
Column #122: Even Mo’ MIDI

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 103

Column #122 June 2005 by Jon Williams:

Even Mo’ MIDI

About two years ago I did a couple columns on MIDI (Musical Instrument Digital Interface)
using a BASIC Stamp 2 microcontroller. Our experiments at the time were limited to sending
MIDI data. These articles generated a lot of interest, and the most pressing question has
been, “How can I receive and process MIDI data in my project?” The fact is that it’s very
tough to do that effectively with a BASIC Stamp, but now that we’re equipped with SX/B,
we’re ready to rock … and roll … and do anything else we chose to do with a MIDI data
stream.

In the event you haven’t actually heard of it yet, MIDI is a serial communications scheme
developed to link instruments like synthesizers together. It’s not particularly difficult; data is
sent at 31.5 kBaud in small packets. The tough part for BASIC Stamp users is that the
packets can vary in length; this creates a real challenge for SERIN. And the reality is that the
processing time of bytes already captured would cause us to miss other data in the stream.
What we need is a serial buffer to capture everything and allow us to process data on-the-fly.

Column #122: Even Mo’ MIDI

Page 104 • The Nuts and Volts of BASIC Stamps (Volume 6)

Since there’s a good chance that this project could become a product for the new Parallax
EFX group, I wanted to keep the cost and parts count low – this kind of precludes the use of a
BASIC Stamp and an external UART to capture the data. What we need is a chip we can
program in BASIC that will buffer the MIDI data while we’re doing other things. Oh, hey,
we already have one: the SX micro – when we program it with the SX/B compiler.

SX/B 1.2

It’s no big secret that I work for Parallax, and that I’m part of the SX/B team – still, I’m very
proud that the company has provided this product at no charge, and continues to make
improvements to it. Honestly, SX/B has opened a whole new world for me personally as I
just don’t have the patience to program in 100% assembly. A routine here and there, no
problem – the whole doggone program, no way.

Version 1.2 of the SX/B compiler adds support for the SX48 and SX52, and – what I think is
best – is that it simplifies the use of code pages in the SX. You’ll remember in our December
and January projects that we created a “jump table” to get to subroutines located on another
code page within the SX. With SX/B 1.2, all we have to do is declare our subroutines (with
SUB) and the compiler handles the rest. Oh, another time saver is IF-THEN-ELSE. Yes, this
makes decision-making a lot easier and saves us from having to insert our own labels to
handle the IF-THEN branching. Of course there are other improvements in the compiler, but
these are the features that I think programmers will find most useful.

MIDI Controller

My colleague, John Barrowman, and I started a group called Parallax EFX to build products
for the props and FX industry (movies, TV, holiday displays, etc.). As we spend more time
with folks who build props, we’re finding an increasing interest in MIDI control – this is
especially true with those folks building Halloween displays. The idea is to use a computer-
based sequencer to play audio tracks and send MIDI messages to electronic circuits that
control prop actuators and effects devices. This month’s project is the electronic control end
of things.

Before we get to the details of the circuit and code, let’s chat a little about the MIDI messages
and the challenges we face. In a simple world, a MIDI device would use fixed length packets
– perhaps doing something like this:

Column #122: Even Mo’ MIDI

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 105

90 3C 64 ' note on for middle C
80 3C 00 ' note off for middle C

Well, we can dream, but MIDI is not so simple in application. What we’ll actually see – from
most instruments and sequencers – is this:

90 3C 64 ' note on for middle C
3C 00 ' note off for middle C

Huh? What happened to the status byte for the Note Off command (should have been $80)?
The truth is that it’s not really used much. What happens is:

90 3C 64 ' note on for middle C
90 3C 00 ' note off for middle C

The logic here is that turning a note on with a zero velocity (initial volume) is the same as
turning it off. So why didn’t we see the second $90? Running Status. You see, MIDI data
isn’t flying around particularly fast, so anything that can be done to reduce the number of
bytes in the stream is helpful to system performance. The MIDI protocol employs a strategy
called running status to do this. What this means is that the MIDI receiver is expected to keep
track of the last valid status byte and use it when a data byte shows up when a new status byte
is expected. In the example above, the receiver would know to use the last valid status byte
($90) when a data byte arrives unexpectedly.

