the 5 baud initiation sequence it sends out 55h this since the LSB of 55h is a one we can time the period the K line is low for the start bit to determine the baud rate. This technique of determining baud rate is called auto baud and had been used for years in modems.

NOTE:

At this point I need to continue the documentation with the following outline:

VPW bus

Following similar format as ISO above

PWM bus

Following similar format as ISO above

CAN bus
Again using similar format

OBDII packets basics, I was not planning on explaining all of the J1979 but just enough to understand the basics.

_1217153469.vsd
Device 1�

Device 2�

�

Actual Data Transmitted�

Start Bit�

Start Bit�

Start Bit�

Stop Bit�

Stop Bit�

Stop Bit�

LSB�

MSB�

_1217153696.vsd
�

Start Bit�

Stop Bit�

LSB�

MSB�

_1217140266.vsd
�

�

�

text�

�

12V�

�

K-Line�

�

12V�

�

K-Line�

�

�

Device 1�

Device 2�

_1217153208.vsd
Device 1�

Device 2�

�

Actual Data Transmitted�

Device 2 Checks Bus
and
Gives up�

