L

e

The Univerdgty of British Columbia
Department of Electrical and Computer Engineering

EECE 474
Bomberbots Project
Final Report

Submitted To
Dr. G. Dunford
By
Group 5

Alex Lau
Peter Chan
Stephen Chu
Sunny Chan
Terence Tam

March 24, 2002

ABSTRACT

A mechanica robot game has been designed and implemented specidly for adissbled
boy with the objective for him to interact with friends. The ideawas inspired from the
classc video game, “BomberMan”, origindly crested by Hudson Soft in 1989. The
objective of the gameisto “blow up” the opponent with eectronic bombs. The game
setting is a square grid with two players garting & opposite corners. The robots will be
waking around in the battlefield randomly. The players can tdll the robot to ‘lay’ bombs
by pressing the button on the user pandl. Only one bomb can be laid on the grid a atime
and the explosion occurs when the robot steps on the activated bomb. The movement of
the robots and the position of the bombs are managed by the HC11 microprocessor indde
the battlefield control tower. Commands are sent from the tower through RF connections
to therobots. Each robot hasa BASIC Stamp 2 microcontroller asitsbrain. Line
detection sensors are used to prevent the robots from hitting the wals. The game ends

when one of the robots ran out of life units.

TABLE OF CONTENTS

AB ST RA CT s i
LIST OF FIGURES ...t e iv
LIST OF TABLES. .. .o e e Vv
LOINTRODUCTION. ...ttt ettt 1
20DESIGN SPECIFICATIONS. ...t 3
21 Game ODETIVE. ... 3
22 ROD0E DEIGN. ...t 4
23Batle HEA DEIGN ... 5
3.0ROBOT CONSTRUCTION.ttt 7
31 BASIC Stamp 2 Micro-Controllerc.vuveeeiiiiiiiieieeieeieen e 7
B2 DMVE SYIEM .. 10
33 LINeSENSOr CIFCUITTY ...vveeee e e e 12
3.3 1 IREMItter/Detector Array......ovuvvveriieiiiiieeieeneeeneeen 12
3.3.2 Threshold ComParatorccovuvrvuieiiieeieieeeeneneeneansn 15
3A RF COMMUNICAION ...eieeeee et a e e 17
3.5 Power Solution and Batteries.oeveieiiiiiie e 19
A40BATTLE ARENA L. 2
ViR o (O WY/ [o (0 o (070°=5 o/ PP 22
A2 BOMD CIrCUITY . .. e e ens 2
A3 RF TranGMISTON ..vuceiiieie e 26
50 SOFTWARE ..ot e 30
5.1 RODOE AIGOMIIM ... 30
52 Batle Arena Algorthm ..o 32
5.2.1 Recelving Data from User (Pushbutton control) 32
522 Controlling the LEDS..........coviiiiiiiiii e 3
523 Sending datatothe RF moduleccooevvviiiiiiiiiiicee 35
5.2.4 Software AlgorithmDesign ..., 36
B.0BUDGETttt e 38
TOSUMM ARY ottt)
B ORECOMMANDATIONS ...t 40
APPENDIX A: PBASIC SOURCE CODEc.uiviiiiiiiiiiiiiceeeeeeee 11
APPENDIX B: FLOW CHART FOR PBASIC SOFTWAREccocvveannee. 45
APPENDIX C: CSOURCE CODEt 46
APPENDIX D: FLOW CHART FOR C SOFTWAREcccoiiiiiiiiiiiieineans 70
APPENDIX E: ROBOT CIRCUIT DIAGRAMcoiiiiiiiiiieeeie e 71
APPENDIX F: ROBOT PICTURES ..ottt 72

LIST OF FIGURES

Figurel Battlefidd Boardc.ovinieiiiiiie e
Figure2. BASIC Stamp 2 (24-pin DIP package) Schematic
Figure3. BASIC Stamp 2 and its COMPOoNeNntSccuvuvvieininiiiiiienenns
Figure4. BASIC Stamp 2 Programming Connectionscocvvvnennnnnn.
FigureS. SErVO CIrCUILIY ..vvieieii e e e e e
Figure6. Futaba S-148 Servo—Gear Diagramcocovvviiiiininiinieienn
Figure 7. Dimensonsand Schematic Diagram for QBR1114
Figure8. A Simplified Circuit Diagram Conssting One QrRB1114 Sensor ...

Figure9. Threshold Comparator Circuit Diagramcccoevvvevviininnnnn,

Figure 10. RF Receiver RXM -418-RM CirCUitcovvieniiiiiiiiiiiiiiinenn
Figurell. RFE dataStrEamovieiiii i
Figure12. Player Controller Pandcooiniiiiiiiii e
Figure 13. Bombing System CirCuitcoovvviiiiiiiiiiiiiiiin e
Figure 14. Block Diagram of Radio Frequency Communication System
Figure15. Trangmitter CirCUItoovuieiiiiiee e

Figure 16. Block Diagram of the Transmission Protocolccoevvivnnns

LIST OF TABLES

Table1l. BASIC Stamp 2 Pin DesCriptioncccvvvviiiiiiiiiiniineanen.
Table 2. Summary of Voltage Requirement for Power Sourcel...........

Table 3. Summary of Voltage Requirement for Power Source2...........

Table 4. Bit inputsfor the decoder at each location on the game board

20

20

34

1.0INTRODUCTION

The Bomberbots game is an innovative and origind project desgned specidly for a
disabled boy with the objective for him to interact with friends. The report details the
design, condruction, and testing of the Bomberbots game. In order for the project to be
successtul, the group spent an intendve amount of time in research and devel opment and
decided that the game play was the most important aspect because it dictates whether the
game can be implemented mechanicaly given our budget goals and time condraints.
Thiswas our main concern throughout the project and it is the reason why we chose this

modified BomberMan-type game.

An interactive game between two players can be very fun and exhilarating especidly
when it is physcaly implemented with moving partsingtead of watching it on amonitor.
We wanted to build a project thet served a purpose in aiding a child to interact with other
children through playing games. The game interface should be smple for both playersto
contral yet provide maximum enjoyment through itsinteradion. The player hasthe
ability to activate the bombs but they will only be activated for a certain amount of time
beforeit is deactivated. The dtrategy for the player will be to predict the future

movement of their robot to avoid any activated bombs and yet set the ones that may

“blow up” the opponent.

Since the player controller pand's must be atached to the microe-controller unit, the group

decided to use RF to control the robots wirdesdly, as thiswill enhance the visud

presentation of the game. The micro-controller unit was mounted underneeth battle board
and acted as the centrd processing unit of the game. The robots, player controller panels,
and the bomb lights were al connected to thisunit. Findly, agreat ded of software

enginearing was needed to properly design the structure of the game flow.

Thisreport describes the design of the robots, battle arena, and software. Each section
discusses its components and method of operation. The report will conclude with an

assessment of the kudget and any future recommendations.

20 DES GN SPECIFICATIONS

The following sections outline the design specification for the game objective, the robot

design, and the battiefield design.

2.1 Game Objective

The objective of Bomberbotsisto implement a physica game between two players thet
aretrying to “blow up” the other robot by activating bombs on the battle arena. Each
player can activate abomb by pressng the button on the user pand. The HC11 software
agorithm generates the movement of the robot randomly so there is no need for the

player to control the movement of the robot.

The robots start at opposite corners of the beattle arena. Each robot faces a preset
direction and each robot has 3 lives. Once the game has begun, the microcontroller will
direct each robot in a certain path at the same speed. As the robots reach each
intersection, the players can activate the bombs by pressing the button on the controller
pand. Theselive bombs stay on for gpproximately 5 seconds and then it deactivates
which will represent an explosion. Only one bomb can be activated on the battle arena a

atime

If arobot enters an intersection with an activated bomb, it will detonate and the robot will
gop for one turn and itslife decreases by one. A tone will be played while the robot is

sunned. This bomb will reset and can be activated again when a player setsit. A player

can detonate a bomb that has been activated by the same player. The game continues

until ether dayer has no lives and when this hgppens, both robots are stopped forever.

2.2 Robot Design

Therole of the two robotsisto give the players a physica entity to look a so that the
players can see the position of the robots and plan their strategies during the game. The
tasks of the robots are to move around in the battlefield without hitting the wals and

show some indication when they are sunned by a bomb.

The BASIC Stamp 2 micro-controller is chosen to be the brain of the robots because it is

easy to use and has a generous amount of 1/O pinsto control various components.

The movement mechanism of the robots is implemented using the differentid drive
system with two modified servos and athird supporting whed. This minimizesthe

project cost ard il enables the robots to move around without difficulty.

In order for the robots to avoid hitting the walls of the battlefied, a number of methods
such asusing IR object detection sensors, color sensors, and bumper sensors were being
congdered. Fndly, line detection was chosen because of its rdiability and exceptiond

performance.

Since the robots will be moving around randomly in the battlefield, there is no way to
predict where the future positions of the robots might be. Therefore, in order to avoid
collisons of the robots, the future positions of the robots are predetermined by the HC11
microprocessor undernegth the battle arena. The HC11 will make sure the robots will not
collide with each other. After the “next move’ is determined, commands will be sent to

the robots through RF connections.

If arobot steps on abomb, it will indicate thet it has been tunned by playing atone

through a eectronic buzzer implemented on the roboat.