Alright, I’ve been a little loose with terms … how do we know the difference between a status
byte and a data byte? Luckily, the folks who created the MIDI standard made it pretty easy:
status bytes are $80 and higher; data bytes are $7F and lower. While this helps us determine
what’s what, it actually creates a bit of work in some circumstances. A pitch wheel change,
for example, sends $Ex (x is the MIDI channel) followed by two bytes that represent the 14-
bit pitch wheel value – but each byte only has seven bits so the receiver has to reassemble
them to get a usable value.

MIDI In – Control Out

Okay, let’s jump into the project. Our goal is to “listen” to a MIDI stream and respond to
Note On and Note Off messages that match our channel and octave settings. Now, there are
more legal notes than what we want to deal with in a small controller, so our design will
handle one: control output 1 will be assigned to C in the selected octave; control output 12
will be assigned to B in that same octave.

Column #122: Even Mo’ MIDI

Page 106 • The Nuts and Volts of BASIC Stamps (Volume 6)

This choice works very nicely with the number of IO pins available on an SX28. Have a look
at Figure 122.1, the schematic for the project. MIDI data is actually transmitted through a
current loop, and the specification says that one MIDI output will feed just one MIDI input.
The 6N138 opto-isolator converts the incoming current loop to a TTL level serial signal that
gets fed to the SX28. It also gets routed, through two inverters, to a MIDI THRU port. This
lets us insert our controller in a chain of MIDI-compatible devices.

The serial data coming into RA.0 is 31.25 kBaud, N81, true (idle state is high) mode. A start
bit, then, will be when the serial line goes from Vdd to Vss. Back in January we did a project
that captured serial data in an ISR (interrupt service routine) and that same code is used here.
The only thing we have to change is the Interrupt period for the MIDI baud rate.

At 31.25 kBaud, each MIDI bit is 32 microseconds wide. Sticking with the idea that we
should sample the serial line at least four times per bit period, we need to setup the ISR to trip
every eight microseconds. This isn’t very hard to do with SX/B; we simply put the number of
cycles for our interrupt period after the RETURNINT instruction. So what is that number?

We can calculate it like this:

Cycles = Freq / Prescaler * Int_Period

With a clock frequency of 20 MHz, and a prescaler setting of 1:1, we get 160.

20,000,000 / 1 * 0.000008 = 160

What would happen if we decided to bump our clock frequency up to 50 MHz? We’d get:

50,000,000 / 1 * 0.000008 = 400

Houston, we have a problem – the value following the RETURNINT must fit into a byte.
What we would have to do is bump the RTCC prescaler to 1:2, and then things work out:

50,000,000 / 2 * 0.000008 = 200

This is about the only tricky aspect of dealing with the ISR serial code; we really have to keep
on top of things when it comes to the numbers. If we do, we’ll be we rewarded because the
serial code happily receives and buffers incoming data while we blissfully run our foreground
code.

Column #122: Even Mo’ MIDI

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 107

Figure 122.1:
MIDI Schematic
with SX28AC/DP

Column #122: Even Mo’ MIDI

Page 108 • The Nuts and Volts of BASIC Stamps (Volume 6)

ISR_Start:
 ASM
 MOVB C, MidiIn
 TEST rxCount
 JNZ RX_Bit
 MOV W, #9
 SC
 MOV rxCount, W
 MOV rxTimer, #6

RX_Bit:
 DJNZ rxTimer, ISR_Exit
 MOV rxTimer, #4
 DEC rxCount
 SZ
 RR rxByte
 SZ
 JMP ISR_Exit

RX_Buffer:
 MOV FSR, #rxBuf
 ADD FSR, rxHead
 MOV IND, rxByte
 INC rxHead
 CLRB rxHead.4
 ENDASM

ISR_Exit:
 BANK $00
 RETURNINT 160

Other than the timing change for MIDI, this is in fact the same code we used back in January
for the LED multiplexer (see that article for a description of the serial receive and buffer
routine). Now that we have MIDI data collecting in a 16-byte circular buffer, we can start
pulling it out and comparing to the commands that our device will respond to (specifically
Note On and Note Off).

As we move down the listing into the heart of the program we encounter something new:
subroutine declarations. This is my favorite aspect of SX/B version 1.2.

GETBYTE SUB 1
GETCHANNEL SUB
GETPORT SUB 1
SETCTRL SUB 2

Column #122: Even Mo’ MIDI

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 109

The declaration of subroutines does two things for us: 1) It causes the compiler to create a
jump table to the actual code, saving us the trouble of doing that, and 2) It causes the compiler
to validate the number of parameters passed to a subroutine – this is a very big help and
prevents a lot of program bugs from causing problems.

The number following the SUB declaration tells the compiler how many parameters, if any,
are required by the subroutine. Better yet, the compiler can even check for a variable number
of parameters. For example:

DELAYUS SUB 1, 2

In the declaration for DELAYUS (not used in the MIDI program), we’re telling the compiler
that we must pass at least one parameter, and that we could pass two. The help file has
several examples that show how to use variable parameter declarations.

Finally, when using a declared subroutine, we don’t have to use the keyword GOSUB
anymore. As you look through the project listing you’ll see lines like:

GETBYTE @midiStatus

This code calls the GETBYTE subroutine and passes the address (@) of the midiStatus
variable as a parameter. As you can see, the SUB declaration is a really powerful feature, and
for my money (yes, I know SX/B is free…), the best improvement to the SX/B compiler.

Okay, let’s get to the actual MIDI decoding. The program starts by setting up the IOs,
enabling the ISR, and then drops into the top where we look for a status byte.

Main:
 IF hasStatus = 0 THEN
 GETBYTE @midiStatus
 IF midiStatus.7 = 0 THEN Main

Check_Sys:
 IF midiStatus >= $F0 THEN Sys_Cmd
 runStatus = midiStatus
 ENDIF

In the beginning we don’t have a status byte saved, so the program will in fact call GETBYTE
and wait for a status byte to arrive. Since status bytes are $80 and higher, all we have to do is
look at bit 7 (aliased as hasStatus) to tell if the byte received is status or not. If not, we try
again.

Column #122: Even Mo’ MIDI

Page 110 • The Nuts and Volts of BASIC Stamps (Volume 6)

There’s a special case when the status byte is $F0 and higher – these bytes are system
commands and need to be handled separately. When we get a normal (“voice”) status byte
($80 - $EF) we will save that in our running status variable. All status bytes require at least
one data byte, so that’s what we collect next.

Get_DB1:
 midiStatus = runStatus
 GETBYTE @midiDB1
 IF midiDB1.7 = 1 THEN
 midiStatus = midiDB1
 GOTO Check_Sys
 ENDIF

You may be wondering why we need to copy the running status byte back to our midiStatus
variable. Well, we’ll ultimately end up here again, and if the last status byte that came in was
a system byte we need to refresh the running status byte for the incoming data. If, for some
reason, we get a status byte at this point, it gets moved into the midiStatus variable and we
jump to Check_Sys to handle a system byte that might have shown up. If it isn’t, the process
continues as before with the new status byte.

Let’s say that things went well and the status byte received was $90 (Note On, channel 1) and
the first data byte was $3C (middle C). The next thing we have to do is look at the status byte
and jump to a handler for it.