Each robot is being powered by two 9V batteries. One of the batteriesis to power the
BASIC Stamp 2 micro-controller and the IR sensorsin the line following module. The
other battery ismainly to provide power to the servos. Thisway the robot would have

enough power to move around and would not affect the BASIC Stamp 2 performance.

2.3 Battle Field Design

The game environment will be on a95cm x 95cm square board divided into 16 squares,
which are separated by nine 5cm x 5cm pillars and awall around the perimeter of the
board. The height of the battlefield is8cm. See Figure 1 for the dimensions of the
baitlefield board. The floor base and the walls are made from 3/8-inch plywood and the
pillars are made from blocks of pinewood. Due to the specifications of the

phototrang stors on the robots, we have decided it would be optima to paint the insde of

the battle arenawith black paint and use white dectrica tape on the surface to serve as

tracks for the robots to follow.

T

O O O

Scm—_ O O 95 cm
20 cm
|:| O
N
5 cm 20 cm
P
¢ %
05 cm

Figure 1. Battlefield Board

3.0ROBOT CONSTRUCTION

Each robot has sructure congsts of three layers: the main circuitry layer on the top, the
servo layer in the middle, and the line sensor dircuitry layer at the bottom. Themain
circuitry layer contains amicrocontroller BASIC Stamp 2, aDB-9 serid port connector, a
Radio Frequency (RF) receiver, a power switch, power inputs from batteries, and power
outputs for the other two layers. The servo layer contains two modified servos each
attached with awhed. The line sensor circuitry layer contains an IR emitter/detector
array and athreshold comparator circuit. In addition to the three layers, atable tennis

ball isused as the back whed and two 9V batteries are attached at the back of each robot.

3.1 BASIC Stamp 2 Microcontroller

The BASIC Stamp 2 microcontroller was chosen to be the brain of the Bomberbots. Itis
avery popular robotics microcontroller module built by Pardlax Inc. BASIC Stamp 2is
chosen over other programmeable microprocessors and microcontrollers because of its
ample but powerful, language structure. It isvery fast in downloading and it is easy for
programmer to debug codes. BASIC Stamp 2 is cgpable of running gpproximetely four
thousand ingructions per second and is programmed with asmplified and cusomized
form of the BASIC programming language called PBASIC (Pardlax Basic). It hasan
EEPROM of 2K Bytesin sze, capable of holding gpproximately 500 to 600 indructions.
The EEPROM sizeis sufficient for our robots because PBASIC is very compact and our

source code far the robotsis not very complicated.

souTf W & BN ‘
sIN[E] H vss
ATN[E] i+ ERES
WsSs[T] BvoD £
“‘E‘“ Po[z] B P15 =
£ Pi[E T —
< P2[a EI NS
2 p3fg [mPriz s
o™ o
~ pafa B
— ps[@ [P10
P [pa
— @ i Pa
BS2-IC
62" (16 mm)

Figure2. BASIC Stamp 2 (24-pin DIP package) Schematic

EEPROM_
e

Figure 3. BASIC Stamp 2 and its Components

BASIC Stamp 2 hasaBASIC Interpreter chip, a PIC16C57 microchip, internd memory
(RAM and EEPROM), a 5-valt regulator, and 16 generd-purpose 1/0 pins. The 16
programmable 1/0 pins are suite for digita input and output with TTL/CMOSlevd (0 to

5volt) sgnds. It can be used to directly interface to TTL-leve devices such as buttons,

LEDs, soeskers, potentiometers and shift registers. This property helpsto smplify our

designin agreet ded.

Pin Name Description
] SOUT Serial Qot: connects to PC serial port BX pin (DBS pin 2/ DB25
N pin 3) for programming.
2 SN Serial In: connects to PC serial port TX pin (DBY pin 3 / DB25 pin}
2] for programming.
a AT Attention: connects to PC serial port DTR pin (OB9 pind /DBR25
= pin 20} for programming.
4 VES System ground: (same as pin 23) connects to PC serial port GO
e pin (OBY pin 5/ DB25 pin 7) for programming.
General-purpose 110 pins: each can sink 25 mé and sounce 20
mi. However, the total of all pins should not excesd 50 mA (sink
5-20 Fo-P15 and 40 mA (source) if using the internal 5-volt regulator. The tota
per &-pin groups (PO - P7 or P& = 15) should not excesd 50 mé
(=ink) and 40 m& (source) if using an extemal S-volt requlator.
S-volt OC input/output: if an unregulated voltage is applied to the
71 VoD VIN pin, then this pin will output 5 volts. If no voltage is applied tg
the WIM pin, then a regulated voltage between 4.5% and 5.5V
should be applied to this pin.
Reset input/output: goes low when power supply is less than
52 RES approximately 4.2 volts, causing the BASIC Stamp to reset. Can
. be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.
53 VSS System ground: {same as pin 4) connects to power supply’s
e ground (GHNDO) terminal,
Unregulated power in: aceepts 5.5 - 15 VOC (6-40 VOC on BS2-
24 WIN IC rev. &), which is then internally requlated to 5 volts. May be lefi
unconnected if & volts is applied to the YOD (+5V) pin.
Table1l. BASIC Stamp 2 Pin Description
DB-9 BS2-1C
0 SOUT VI N-
SIN VSS-
'Di?_ o [Fr, ATN RES*
le °|F+ VSS VDD
RTS {10 2o —PO P15
—P1 P14+
RSl 4P2 P13~
o -1P3 P12
2 4P4 P11l
-1P5 P10
-1P6 P9
—1P7 P8—

Figure4. BASIC Stamp 2 Programming Connections

3.2 Drive System

When deciding the suitable drive system components for our Bomberbots, we chooseto
use differentid drive with two servosingead of usng DC or stepper motors. Although
DC and stepper motors are chegper in cog, they are not as easy to operate and control as
sarvos, epecidly in the case of usng adigita micro-controller like BASIC Samp 2. DC
and sepper motors require avery complicated control circuitry with encoders. Servos do
not require extra circuitry when they are used to be controlled by digitd micro-

controllers. They smply respond to a pulse width modulation sgnd (PWM) sent by a

digita micro-controller.

+V GND =
VinQ
5V
Left Servo
1
2
servo
3
Ri ght Servo
1
4 O
servo
3|

Figure5. Servo Circuitry

Mogt servos are designed to move about 90° to 180° total. In order to use the sarvos asthe
driving system of our Bomberbots, we need to modify them so thet they can rotate
continuoudy. Each of our Bomberbots uses two modified servos. We choose to use the
Futaba-S148 servos because they provide low cogt, easy-to-modify gear motors. All we
need to do isto remove the stop tab and the drive plate from the bottom of the fina geer.
Each servo is attached with awhed. The two servos act as the front wheel while atable

tennis ball attached at the back of each Bomberbots act asatal whed.

2nd final gear

i 2rd
e qear
| e P

[TTI_ _l_llsh:lp tab

Figure 6. Futaba S 148 Servo —Gear Diagram

In order to let the Bomberbots turn cornersin shorter spaces, make sharper cornering
turns, and cause lessfriction on the tall whed, we placed the servos near the center of the
chasss. Sincethe batteries are at the back of the chasss, ahigh weight digtribution is
didributed at the back. The table tennis bal whed provides a very smooth surface for

minimizing friction as much as possble & thetall.

3.3 Line Sensor Circuitry

One of the features of our Bomberbotsisline following. They are able to follow lines
and determine whether they are & intersection or not. Our line following moduleis
composed of two distinct sections: an IR emitter/detector array and a threshold

comparaor circuit.

3.3.1 IR Emitter/Detector Array

Each of our robots has an IR emitter/detector array that conssts of five reflective object
sensors. Thistype of sensorsis designed to discriminate awhite versus ablack surface.
The sensorswe are using are optica interrupter switches (part number QRB1114), which
congg of an infrared emitting diode and an NPN sllicon phototransgtor. The
phototrandgstor responds to radiaion from the emitting photodiode only when areflective
object passeswithinitsfield of view. The senang digtance for QRB1114 is
approximatdy 3.81mm. This sensor is good for finding white lines on black floor or

black lines on whitefloor. In our project, we programmed our Bomberbots to identify

white lines on black floor.

0.420 (10.57)
0.328 (3.33)
= 0.150 (3.81)
NOM
PIN 1 %—"'ﬁ..\
} i P SCHEMATIC
0.226 (5.74) €._ _._}____,__’_} —
| S
+ Pinae==] (D £ P
::‘: lﬁﬂ":
Eild REFLECTIVE (j
0.020 (0.51) 0.150 (3.81) SURFACE
4% o [MIN 1 2 4 B
0,603 (15.32)—
0.300 (7.62)

Dimensions for all drawings are in inches (mm).

Figure 7. Dimensons and Schematic Diagram for QBR1114.

MC7805
IN oUT
COM §
220 10k | R Detect
L+ 1 L >
— 9V

h 4 @) QRB1114

Stanp Pin 2-6
St anpPi n]

Figure 8. A Smplified Circuit Diagram Consisting One QRB1114 Sensor

The above circuit diagram shows how to drive and reed the sensor. Thelight emitting
photodiode uses a +5 volt power source in series with 2220 O resgor. It can be
activated by making the associatled BASIC Stamp output pin low. When it is active, an
IR light beam will be emitted and the reflected bean will strike of the phototransistor end,
affecting the current flow through it. More reflected IR causes greater current to flow

through the tranggtor.