Do_Command:
 temp1 = midiStatus & $F0
 IF temp1 = $80 THEN Note_Off
 IF temp1 = $90 THEN Note_On
 IF temp1 = $A0 THEN Aftertouch
 IF temp1 = $B0 THEN Controller
 IF temp1 = $C0 THEN Pgm_Change
 IF temp1 = $D0 THEN Chan_Pressure
 IF temp1 = $E0 THEN Pitch_Wheel
 GOTO Main

The first line of this routine masks out the channel data (low nibble of status byte), then does a
comparison of valid commands and jumps to the proper routine. Why jump to a routine if the
channel doesn’t match? Well, the status and data bytes are in the buffer anyway, and they
have to be pulled out (I suppose we could come up with a clever routine to manipulate the
buffer head pointer, but that could lead to more complications than its worth, especially since
we need to check for system commands).

Column #122: Even Mo’ MIDI

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 111

In our case we’re going to jump to Note_On:

Note_On:
 GETBYTE @midiDB2
 IF midiDB2.7 = 1 THEN
 midiStatus = midiDB1
 GOTO Check_Sys
 ENDIF
 GETCHANNEL
 temp1 = midiStatus & $0F
 IF temp1 = channel THEN
 GETPORT @midiDB1
 IF midiDB1 < 12 THEN
 IF midiDB2 > 0 THEN ' velocity > 0?
 SETCTRL midiDB1, 1 ' yes, turn port on
 ELSE
 SETCTRL midiDB1, 0 ' no, turn port off
 ENDIF
 ENDIF
 ENDIF
 GOTO Main

Again, we’ll call GETBYTE to get the second byte for the Note On command; this byte will
hold the “velocity” (initial volume) for the note currently being held in midiDB1. And,
again, we’ll make sure that we didn’t get a status byte when it’s not expected. If we do, it’s
handled by moving the new status byte into midiStatus and jumping back to Check_Sys for
appropriate processing. That will usually not be the case, however, what we’ll end up with is
a value between zero (off) and 127 (max volume).

With the entire packet removed from the buffer we can compare the channel information in
the status byte with the channel setting of our controller.

GETCHANNEL:
 channel = ~CtrlHi
 SWAP channel
 channel = channel & $0F
 RETURN

As you can see, checking the channel setting of the controller is pretty easy: we read the
channel switch settings and invert them since we’re using active-low inputs. As the channel
data is in the upper nibble, we can use SWAP to move it to the lower nibble. This is a new
command in SX/B and does exactly the same thing as its assembly namesake. It’s also much
quicker than using a shift instruction to move the bits from one nibble to the other. Finally,

Column #122: Even Mo’ MIDI

Page 112 • The Nuts and Volts of BASIC Stamps (Volume 6)

we mask out the unused bits (high nibble of channel) and return to the program. In case
you’re wondering why this isn’t done at the beginning of the program, the reason is it lets us
change the channel setting of the controller on-the-fly. This can be very useful when we’re
attempting to integrate it into a MIDI system.

Now that we have the channel number from the controller, we can grab the channel data from
the status byte and compare them. Let’s assume a match. The next thing we have to check
for is a match for our range of outputs. Remember, there are 128 possible note values but
we’ve only got 12 outputs. What we’ve done is divided the possible outputs into octaves –
just like on a piano keyboard. The GETPORT subroutine does two things: it checks to see if
the note value in the packet matches our setting, and it converts that value to a zero to 11, or
to $FF (not valid for us) for later use.

GETPORT:
 temp1 = __PARAM1
 temp2 = __RAM(temp1)

 baseNote = ~Octave
 baseNote = baseNote >> 1
 baseNote = baseNote & 7
 baseNote = baseNote + Transpose
 baseNote = baseNote * 12
 IF temp2 < baseNote THEN
 temp2 = $FF
 ELSE
 temp2 = temp2 - baseNote
 IF temp2 > 11 THEN
 temp2 = $FF
 ENDIF
 ENDIF
 __RAM(temp1) = temp2
 RETURN

This subroutine expects an address to be passed to it, so the second line takes care of reading
the value from that address. After that, the Octave switches are read and the base note value
for the controller is calculated. One thing that may require a little extra explanation is the
Transpose constant. I have two keyboards, and the lowest C on both of them was actually in
octave three. By setting Transpose to 3, I was able to make the lowest key on my keyboards
correspond to octave zero on the controller.

Now we can compare the note sent with our own range. When it’s in range, a simple
subtraction will reduce the value to between zero and 11 – this corresponds to our output

Column #122: Even Mo’ MIDI

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 113

ports. If the note value is not in range, we’ll reset it to $FF; this serves as a flag to the
program that the note is of no use to us.

Let’s continue assuming that the controller was set such that pressing Middle C on a keyboard
would cause the note value to be found valid, hence set to zero. The last thing we need to do
is check the velocity (initial volume) value. Remember, most MIDI devices use the Note On
command with a velocity of zero to turn a note off. After a simple comparison we can call the
SETCTRL subroutine with the second parameter as 1 for on, 0 for off.

SETCTRL:
 temp1 = __PARAM1
 temp2 = __PARAM2

 IF temp1 < 8 THEN
 IF temp2.0 = 1 THEN
 temp2 = 1 << temp1
 CtrlLo = CtrlLo | temp2
 ELSE
 temp2 = 1 << temp1
 temp2 = ~temp2
 CtrlLo = CtrlLo & temp2
 ENDIF
 ELSE
 IF temp2.0 = 1 THEN
 temp1.3 = 0
 temp2 = 1 << temp1
 CtrlHi = CtrlHi | temp2
 ELSE
 temp1.3 = 0
 temp2 = 1 << temp1
 temp2 = ~temp2
 CtrlHi = CtrlHi & temp2
 ENDIF
 ENDIF
 RETURN

One of the nice things the BASIC Stamp does for us is hide details about controlling IO pins.
The fact of the matter is that the IO ports on the PIC and SX micros used to make BASIC
Stamp modules are only eight bits wide, but the design of PBASIC lets us treat the two ports
as one 16-bit entity.

That’s what we’re doing with SETCTRL – we’re treating two ports (RB and RC) as one big
group. The first thing we have to do is figure out which of the two ports is going to be

Column #122: Even Mo’ MIDI

Page 114 • The Nuts and Volts of BASIC Stamps (Volume 6)

affected, RB or RC. If the control port is less than eight, it’s RB, otherwise it’s RC. Then we
check to see if the port is going to be turned on or off.

Let’s stick with our Note On. In that case we will create a bit mask for the proper pin using
the shift left operator, then add (with OR) that mask to the current state of the outputs.
Turning a port off requires one additional step: we have to invert the mask (putting a zero into
the affected control port bit) then use AND to clear it while maintaining the current state of
the other pins.

Whew … that was a bit of work but what we have at the moment is an output on. If we
connect to an LED we’ll see it lit. Now, let’s release the key. Again, what we’ll probably get
is only two bytes:

3C 00

At Main we see that the byte is not a new status byte (bit 7 is clear) so we reload the running
status (currently $90), jump to Get_DB1 where we grab the $3C note value (in midiDB1),
then ultimately back to Note_On where we get $00 into midiDB2. Since the velocity value is
zero, we’ll call SETCTRL with 0 as the second parameter and the control port will be turned
off.

Okay, time to take a breath.

This is one of those programs where the explanation is far more complicated than the process.
That said, the process is not to be taken for granted and even after having code working for
over a week now, I find myself making small improvements to it.

Column #122: Even Mo’ MIDI

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 115

If you find yourself overwhelmed, but are interested in building a MIDI-compatible
controller, don’t fret – go do a Google search on MIDI and you’ll find all kinds of useful
information on the protocol and lots of projects people have done with small microcontrollers.
After reading some of the protocol explanations, come back to the program listing and have a
look. After a couple reads it will start to make sense; it did for me, anyway. When I went
into this project I expected it to be a little less involved – that was a silly assumption on my
part. All’s well now, though, and we have a base for all kinds of MIDI projects.

Have fun, do neat things with your MIDI controller and, as always, Happy Stamping! – SX/B
style….