The light sengng phototrangstor uses a+5 volt power source in serieswith a 10 kO
resstor and the IR Detect output is taken at the collector pin of the phototrangstor. This
creuit provides a voltage output proportiond to the amount of light received by the
sending phototranggtor. 1t forms a voltage divider with the output dependant on current
flow thraugh the trandstor. As the current flow through the transstor increases, the
voltage across the 10 kO resistor dso increases, causing the IR Detect output decreases.
Therefore, the greeter the reflected IR, the lower the output voltage. When thereislittie
or no reflection, the current flow through the trangstor is reduced making it look like a
very large resstance in the circuit, causing the output voltage to increases. Therefore, the

amdler the reflected IR, the higher the output voltage.

Decreadng the resistance (smdler than 220 O) on the photodiode can increase the
intengty of the IR beam, which resultsin adightly larger range of detection. However,
thisincrease in intengity causes the sensor to be sendtive enough to detect the little
reflection from black surface, causing the sensor unable to distinguish black and white

aurfaces. The resstance on the phototranggtor is somewhat arbitrary, aslong asit is high

14

enough to give a good voltage swing and low enough that ambient light does not tend to

trip the sensor too much. Any resistor from 10 KO to 20 kO will work well.

For each of our Bomberbots, the five IR sensors are under direct control of the BASIC
Stamp 2. Itis programmed that only one sensor isturned on & atime. The output of the
5 IR sensorsis connected to a threshold comparator, which ensures the detection of a
reflective and non-reflective surface would have an output of either OV or 5V (logic low

or high). Allowing multiple IR sensorsto light will cause inaccurate and unpredictable
results. Refer to the Section 5.2 of this report for more detail on how the BASIC Stamp 2

controls thefive IR sensors.

3.3.2 Threshold Compar ator

The second portion of the line following module is the threshold comparator. The
purpose of this crcuit isto compare the output from the output from the IR detector with
the level setting on the threshold potentiometer. The comparator isacting asan A/D

(andog/Digitd) converter.

| R Det ect

MC7805
IN OUT|
Com
10k
e N SO —
— 9V Stanmp P7 >
10k 50% ¢ ; LMB11
+
T 10uF

Figure 9. Threshold Comparator Circuit Diagram

The above circuit diagram shows the configuration of the threshold comparator. The IR
Detect Sgnd is connected to the minus termind of the single voltage comparator LM 311
while the threshold pot is connected to the plustermind. LM311 worksin avery snple
manner. Its output would be ather high or low, depending on which of the two input
sgnd hasthe higher voltage. If the minusinput is higher than the plusinput, the
comparator will output low (OV). If theinput is higher than the minusinput, then the
comparator will output high (5V). The purpose of the threshold potentiometer isto dlow
usto adjust the input voltage into the plus termind. For our Bomberbots, we set this input

voltage into the plus termind to be around 2.5V.

Choosing the suitable value of the potentiometer is very important to this crcuit. If the
vaueis picked to be very amdl (for ingtance 1 kO), the comparator may lill work well
by itsdf. However when it is connected to the output of the IR sensors, the comparator

would output high & alower voltage, unable to output high a 5V. Any vaue larger than

5 kO would alow the comparator to be stable when connected to the IR sensors. For our
Bomberbots, we chose a 10 kO potentiometer. A 10 kO resgor is connected in series
with the comparator output. This output resstor is optiond, however it would drain

down the current flow into BASIC Stamp 2, preventing it to become ma function.

When an IR sensor is turned on and detects a highly reflective surface, the output voltage
of the sensor goeslow. Therefore, if it fals below the threshold pot setting, the
comparator will output low. When the sensor detects a non-reflective surface, the output
voltage of the senor will go high. If thisvaltage is higher than the threshold pot setting,

the comparator will output high. The IR sensor is very rdiable in the sense that it outputs
0.2V when it detects a highly reflective surface and 4.0V when it detects a non-reflective
surface. The output of the IR sensors can actually be connected directly to BASIC Stamp
I/0O pins. The BASIC Stamp 2 is &ble to recognize 0.2V asalow and 4.0V asahigh.
Although the comparator is seems to be optiond, the existence of the comparator ensures

the input to the BASIC Stamps to be digitdized.

In summary, reflective surfaces cause the Line Following module to output a high and

non-reflective surfaces case it to output alow.

3.4 RF Communication

TheLinx RM Series Tranamitter and Recaiver 418 MHz modules are chosen for the RF

link between the battlefidd control tower and the Bomberbots because of their ease of

17

use. They have arange of over 500 feet and can support datarates up to 10Kbps. In
addition, they aso have awide supply range (5.9 — 9 VDC for the transmitter and 3.9 — 9
VDC for the recaiver) and low power consumption (~6mA for the transmitter and ~14mA

for the recaiver) and they dso have awide operating temperature range (-10 °Cto 50 °C).

These properties make the RF modules suitable for the project.

The Linx RM Series 418 MHz Receiver has two output pins, one for anaog and one for
digitd. Thedigitd pin is connected to one of the BASIC Stamp 2 pin to reed the deta

received as shown in Figure 10.

ANT RXM 418- RM

G\D
Vcc

—AF
DATA

ANT
GN\D
—~AN——oDETECT
U
-

47k

_*
~ 10uF

Figure 10. RF Recelver RXM -418-RM Circuit

In case of recelving noise or junk data from other sources, the RF data from the HC11 is

sent following the scheme shown in Figure 11. At the beginning of eech data stream, a

byte of junk datawill be sent. Thisisto ensure the connection between the RF modules

isegablished. Then a synchronization byte is sent following the actud command byte,

JUNK Synchronization Byte Command Byte

4 8hits P 8 hits > < 8hits — P

Figure1l. RF Data stream

At the beginning on each turn, the robot will stand by and wait for RF commeands. It will
check the data received from the receiver and look for the synchronization byte to meke
sure the data is from the battlefield control tower. Then the next eight bits will be stored
into memory. The BASIC Stamp 2 will do this for three times and then compare the
vaues. If they are dl the same then it is confirmed to be avaid command and BASC
Stamp 2 will try to execute it. After finish executing the command, the robot will go

back to the stand by state and wait for the next command.

3.5 Power Solution and Batteries

Power plays avery important rolein the performance of our Bomberbots. Therefore
specid carein powering the Bomberbotsis needed. For each Bomberbots, we have 2
power sources. one for powering BASIC Stamp 2 and the Line Following Module, one

for powering the two servos and the RF recelver. Each set of the loads is powered using

a9V DC batery. The purpose of dividing dl loadsinto 2 separate power sysem isthat

we do not want too much load on asingle power source, making too much power draw

and causing the power supply ungable.

Load Voltage Required

BASC Stamp 2 module 6V — 12V (If applying to internal voltage regulator)

Line Falowing module S\

Table 2. Summary of Voltage Requirement for Power Source 1

Load Voltage Required
Futaba S148 Sarvo (2) 48V -6V
RF Receiver RMX-418-RV 39V -9V

Table 3. Summary of Voltage Requirement for Power Source 2

For power source 1, we need it to power the mirco-controller and the Line Following
module. BASIC Stamp 2 has abuilt-in 5valt regulator, which converts an input of 6 to
15vdtsdownto 5 volts Sinceit isrecommended to limit the voltage supply to 12 volts
on BASIC Stamp 2, we choose to power it usng a9V batery. The Line Following
module requires 5V to power it. Therefore we added a 5volt regulaior MC7805ACT to

convert the voltage from the 9V battery down to 5V.

For power source 2, we need it to power the 2 servos and the RF receiver. The 2 servos

require alot of current draw and the voltage level plays a very important role on ther

performance. The speed of the servosis greatly affected by the voltage leve. If the
voltage input drops below the require range, the speed becomes very ungtiable. Since our
Bomberbots drive system rdies greatly on the speed and the performance of the servaos,
we need to regulate the voltage applied to the servos. We use a 5-volt regulator
MC7805ACT to regulate the voltage input to the servos to ensure speed of the servos
would say congtant. In order to dlow MC7805ACT and the RF receiver RMX-418-RM
to operate, we choose to use a9V kettery. The voltage to the RF receiver is not regulated
because a drop in voltage supply would only affect its range of operation. If we regulate

the voltage down, we will minimize it operating range.

4.0 BATTLE ARENA

The Baitle Arena conssts of a HC-11 microprocessor, the bombing system circuitry and

the radio frequency communication system circuitry.

4.1 HC-11 Microprocessor

The reason we chose to use HC-11 microprocessor in our project is becauseitisa
popular product used for contralling devices, which makes the learning and developing
process eeser during the development. The HC11 includes powerful functions such as,
Pardld Input/Output, Serid Communication Interface (SCI), Serid Peripherd Interface
(SP1), Timing Sysem and Andog-to-Digita Converson. These functions are quite
flexible in that dmogt anything can be implemented and so it more than fulfills our needs
for thisproject. It dso hasmany 1/0 pins avalable for generd or specific use. Also, the
Image Craft Compiler 11 isapopular development tool used for programming the HC11,
whichisavalableat UBC. Findly, the price of the HC11 islower than other types of

M Croprocessors.

4.2 Bombing System

The Bomhing System is a sysem that would take input data from the two playersand

activate a bomb according to the player that pressed the button first and the robot that was

on top of the bomb. Of course the bomb must be off beforeit is activated or dsethe

robot would explode. Whichever player pressed the button firgt, his or her bomb would
be activated for two rounds. After two rounds, the bomb would explode and the whole

cyde of activating abomb garts over again.