Column #122: Even Mo’ MIDI

Page 116 • The Nuts and Volts of BASIC Stamps (Volume 6)

' ===
'
' File...... MIDI_Control.SXB
' Purpose... MIDI Digital Controller
' Author.... Jon Williams, Parallax EFX
' E-mail.... jwilliams@parallax.com
' Started...
' Updated... 18 APR 2005
'
' ===

' ---
' Program Description
' ---'
'
' "Listens" to a MIDI stream and will control outputs if Note value
' received is within the range of the device settings.
'
' Commands:
' -- Note Off ($80)
' -- Note On ($90)
' -- Controller message ($B0 $7B $00) = All off
' -- System reset ($FF) = All off

' ---
' Device Settings
' ---

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX
FREQ 20_000_000

' ---
' IO Pins
' ---

MidiIn VAR RA.0 ' from 6N138 interface
Octave VAR RA ' RA.1 - RA.3
CtrlLo VAR RB ' outs 0 - 7
CtrlHi VAR RC ' outs 8 - 11, chan select

' ---
' Constants
' ---

Transpose CON 3 ' octave offset
 ' -- for user keyboard

Column #122: Even Mo’ MIDI

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 117

' ---
' Variables
' ---

rxCount VAR Byte ' bits to receive
rxTimer VAR Byte ' bit timer for ISR
rxByte VAR Byte ' serial byte
rxHead VAR Byte ' available slot
rxTail VAR Byte ' next byte to read
rxBuf VAR Byte(16) ' circular buffer

midiStatus VAR Byte ' midi packet
midiDB1 VAR Byte
midiDB2 VAR Byte
runStatus VAR Byte ' running status byte
hasStatus VAR runStatus.7 ' we have a status byte
channel VAR Byte ' channel assignment
baseNote VAR Byte ' base note (C) of port 0

regAddr VAR Byte ' register address
temp1 VAR Byte ' parameters
temp2 VAR Byte

' ---
 INTERRUPT NOPRESERVE
' ---

' ISR is setup to receive N81, true mode.
'
' Notes:
' -- MIDI baud is 31.25 kB, 32 uS per bit
' -- Interrupt setup for 4x bit period for adequate sampling

ISR_Start:
 ASM
 MOVB C, MidiIn ' sample serial input
 TEST rxCount ' receiving now?
 JNZ RX_Bit ' yes if rxCount > 0
 MOV W, #9 ' start + 8 bits
 SC ' skip if no start bit
 MOV rxCount, W ' got start, load bit count
 MOV rxTimer, #6 ' delay 1.5 bits

RX_Bit:
 DJNZ rxTimer, ISR_Exit ' update bit timer
 MOV rxTimer, #4 ' reload bit timer
 DEC rxCount ' mark bit done
 SZ ' if last bit, we're done
 RR rxByte ' move bit into rxByte
 SZ ' if not 0, get more bits

Column #122: Even Mo’ MIDI

Page 118 • The Nuts and Volts of BASIC Stamps (Volume 6)

 JMP ISR_Exit

RX_Buffer:
 MOV FSR, #rxBuf ' get buffer address
 ADD FSR, rxHead ' point to head
 MOV IND, rxByte ' move rxByte to head
 INC rxHead ' update head
 CLRB rxHead.4 ' keep 0 - 15
 ENDASM

ISR_Exit:
 BANK $00
 RETURNINT 160 ' 8 uS @ 20 MHz

' ===
 PROGRAM Start
' ===

' ---
' Subroutine Declarations
' ---

GETBYTE SUB 1 ' pass addr of byte
GETCHANNEL SUB ' read channel from sw
GETPORT SUB 1 ' get output port
SETCTRL SUB 2 ' set/clear output port

' ---
' Program Code
' ---

Start:
 TRIS_A = %1111 ' Serial + Base select
 TRIS_B = %00000000 ' lo outs
 TRIS_C = %11110000 ' hi outs, channel in
 OPTION = $88 ' Interrupt on, 1:1