The Bombing System conssts of two buttons, one for each player, fourteen bombsand
two sife zonesindde a4 x 4 grid-like maze. The two safe zones are a (0,0) and (3,3)
while the fourteen bombs are & everywhere ese. This system consists of an active low
four -to-sixteen decoder, fourteen not gates, fourteen 150 Wresistors, fourteen LEDs
which represents the fourteen bombs, two 1000 W resistors, two pushbuttons ingde two
controller pandsand aHC11. The Bombing System is powered up by two 9 VDC
batteries connected in pardld. A voltage regulator is used to lower the 9 VDC to

agoproximately 5 VDC.

Two controller panels were built for each pushbutton for each player. The controller
pand is Imply an duminum box with dimensons of 14cm x 14cm. Thishand hdd
control unit has a push button mounted on the topside and connected to the micro
controller unit viatwo wires. Onewireisfor theinput to the button and the other wireis

the output from the button. See figure 12 for the player controller pand.

T
i

1o

Figure 12. Player Controller Pand

Thetwo pushbuttons are connected to a5 VDC source and to pins PAO and PA1 on the
HC11. The pins PAO and PA1 are dso connected to a 1000 Wresigtor, which is
connected to ground. This had to be done to prevent fase inputs to PAO and PA1 when
the pushbuttons are not pressed otherwise an LED would light up ingppropriatdy. We
found this out experimentally when we observed an LED lighting up even though we
didn’t press any buttons. We fixed this phenomenon by grounding the inputs, PAO and
PA1, with aresstor; therefore, whenever a pushbutton is not pressed, the input PAO and
PA1 would dwaysbe 0 VDC. However, when a pushbutton is pressed, the input to
either PAO or PA1 would be 5 VDC because the current would flow directly to the pin
ingtead of the resstor since there is less resistance on that path. The pins PA3 to PAG on
the HC11 are dedicated to contralling the 14 LEDs on the 4 x 4 grid-like maze. The
output of the pins PA3 to PA6 are from 0000 to 1111 but only 0001 to 1110 could turn on

an LED; these four bitswould be the inputs to the four-to-sixteen decoder. Sincethe

24

four -to-sixteen decoder is an active low device, fourteen inverters are needed to rectify
this problem o that only one LED would be on & atime and not dl thirteen LEDs on at
once otherwise too much current would be drawn. A 150 Wresistor is connected
between each LED and an inverter to prevent the LED from drawing too much current
and burning out prematurdly. Each LED that was turned on would only last for around 5

seconds before it is turned off which would symbolize abomb exploding. Seefigure 13

for the circuitry of the Bombing System.
< FCIT
1 - -
78L08 s3 78L05 i 0/ R 4
— N e N ou ° Al BBi
1K PA3 +VDX

CoM Ccom —PA2 | RQ
PAG VR

S2 — —VRH GROUNB—'

- —{PEO - ¥

= o —{PE1 PE}—
- -

— 9V

74LS154
i

JIL
HF—W

1
00
SN
3

Iii_i__§i7
% ’ -

nl = —

L%V

1
1
= 1
1
1

ORNWAUL

Figure 13. Bombing System Cir cuit

4.3 Radio Frequency Communication System

The Radio Frequency Communication System was implemented for Bomberbots for its
convenience in communicating between the HC11 micro-controller and the Basic Stamp
chip since no physica link was needed. Had aserid cable been usad, the robots would
have maneuvered with much difficulty throughout the maze and possibly tripping over

the serid cables. Therefore, RF was chosen for its less cumbersome properties and its
ease of use but noise, interference and other ditortiond effects had to be considered and

possibly iminated which will be discussed further in this section.

In our project, we chose the Linx RM Series Tranamitter and Receiver 418 MHz Modules
because these modules used a SAW — stabilized FIM/FSK modulation scheme. They dso
have arange in excess of 500 feet, which can support data rates up to 10Kbps. In
addition, they aso have awide supply range (5.9 — 9 VDC for the transmitter and 3.9 — 9
VDC for the receiver) and low power consumption (~6mA for the transmitter and ~14mA
for the recelver) and they dso have awide operating temperature range (-10 °Cto 50 °C).
These benefits were essentia to our success. See Figure 14 for the block diagram of the

Radio Frequency Communication System.

7| ‘ F= Baszic Stamp

‘ N Faobat &,
HC11 252 Tu

Fs B azic Stamp

Fobot B

Figure 14. Block Diagram of Radio Frequency Communication System

The tranamitter was interfaced to the HC11 micro-controller but aMAX232 was required
in between the HC11 micro-controller and the transmitter because the output of the HC11
micro-controller isa RS232 voltage (gpprox. 15V), which is much greater than whet the
tranamitter can take as data (approx. 0-9V). Therefore, a MA X232 was needed to lower
the RS232 voltage level to a TTL/CMOS voltage leve (gpprox. 5V), whichisamore

appropriate level that the transmitter can accept.

To increase the output power from the antenna, the supply voltage for the transmitter was

adjugted to gpproximately 8 VDC by using a 8 volt regulator to lower the battery voltage

form 9.55 VDC to gpproximately 8 VDC. Thiswas doneto try to overcome the noisein
the surrounding environment and hence increase the Sgnd to noiseratio to ensure the

receiver would recelve our Sgnaseasly. See Figure 15 for the trangmitter circuitry.

ANT
TXM 418- Rm
| l—GND
78108 S1 | ANTENNA DATAI N
—IN ou—-o o Ve GO 1|u|F
oM y
l . 1uF
—R2out R2i m—
—T2in T2outr
= Tain Tyl — 1
—Rlout C2-- ——1uF
—Rli n C2+ I
78L05 :&%ut C\},-: L 1uF
IN OUT \Vcc Cl+ —
1+ MAX232
- M ——1uF

.||—

HC11

—PA7 PD2—
—PAG PD3—
—PA5 PD4—
—PA4 PD5—
—PA3 +VD(
—PA2 | RQT—
—PAL Xl RO+
—PAO VR
—VRH GROUND—{ |
—PEO PE4-
—PE1 PE5—
—-PE2 PE6—
—PE3 PE7—
—PDO PDI|

Figure 15. Tranamitter Circuit

A trangmisson protocol was developed to minimize interference. The trangmission
protocol conssted of sending one junk byte, one synchronization byte and one message
byte and thiswould be replicated ten times. The junk byte was sent to wake up the
receiver while the synchronization byte was sent to digtinguish which robot we are
communicating with. The message byte contains the command for the particular robot.
For each command we sent, 30 bytes are sent to arobot. The only time the robot was
dimulated is when it recognizes a particular synchronization byte intended for itsdf. See

figure 16 for akock diagram of the tranamission protocal.

Repeat ten times

Start End

Sending a junk Sending a Sending the
byte synichronization actually command
hyte

Figure 16. Block Diagram of the Transmission Protocol

5.0 SOFTWARE

There are two main parts to the software for the Bomberbots project: the PBASIC code
for the BASIC Stamp 2 and the C code for the HC11. The following sections discuss the
generd gtructure for each part of the software. For the actua source code, please refer to

Appendix A and Appendix C.

5.1 Robat Algorithm

The robot uses the BASIC stamp 2 micra-controller asits brain and the softwareis
written in PBASIC. The main tasks for the robot is to receive RF commands from the
HC11, move around in the battlefidd according to the command, and “explode’ if it Seps

onabomb. The flow chart for the PBASIC softwareis shownin Appendix B.

At the beginning on each turn, the robot will sand by and wait for RF commands. Once
the robot receives some data, it will goreit into avariable. The robot will do thisfor

three times and then it will compare the three variables. If the three variables are dl the
same, then the data received will be consdered as avaid command. Thisisto make sure
whatever the robot is receiving from the RF recaiver is not noise or junk deta from other

SOuUrces.

Once the commeand is confirmed to be vaid, then the robot will try to execute the

commeand. Therobot will go forward, turn left, turn right, or “explode’. If the command

is nat one of these chaices, it will Smply go back to the stand by sate and wait for the

next RF command.

When the robot is ingtructed to go forward or make a turn, the software will send apulse
sgnd to drive the sarvo. At the sametime, it will turn on the line sensors to check the

white line, making sure that the robot is not going to bump into the wdls

Thelinefollowing circuit consgts of five IR photo sensors. Each of them is connected to
one BASIC Stamp pin. Since BASIC Stamp 2 does not support interrupts, afast polling
routine is used to accomplish the same effect. Since the number and Sze of the tasks
involved is smdl, this technique is fast enough to accomplish the same effect as

interrupts.

IF the datareceived is an “explode’ commeand, the robat will play a song using the buzzer
to indicate thet it has been hit by abomb. The software will enter a subroutine and get

the song notes and the duration from two lookup tables. Then it will send the

corresponding frequency to the buzzer pin.

After the robot executed a command, it will go back to the sand by gate and wait for the

next RF command. Thiswill repeet until the robot has run out of life.

5.2 Battle Arena Algorithm

In order for the hardware to interact with each other in a harmonious manner, softwareis
required to control dl aspects of the game design induding lighting up LEDs,
interpreting user input and sending commeands to the two robots viaradio frequency. The

Micro-Core 11 contains 32kbytes EEPROM and 32kbytes RAM, which provides a

aufficient amount of space for our software program. Also, ahigh level language cdled
C is used to write the software program and Imeage Craft Compiler 11 (ICC11) isusad to
compile and trandate the C program code into an executable language cdled machine
language. An executeblefileis created by ICC11 and the file is directly dow nloaded to
the HC11 viaaserid cable. The softwareisamagor part of our project. It isresponsble
for recaiving, interpreting and responding to user input, lighting up LEDs a the desired
location and at the gppropriate time, sending commeands to robots to either move forward,

left, right or stop viaatranamitter and control the flow of the game.

5.2.1 Receiving Data from User (Pushbutton control)

The sgnds from the pushbuttons are received using the PORTA input pins. We have
dedicated PAO and PA1 to be the two input pins for playerl and player2. PAO and PA1
are ether connected to ground, which representslogic O or connected to 5 VDC, which
representslogic 1. When a pushbutton is not pressed, the input pin dways receives a
logic of 0 but when a button is pressed the input pin receives alogic of 1. Our software
dgorithm is quite sraightforward because we only need to check the least two significant

bits of the PORTA regider to see which pin has ahigh input in order to find out which

button was pressed firg. Once we find out which button was pressed, the bombing
agorithm will be cdled to light up the desired LED. We choseto use PAO and PAL to be

our input pinsin order to use up PORTA and the leave the other ports for various uses.

5.2.2 Controllingthe LEDs

The LEDs are controlled using the pulse width modulation (PWM). Thisimplementation
controls how long the LEDs should stay on for aperiod of time. Our design requiresa
total of four PWM linesin order to control 14 LEDs. The four PWM lines are output to a
4-t0-16 decoder, then each output of the decoder is connected to an inverter and then an

LED, snce the decoder is active low.

To generate a specific pulse length to fit our purpose, we used the output compare
function (OC) to program the LEDs to turn off after a certain time. Each OC hasa 16 hit
compare register and an output pin asociated with it. To operate the OC function, a16
bit value was assigned to a 16 hit register and whenever the free running counter reaches
that value, an interrupt was generated. Then an interrupt handler will implement the

gopropriate action during the interrupt.

The free running counter in the HC11 chip increments from $0000 to $FFFF every time
the program is darted. In a 2MHz clock system, the counter takes 32.77ms to count from
$0000 to $FFFF. Asaresult, we discovered the maximum pulse width (32.77ms) was

too short for the needs. Therefore, to extend the pulse width, we declared a new counter

in our code and we had to set the OC register to have the vaue $FFFF. Consequently, an
interrupt was generated every 32.77ms. In our interrupt handler, we then increased the
new counter we declared by one until our new counter reached 153, which is around five
second (32.77ms*153). Afterwards, we then set the OC output pin to low to turn off the

LEDs.

The OC regigters we used are OC2 to OC5 corresponding to pins PA6 — PA3
respectively. At time O, the pulse is st to high to turn on the LEDs and when our new
counter has reached 153, the pulse is s&t back to low to turn off the LEDs. Each pin
represents a bit for the 4-to-16 decoder, soin order to light up an LED at pogtion (1,1),
PA4 and PAG6 should be low and PA3 and PA5 should be high. See Table 4 for the bit

inputs to the decoder at each location on the game board.

0 1 2 3
0 SafeZone 0001 0010 0011
1 0100 0101 0110 01k
2 1000 1001 1010 1011
3 1100 1101 1110 Safe Zone

Table 4. Bit Inputsto the Decoder at Each L ocation on the Game Board

Findly, the Vectorsc file needed to be changed so that the interrupt points to the correct
interrupt handler. Also, the PACTL register needs to be st so that the four PA6-PA3

pins become output pins.

5.2.3 Sending data to the RF module

The commands to the robots are sent thraugh RF using the Sarid Communication
Interface (SCI) function of the HC11. The SCI can send abyte of information & atime.
A gart bit, logic 0, is transmitted or received to indicate the start of each message; an end
bit, logic 1, istranamitted or received to indicate the end of each message. The SCl
communication conggts of a TxD pin for tranamitting deta, a RXD pin for receiving deta
and aground. Inacomplex implementation of SCI, an interrupt is used to prevent

loosing data when receiving and to do some smple error checking. In our case, we are
only sending data; therefore, we are not concerned if dataiis lost or corrupted because we

are sending it arepeated number of times.

A busy wait while loop is used to wait for the transmitting register to be availableto
tranamit data. Each command is sent ten times to ensure the robot would receive the

command at lesst three times.

Before the data can be sent, aregister cdled the SCI Status Regigter (SCSR) needsto be
checked. Thisregigter isaflag regiser that stores the satus of the transmitting register.
The mog sgnificant bit of SCSR is cdled the Tranamit Data Register Empty Flag
(TDRE). Thishit needsto be 1, which meansthe dataregister is empty, in order to be
ableto trangmitsdata. After the status of that bit becomes 1, we store the pre-defined

command to the SCI Data Register (SCDR) to be reedy to be sent out. Then a shift

regiger in the HC11 outputs the data to the TxD pin from the leest Sgnificant bit firg to

the most sgnificant bit a a baud rate of 2400 to the tranamitter.

Inour origina design, wetried to send data at abaud rate of 9600. However, this
transmitting rate was too fast for the Basic Stamp to sample and thus it caused some of
the datato be lost during our testing process. After we dowed the transmitting rate down

to 2400, al the datawas received accurately on the robot sde.

5.2.4 Softwar e Algorithm Design

In our game, the HC11 software dgorithm is mainly used to control the movement of the
robots. At the beginning of the game, the two robots are placed a the sarting position,
which are positions (0,0) and (3,3) on the game board. After the game is Sarted, each
robot waksin a pre-defined path. The current position of each robat is known and will
be changed after a command has been sent out to each robot. 1n our dgorithm, in order
to send acommand, ajunk byte is sent firgt to wake up the receiver and then a
synchronization byte is sent to digtinguish which robot is being commanded. Findly, the
actud command isthen sent out. Thiswhole processis repeated ten times to ensure the
robot receives our message instead of noise or other messages from other groups. The
robots follow adigtinct path that we have created through software and eventudly they
will end up a the sarting position and face the same direction as they did at the
beginning. If one of the robotsis il not dead at thet time, then the robots are going to

go through the same path again until one of the robots explodes and dies Whilethe

robots are a the intersection of the maze, the players can press a button to lay abomb a
the robot’ s current pogition, which is represented by lighting up an LED. Afterwards, the
robot moves to the next intersection according to what commeand the HC11 sends. A
busy wait while loop is used in between each move to make sure the robot iswaiting a
the intersection for the next commeand to be sent. We implemented atwo dimensiond
array to keep track of the pogtion of the bomb and the position of each robot. The
agorithm checks and compares the position of the bomb and the position of the robot
before each move. If the pogition of the bomb is one, which meansthe bomb is activated
and the position of the robot matches the pogtion of the active bomb then astop
command is sent to the robot to symbalize the robot is exploding. The robot that
exploded stays at the intersection for a period of time; meanwhile, the variable that keeps
track of thelife of the robot is decreased by one. If thelife of the robot reaches zero, the
program will stop and the other player wins. The flow of our dgorithm isto wait for the
robot to reach the intersection, check for the bomb postion, check for the players button
and findly send a command to the robot for the next move. This sequenceis repested

until one of the playersdies.

6.0 Budget

Quantity Part Source Price Amount
1 MicroCore-11 EE Department $100 $100.00
4 Futaba FP-S148 Servo Vancouver Robotics $29.95 $119.80
2 Basic Stamp I Digikey $77.42 $154.84
2 RF Receiver 418MHz Digikey $57.59 $115.18
2 RF Transmitter 418MHz Digikey $35.26 $70.52
10 QRB1114 (photo diodes) Digikey $2.00 $20.00
N/A Miscellaneous components EE Department N/A $35.00
Total $615.34

7.0 UMMARY

The mechanica robot game Bomberbots was ingpired by the dassic video game called
“BomberMan” created by Hudson Soft and is designed specidly for a disabled boy with
the objective for him to interact with frierds. The game congsts of two controller pands,
two robots, and a bettle arena board with the console unit ingde the control tower. The
HC11 microprocessor keeps track of where the robots are on the arena board and accepts
inputs from the player controller pand. 1t dso outputs ingtructions to the two robots viaa
trangmitter and sets bomb through LED activation. Each Bomberbot is controlled by one
BASIC Stamp 2 microprocessor that receives coded data from its RF receiver module.
The coded digitad sgna consgts of ajunk byte, synchronization byte, and amessage

byte. The robots use IR sensors atached to its bottom sde to follow white lines on the
grid, which prevent it from bumping into the pillars and the border walsin the bettle

arena. The drive system of the robot conssts of two servos and athird supporting whed!.
The battle arena congds of a4 x 4 square grid with 14 LED bombs placed in the middle
of each intersections on the board except for the “safe-zong’. Thedircuitry to the 14
LEDsisjust asmple four -to-sixteen decoder connected to the HC11 microprocessor. As
for the player contraller pand, it is a hand-hed duminum box with asingle button to
activate bombs that is wired to the console. The HC11 processes this data and outputs the
necessary information through wireless tranamission and ectivating LED bombs. The
software agorithm makes proper adjustments to the movement of each robot o that they

will never cross paths and collide.

8.0 RECOMMENDATIONS

Throughout the course of the project, our group has encountered many modification
concepts that would improve the design of our robots, bettle arena, and game play. Some

of these changes were made to ensure a properly working game but any non-vita

modifications were not implemented due to cogt redtrictions, time condraints, and
insufficient equipment. The following improvements were discovered through Internet
research, recommendations from robotics experts, textud reading, and discussons with

previous EECE 474 gudents:

A larger board with more grids and more room for each square of intersection will
increese the leve of complexity in the game

Each robot may be dlowed to activate more than one bomb & atime

Build ajoystick on the player controller pand to dlow them to control the movement
of each robot

Use both a transmitter and a receiver on both robots and the main control unit to
maintain a congtant two-way communication to ensure proper operaion.

Replace IR emitters with ultra bright LEDs to ease the debugging process and for the
“good |00k’

Implement “ultrabombs’ which, when explode, effects more than one grid space

APPENDIX A: PBAS C SOURCE CODE

' { $STAMP BS2}

----- [Title]

" File: BOVBERBOT. BS2

Purpose: Software al gorithmfor the bonberbot project,

line foll owi ng sensors,
Aut hor : Pet er Chan
Sunny Chan

code incl ude

RF, and bomb al gorithm

This programall ows the robot to receive and execute RF commands
The RF commands directs the robot to go either left,
be stepping on a bonb or not.

accordingly.

19 March 2002

' 20 March 2002
' 23 March 2002

oaaa-- [1/O Definitions]

LServo CON
RSer vo CON
Recei ver CON

Buzzer CON

LEDon CON
LEDof f CON
Wi ne CON
BLi ne CON
LFnode CON
MSt op CON

SpeedHi gh CON
SpeedLow CON

Synch CON
HEX)

Baud CON
B [Vari abl
tenp VAR
| edPos VAR
IfBits VAR

right, or forward and whether it wll

- Start Date

Added Line Follow ng Al gorithm

- Added RF Al gorithm
- Added Bomb Al gorithm

8
9

10

15

750

60

30
290001010

396

servo notor connections

RF receiver

song buzzer

LF LEDs are active | ow

white line on black field
' black line on white field

not or stop
hi gh speed
| ow speed

2400 baud

set pgmfor white line

for |oop counter

" LED position in IfBits

l'ine foll ower

i nput bits

synchroni zati on byte (OA in

4

r edat VAR Byte ' RF data received

datal VAR Byte ' RF data storage 1

dat a2 VAR Byte ' RF data storage 2

dat a3 VAR Byt e ' RF data storage 3

i ndex VAR Byt e " lookup table index for song
not e VAR Word ' song note

duration VAR Word ' song note duration

R [Initialization J------------“--“--“ oo

QutL = 991111100 ' all LF LEDs off (pins 2 to 6
hi gh)

DirL = 991111100 ' make LF LED pins outputs
index = 0 ' start of song

EEEEEE [Main Code J--------mmmmmmm oo

PAUSE 2000 ' program starts running after
2 sec
Mai n:
SERI N Recei ver, Baud, [WAl T(Synch), r edat]
datal = redat ' storing to datal
SERI N Recei ver, Baud, [WAl T(Synch), r edat]
data2 = redat ' storing to data2
SERI N Recei ver, Baud, [WAl T(Synch), r edat]
dat a3 = redat ' storing to data3
| F datal = data2 AND datal = data3 THEN Execute ' check RF data
GOTO Mai n
Execut e:
IF datal = %%0000001 THEN Go_Forward ' execute RF conmand
I F datal = 9%0000010 THEN Go_Ri ght
| F datal = 990000011 THEN Go_Left
| F datal = 990001111 THEN Expl ode
GOTO Mai n
Go_For war d: " robot is going
strai ght

FOR tenp = 1 TO 100
PULSOUT RServo, MStop - SpeedHi gh
PULSOUT LServo, Mstop + SpeedHi gh
NEXT
| oop_f orward:
GOSUB Read_Li ne_Fol | ower
IF (IfBits <> %1111) THEN Move_Forward
IF (IfBits = %41111) THEN Wl k

Go_Ri ght: ' robot is going right
FOR tenp = 1 TO 100
PULSOQUT LServo, Mstop + SpeedHi gh
NEXT
| oop_right:
GOSUB Read_Li ne_Fol | ower
IF (I fBits <> 9%41111) THEN Turn_Ri ght

IF (IfBits = %411111) THEN Brake

Go_Left: ' robot is going left
FOR tenp = 1 TO 100
PULSOUT RServo, Mstop - SpeedHi gh
NEXT
| oop_l eft:
GOSUB Read_Li ne_Fol | ower
IF (IfBits <> 9%41111) THEN Turn_Left
IF (1 fBits = %411111) THEN Br ake

Expl ode:
GOTO Pl ay_Song ' check if robot is hit
Done_Pl ay_Song:
index = 0 ' reset song index
GOTO Mai n

Wal k: " wal k forward

FOR tenp = 1 TO 100
PULSOUT RServo, Mstop - SpeedHi gh
PULSQUT LServo, MStop + SpeedHi gh
NEXT
| oop_wal k:
GOSUB Read_Li ne_Fol | ower
IF (IfBits <> %1111) THEN Keep_Wal ki ng
IF (IfBits = %41111) THEN Done

Turn_Left: ' keep turning left
PULSOUT RServo, Mstop - SpeedLow
GOTO | oop_|l eft

Turn_Ri ght: ' keep turning right
PULSOUT LServo, Mstop + SpeedLow
GOTO | oop_ri ght

Move_For war d: ' keep wal ki ng
PULSOUT LServo, Mstop + SpeedLow
PULSOUT RServo, Mstop - SpeedLow
GOTO | oop_forward

Keep_Wal ki ng: " keep wal ki ng
PULSOUT LServo, Mstop + SpeedLow
PULSOUT RServo, Mstop - SpeedLow
GOTO | oop_wal k

Br ake: ' brake
PULSQUT LServo, Mst op
PULSCOUT RSer vo, Mst op
Pause 500
GOTO Wal k

Done:
Pause 1500
FOR temp =1 TO 5 ' back up a little
PULSQUT LServo, Mstop - SpeedHi gh
PULSOUT RServo, Mstop + SpeedHi gh

NEXT
pause 2000
GOTO Mai n

Pl ay_Song
GOSUB CGet _Song
IF note = 0 THEN Done_Pl ay_Song
FREQOUT Buzzer, duration, note
index = index + 1
GOTO Pl ay_Song

Read_Li ne_Fol | ower:
[fBits = 0
FOR | edPos = 2 TO 6
CQutL. LowBit (| edPos) = LEDon
PAUSE 1

I fBits. LowBit(l edPos) = In7 ~ LFnpnde

QutL = QutL | 991111100
NEXT
| fBits = I fBits >> 2
i ndex
RETURN

Get _Song:

LOOKUP i ndex, [550, 450, 350, 250, 150, 50, 0], note
LOOKUP i ndex, [500, 500, 500, 500, 500, 500], dur ati on

RETURN

finish playing song
send signal to buzzer
i ndex to next note

clear last reading

turn the LED on
al | ow sensor to read
record sensor reading
turn LEDs off

shift bits to zero

song note
note duration

APPENDIX B: FLOW CHART FORPBASC SOFTWARE

START

No

Yes

[amr Jo
RF Command
Received
Unknown
Command
o <22
If Other
Yes
If Right Execute W If Explode
L J
If Left l LIfForward
[Go Right] [Go Left] [GoForward] Explode
[LeaveLine] [Lea/eLine] [Lea/eLine] Y Get Song
No Play
See See
Line?] Line?] Sound
Yes No i: Yes
Keep K
Tuming Turning
Right Left

No

APPENDIX C: C SOURCE CODE

#**

FILESNEEDED TO BE INCLUDED

***/

#indude <sdio.h>
#indude <hcl1.h>

#**

FUNCTION DECLARATION

***/

vod setup (void); /IThe function sstup dl theinitid values

int bombhbuttonl (); /IThe function check the button press by the user

int bombbutton2 (); /Mhe function check the position of the bomb and robot

void timercontrol landmask1 (int X, int y); /[The function that setup the timer
[lcontrol and mask register

void timerflagl (int x, int y); /IMhe function that setup the timer flag register

void checkbomb (); /IThe check bomb function

void trangmitwait (); /IThe function wait for the recieve sgnd

void updetel ();

void updae? ();

void sendingdatal (); /IThe function that send the command

void sendingdata2 ();

void dday(); /IA delay function

void dday2(); /IAnother dday function

#**

VARIABLES

***/

voldile int bombhbit1;

voldile int bombhbit2;

voldile cher datg; /[The datarecieved
voldileint flaglx, flag2x, flagly, flagy;

int robotlstate:
int robot24ate;

int robot1pod4][4]; /[The array store the position of the robot 1
int robot1x[5];
int robotly[5];

voldile int botlx;

voldile int botly;

int robot2pod4][4]; /[The array store the pogition of the robot 2

int robot2x[9);

int robot2y[5];

voldileint bot2x;

voldile int bot2y;

int bombdoc4][4]; /IThe array keep track of the position of the bomb
volatileint lifel; /[Thelife variable for robot 1
voldileint life2 /[The life variable for robot 2
vodileint z /IMThe counter in the checking robot function, delay function
voldileinti, j, a b; /[The counter in the setup function
voldileint c; /[The counter in the sending data
voldileint d; /[The counter in the delay2 function

#**

DEFINE CONSTANTS

***/

voldileint pulse width=0xOBB8; /*1.50ms*/
voldile int count=0;

voldile int check1=0;

volatile int check2=0;

#fndef BOMBERGUY _C
#define BOMBERGUY _C

#define forward OxC3 11000011 forward command for robot*/
#Hoefine right OxD2 /11010010 right command for robot 1*/
#aefine left OxE1 f* 11100001 left command for robot 1*/
#define sop OxFO /11110000 sop command for robot 1*/

#definesyncl OxAA /* 10101010 the bit use to communicate with robot 1*/
#definesync2 OxBB /* 1011 1011 the bit use to communicate with robot 2*/
#Hoefinejunk OxQ0 /00000000 thejunk bit*/
Hendif

#**

INTERRUPT SERVICE ROUTINES

***/

#pragmainterrupt_handler fiveHandler

#**

SETUP FUNCTION

***/

void sstup(void)
setbaud(BAUD9600);
PACTL |- 0x88; I* Set Port A, bits 3 & 7 as outputs. */
SCCR1 |= 0x00;
SCCR2 |= OxOC; [* Sat up the regigter for st serid communication */

for (i =0;i <4 i+
{
for (j =0;j <4 j+9
{
robot1podi][j] =0;
robot2podi][j] =0;

robotlstate = 0;
robot2state = O;
bombbitl = O;
bombhit2 = 0;
lifel = 300;
life2 = 300;

robot1poq 0[] = 1,
robot2pog 3][3] = 1,
batlx = Q;
botly = 0;
bot2x = 3;
bo2y =3,

[rrxxxsxxnitidizing the peth of the robot but parts are skip for Smplicity******/

robot1x[Q] = 0;
robotly[Q] =0;
robot1x[1] = 1;
robotly[1] =G,
robotx[2] = 1,
robotly[2] = 1,
robot2x[0] = 3;
robot2y[0] = 3,
robot2x[1] = 3;
robot2y[1] = 2;
robot2x[2] = 2;
robo2y[2) = 2,
frrxxxxrkk* | nitidizing the path of the robot but parts are skip for smplicity******/
for (a=0; a<4; at+t)
{ for (b=0; b<4; bt++)

bombslodfal[b] = 0;

#**

CHECK IF A ROBOT ISON A BOMB FUNCTION

***/

void checkbomb)
{

if (robotlpogbot1x][botly] == bombdoc[botlx][botly])

{
/[This caseis enter only when player step on bomb
if (lifel>0)

lifel--;
bombhitl = 1;

while(c<10)
{

/I sending a sop command

trangmitwait();
SCDR = junk;
trangmitwait();
SCDR = syncl,;
trangmitwait();
SCDR = gop;
delay();
c=ctl;
}
c=0
}
dse
{
exit(0);
}

i{f (robot2pos{bo2x][bot2y] == bombslogfbot2x][bot2y])

if (life2>0)
life2--;
bombbit2 = 1;
while(c<10)
{
trangmitwait();
SCDR = junk;
trangmitwait();
SCDR = syncz,
transmitwait();
SCDR = gop;
delay();
c=ctl;
}
c=0
}
dse
{

#**

CHECK IF THE BUTTON IS PRESSED FUNCTION

***/

void checkbutton()
{

i{f (robot2pos bot2x][bot2y] == 1)

if ({bombbutton2 ())

{
count =0;
check2 =1;
flag2x = bot2x;
flag2y = bot2y;
timercontrollandmaskl (bot2x,bot2y);
aan("di");

pulse width=0xFFFF,

}
if (robotLpogbot1x][botly] == 1)
{

if (!bombbuttonl ())

{
count = G;
checkl=1,
flaglx = botlx;
flagly = botly;

timercontrol landmeask1 (bot1x,botly);

aam("di");

pulse width=0xFFFF;

[* If an output compare register matches the free-running counter and the
corresponding bits of the TCTL1 and TMSK1 are s, thisinterrupt subroutine
will be caled */

void fiveHandler(void)
{
P Thefirg thing we have to do isto enable some of the bitsin TFLG1
bit 7 6 5 4 3 2 1 0
TFLG1 QC1F OC2F OC3F OCAF 14/0O5F IC1F IC2F IC3F */

[* st the corresponding bit of the TFLGL to represent the output pin that we want to
generate */

if (checkl == 1)
timerflagl (flaglx flagly):
}
if (check2 == 1)
timerflagl (flag2x flag2y):
}

TOC2 = pulse_width;
TOC3 = pulse_width;
TOCA = pulse_width;
TOCS = pulse_width;

[* By doing this, when later the free-running counter reaches PULSE_ WIDTH, it will
cdl thisinterrupt service
ubroutine */

count=count+1; /* count up to 153 to represent 5 sec */
F* With this command, it will set the OLX (where X is the corresponding number for
your preferred output pin).
Thiswill cause the output pin changes from high to low after five seconds. */
if (count == 153)
TCTL1=(TCTL1 & OxAA),

bombdodflaglx][flagly] = O;
* Thisrest the location of the bomb to false*/

bombdodflag2x][flag2y] = 0;
/* This resat the location of the bomb to fase*/

bombbitl = 0;
bombbit2 = 0;
}
}
int bombbuttonl ()
{
if (PORTA & 0x01) ==0)
return (2);
dse
return (0);
}
int bormbbutton?2 ()
{
if (PORTA & 0x02) ==0)
return (1);
dse
return (0);

}

/I This function setups the gppropriate regigter for timing conrtrol
void timercontrol landmaskl. (int X, int y)

if (x==0)&& (y==0))

TCTL1=TCTL1|OX00;
TMSK1=TMSK1 | Ox00 ;
}

deif (x == 0) && (y == 1))
{

TCTL1=TCTL1|Ox30;
TMSK1 = TMSK1|0x20;

}
dseif (x ==0) && (y == 2))

TCTL1=TCTL1|OxCO;
TMSK1 = TMSK1|0x40 ;
}

dseif (x ==0) && (y == 3)
{

TCTL1=TCTL1|OxFO;
TMSX1=TMSK1|0x60;

}
dseif (x == 1) && (y == 0))

TCTL1=TCTL1|Ox03;
TMSK1=TMSK1|0x08;

}
dseif (x==1) && (y == 1))

TCTL1=TCTL1|Ox33;
TMSK1=TMSK1|Ox28;

}
dseif (x == 1) && (y == 2))
{

TCTL1=TCTL1 | OxC3;
TMSK1=TMSK1|0x48;

}

deeif (x == 1) && (y == 3))

{
TCTL1=TCTL1|OXF3;
TMSK1 = TMSK1|O0x68;

dseif (x ==2) && (y == 0))

TCTL1=TCTL1|X0C;
TMSK1=TMSK1|0x10;

}
dseif (x==2) && (y == 1))
{

TCTL1=TCTL1|OX3C;
TMSK1=TMSK1|0x30;

}
dseif (x ==2) && (y == 2))

TCTL1=TCTL1|OxCC;
TMSX1=TMSK1|0x50;

}
dseif (x==2) && (y==23)
{

TCTL1=TCTL1|OXFC;
TMSK1=TMSK1|0x70;

}
dseif (x == 3) && (y == 0))

TCTL1=TCTL1|OXOF;
TMSK1 = TMSK1|0x18;

}

dseif (x ==3) && (y == 1))
{
TCTL1=TCTL1 |OX3F;
TMSK1=TMSK1 | 0x38 ;

}
dseif (x==3) && (y == 2)
{

TCTL1=TCTL1|OXCF;
TMSK1 = TMSK1|Ox58 ;
}

dseif (x == 3) && (y == 3)

{
TCTL1=TCTL1|OXFF;

TMSK1=TMSK1|0x78;

void timerflagl (int x, int y)

{ if (x == 0) && (y == 0))
} TRLG1 = 0x00;
dseif (x==0) && (y == 1))
TALG1 = Ox20;
}
dseif (x==0) && (y ==2))
TALG1 = 0x40;
}
dseif (x == 0) && (y == 3))
TALG1 = Ox60;
}
dseif (x = 1) && (y == 0))
i TFLG1 = Ox08;
dseif (x = 1) && (y == 1))
} TRLG1 = 0x28;
dseif (x = 1) && (y == 2))
{ TRLG1 = 0x48;
}
?seif (x==1) && (y==23))

TH.G1=0x68;

}
dseif (x == 2) && (y == 0))
{

TRLG1=0x10;
}

dseif (x==2) && (y == 1))
{

THLG1=0x30;
}

deif (x=2&& y==2)
{

}
dseif (x ==2) && (y == 3))
{

TH.G1=0x50;

TALGL=0x70;
}

dseif (x == 3) && (y == 0))
{

}

deif (x ==3) && (y == 1))
{

}

dseif (x ==3) && (y ==2))
{

}
dseif (x == 3) && (y == 3)
{

TH.G1=0x18;

TH.G1=0x38;

TH.G1=0x58;

TA.G1=0x78;

#**

COMMAND FUNCTION

***/

void sendingdatal ()
{
/* output command to rotbot1 */
switch (robotldtate)
{
cae 0
whilg(c<10)
{
transmitwait();
SCDR = junk;
trangmitwait();
SCDR = syncl,
transmitwait();
SCDR = forward;
delay();
c=ctl;
}
c=0
whilg(c<10)
{
transmitwait();
CDR =junk;
transmitwait();
SCDR = syncl,
trangmitwait();
SCDR =right;
delay();
c=ctl;
}
c=0

/*send forward to R1
send turn right to R1*/

robot pogtion*/

case l:

updatel();
* update the robot pogtion */

/*each case satment stand for each move of the robots*/

}

{

}

c=0;

while(c<10)
{
trangmitwait();
SCDR =junk;
transmitwait();
SCDR = syncl,
tranamitwait();
SCDR = forward;
delay();
c=ct]

while(c<10)

{

trangmitwait();
SCDR = junk;
tranamitwait();
SCDR = syncl,
tranamitwait();
SCDR =right;
delay();

}

[*send forward to RL
send turn right to R1*/

c=ctl;

updatel(); [* update the

/*each case satment stland for each move of the robots*/

while(c<10)

trangmitwait();

SCDR = junk;
transmitwait();

CDR = syncy,
tranamitwait();

SCDR = forward;
delay();
c=ct]

}
c=0;

whilg(c<10)
{
trangmitwait();
CDR = junk;
tranamitwait();
SCDR = syncl,
transmitwait();
SCDR =right;
delay();

*send forward to R1
send turn right to R1*/

updatel(); * update the robot position */

/*each case satment stand for each move of the robots*/
}

caxe 3:

{

while(c<10)
{
trangmitwait();
SCDR = junk;
transmitwait();
SCDR = syncy,
tranamitwait();

SCDR = forward;

delay();
c=ct]
}
c=0
whileg(c<10)
{
trangmitwait();
CDR =junk;
transmitwait();
SCDR = syncl,
tranamitwait();
SCDR = right;
delay();
c=ctl;
}
c=0

/*send forward to R1

send turn right to R1*/
updatel(); * updete the robot postion */
[*each case atment stand for each move of the robots*/
}
}
}
void sendingdata? ()

/* output command to rotbot2 */
switch (robot2gtate)

cae 0

{

while(c<10)

trangmitwait();

SCDR = junk;
transmitwait();

CDR = sync2,
tranamitwait();

SCDR = forward;
delay();
c=ctl;

}
c=0;

while(c<10)
{
trangmitwait();
CDR = junk;
tranamitwait();
SCDR = sync2,
tranamitwait();
SCDR = |€ft;

f*send forward to R2
send turn left to R2*/

update2(); * updete the robot postion */

/*each case satment stand for each move of the robots*/

{
while(c<10)
{
trangmitwait();
CDR =junk;
transmitwait();
SCDR = sync2,
trangmitwait();
SCDR = forward;

case 2

delay();

c=ctl;
}
c=0;
whilg(c<10)
{
transmitwait();
SCDR = junk;
tranamitwait();
SCDR = syncz,
transmitwait();
SCDR = I€ft;
delay();
c=ctl;
}
c=0;
/*send forward to R2
=nd turn left to R2*/
update2(); * update the robot podtion */
/*each case satment stand for each move of the robots*/
}
{
whilg(c<10)
{
trangmitwait();
SCDR = junk;
trangmitwait();
SCDR = sync2;
transmitwait();
SCDR = forward;
delay();
c=c+Hl;
}
c=0

while(c<10)

trangmitwait();

SCDR = junk;
transmitwait();

CDR = sync2,
tranamitwait();

SCDR = |éft;

c=0;

/*send forward to R2
send turn left to R2*/

update2(); [* update the robot position */

/*each case satment stand for each move of the robots*/

}
cae 3.
{
while(c<10)
{
trangmitwait();
SCDR =junk;
transmitwait();
SCDR = sync2,
trangmitwait();
SCDR = forward;
delay();
c=ctl;
}
c=0
whilg(c<10)
{
trangmitwait();
SCDR = junk;
transmitwait();
SCDR = sync2;

tranamitwait();

SCDR = Ift;
delay();

c=c+l;
}

c=0;

/*send forward to R1
send turn right to R1*/

update2(); ¥ update the robot podition */

/*each case satment stand for each move of the robots*/

}
frxxxxkkkxxxx|n the sendingdatal and sendingdata? function only first few moves are

Y 101 kkhkkkhkkkhkkkhhkkhkhkhhkhkhkhhkkhkhhkhhhkhkhhrhhhhkkkx
shown for smpliaty* /

void updatel ()
{
//Update the podition of robotl

robot1pogbotlx][botly] = O;
bot1x = robot1x[robotldtete;
botly = robotly[robotldtate];
robot1pogbotlx][botly] = 1;

robotlstate = robotlstate + 1;

void update? ()
{
//Update the postion for robot2

robot2pos bot2x] [bot2y] = O
bot2x = robot2x[robot2state];

bot2y = robot2y[robot24ete];
robot1pogbot2x][bot2y] = 1;

robot2<tate = robot2gate + 1;

void transmitwait()
{
* A function to wait for the SCDR to be empty i.e ready to send */
whileg(!(SCSR & 0x80))
{

}

#**

DELAY FUNCTION

***/

void delay()
[* A function to delay after sending Sgnd */
z=0
while(z<2000)
{

}

z=7+1;
}

void ddlay2()

{
/* A function to delay after sending Sgnd */

d=0;
whilg(d < 200000)
{

}

d=d+1;

F**

MAIN FUNCTION

**/

void main (void)

{
setup ();
f*puts ("\nBomber Man");*/
while (1)
{
delay2();
checkbomby();
checkbutton();
if (!(bombhbitl == 1))
{
/fif therobotl is not bomb send the next command
sendingdatal ();
}

if ({(bombbit2 = 1))
{

//if the robot2 is not bomb send the next command
sendingdata?();
}

}

* 1f you need to set up interrupt vectors (e.g. Sngle chip mode sysem
* or system without monitor, then you can Smply include vectorsc. The
* "right" way to do thingsisto set up a project with mulitplefiles,
* put to judt try out the compiler, thisworksjust as well.
* HC16's vector isin the artl6.o file
*/
#if defined(HC11) || defined(HC12)
#include"vectors.c"
#Hendif
[* note that Snce vectors.c uses pragmato change the text section name
* there should not be stuff after this unless you change the name
* back
*/

[* Asis, dl interrupts except reset jumps to Oxffff, which is most
* likely not going to useful. To replace an entry, dedare your
function,

* and then change the corresponding entry in the table. For example,
* if you have a SCI handler (which must be defined with

* Hpragmainterrupt_handler ...) thenin thisfile:

* add

* extern void SClHandler();

* before th table.

* In the SCI entry, change:

* DUMMY_ENTRY,

* 10

* SClHandler,

*/

externvoid _dart(void); [* entry point in crt?2s*/
extern void fiveHandler(void); /* Generates PWM */

#efine DUMMY_ENTRY (void (*)(void))OxFFFF

#Hifdef HC12

#pragma abs_address.0xffd0
#lse [+ HC11*/
#pragma abs_address.Oxffdé
#Hendif

[* change the above address if your vector Sarts esawhere
*/
void (*interrupt_vectorq])(void) =

{

[* to cagt a congtant, say Oxb600, use
(void (*)())0xb600
*/
#ifdef HCI12
I* 812A4 vectors sarts at Oxff80, but most entries are not used
if you use Key Wakeup H, change the start address to OxffCE and
add one entry to the beginning */
DUMMY_ENTRY, /* BDLC*/ * Key Wekeup J*/
DUMMY_ENTRY, /*ATD*/ * ATD*/

&2

DUMMY_ENTRY, /* RESERVED */ * SCl1*/
Hendif
DUMMY_ENTRY, /* SCI*/
DUMMY_ENTRY, /> SPI*/
DUMMY_ENTRY, /* PAIE*/
DUMMY_ENTRY, /* PAO*/
DUMMY_ENTRY, /* TOF*/
fiveHandler, /* TOC5*/ [HC12TC7*/
fiveHandler, /* TOC4*/ [TC6*/
fiveHandler, /* TOC3*/ [* TC5*/
fiveHander, /* TOC2*/ [TC4*/
DUMMY_ENTRY, [/ TOC1*/ [* TC3*/
DUMMY_ENTRY, /* TIC3*/ P TC2*/
DUMMY_ENTRY, /*TIC2*/ P TCL*/
DUMMY_ENTRY, /> TIC1*/ P TCO*/
DUMMY_ENTRY, /* RTI*/
DUMMY_ENTRY, F/IRQ*/
DUMMY_ENTRY, /* XIRQ*/
DUMMY_ENTRY, /* SWI*/
DUMMY_ENTRY, /* ILLOP*/
DUMMY_ENTRY, /* COP*/
DUMMY_ENTRY, /*CLM*/

start /¥ RESET */

b
#pragmaend _abs address

APPENDIX D: FLOW CHART FORC SOFTWARE

—

send comenand to

'| | Wart For rebets 1o]_,
Start J | reach mtecsection J rabata
—
check compare the | g Check For the

panticn of the
bk and robi

| payers' butbon

—

-
e
}.-”
/ e
, b r -
‘-.L,_" /," .--‘/
. y A
send stop . check £'He /TB}SL‘
e decrease e 5) el zEro
-’f \.\\
v \

APPENDIX E: ROBOT CIRCUIT DIAGRAM

b

| B552- 1 J
| | VY

N RESY
Vi

R}
U
bt

LRI

Buzzer

ANT

RXM- 418- RM

Cy 925828
-
=

0. 1uF A

‘@ QRB1114
——
1 [
* ‘@ QRB1114
——
N
1 | 10k 509
N
QRB1114 Ilow
] = = =
T
+\¢) QRB1114
| —_
+\¢> QRB1114
=

MC7805

Left Servo

servo

Ri ght Servo

O servo

APPENDIX F: ROBOT PICTURES