Main:
 IF hasStatus = 0 THEN ' running status?
 GETBYTE @midiStatus ' no, get status
 IF midiStatus.7 = 0 THEN Main ' skip orphan data

Check_Sys:
 IF midiStatus >= $F0 THEN Sys_Cmd ' handle system command
 runStatus = midiStatus ' save regular status
 ENDIF

Get_DB1:

Column #122: Even Mo’ MIDI

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 119

 midiStatus = runStatus ' refresh status byte
 GETBYTE @midiDB1 ' get first data byte
 IF midiDB1.7 = 1 THEN ' new status byte?
 midiStatus = midiDB1 ' yes, reposition
 GOTO Check_Sys
 ENDIF

Do_Command:
 temp1 = midiStatus & $F0 ' isolate command
 IF temp1 = $80 THEN Note_Off ' jump to cmd handler
 IF temp1 = $90 THEN Note_On
 IF temp1 = $A0 THEN Aftertouch
 IF temp1 = $B0 THEN Controller
 IF temp1 = $C0 THEN Pgm_Change
 IF temp1 = $D0 THEN Chan_Pressure
 IF temp1 = $E0 THEN Pitch_Wheel
 GOTO Main

' *** MIDI Command Processing ***

Note_Off:
 GETBYTE @midiDB2 ' get velocity
 IF midiDB2.7 = 1 THEN ' check for status byte
 midiStatus = midiDB1
 GOTO Check_Sys
 ENDIF
 GETCHANNEL
 temp1 = midiStatus & $0F ' isolate channel
 IF temp1 = channel THEN
 GETPORT @midiDB1 ' check note for range
 IF midiDB1 < 12 THEN ' if in range...
 SETCTRL midiDB1, 0 ' yes, turn port off
 ENDIF
 ENDIF
 GOTO Main

Note_On:
 GETBYTE @midiDB2 ' get velocity
 IF midiDB2.7 = 1 THEN ' check for status byte
 midiStatus = midiDB1
 GOTO Check_Sys
 ENDIF
 GETCHANNEL
 temp1 = midiStatus & $0F ' isolate channel
 IF temp1 = channel THEN
 GETPORT @midiDB1 ' check note for range
 IF midiDB1 < 12 THEN ' if in range...
 IF midiDB2 > 0 THEN ' velocity > 0?
 SETCTRL midiDB1, 1 ' yes, turn port on

Column #122: Even Mo’ MIDI

Page 120 • The Nuts and Volts of BASIC Stamps (Volume 6)

 ELSE
 SETCTRL midiDB1, 0 ' no, turn port off
 ENDIF
 ENDIF
 ENDIF
 GOTO Main

Aftertouch:
 GETBYTE @midiDB2 ' get pressure byte
 IF midiDB2.7 = 1 THEN ' check for status byte
 midiStatus = midiDB1
 GOTO Check_Sys
 ENDIF

 ' aftertouch processing here

 GOTO Main

Controller:
 GETBYTE @midiDB2 ' get second data
 IF midiDB2.7 = 1 THEN ' check for status byte
 midiStatus = midiDB1
 GOTO Check_Sys
 ENDIF

 IF midiDB1 = $7B THEN ' all off?
 CtrlLo = %00000000
 CtrlHi = %0000
 runStatus = $00
 ENDIF

 GOTO Main

Pgm_Change:
 ' patch already in midiDB2
 GOTO Main

Chan_Pressure:
 ' pressure already in midiDB2
 GOTO Main

Pitch_Wheel:
 GETBYTE @midiDB2 ' get MSB of pitch
 IF midiDB2.7 = 1 THEN ' check for status byte
 midiStatus = midiDB1
 GOTO Check_Sys

Column #122: Even Mo’ MIDI

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 121

 ENDIF

 ' convert pitch bytes to 16-bit var
 '
 midiDB1.7 = midiDB2.0
 midiDB2 = midiDB2 >> 1

 GOTO Main

Sys_Cmd:
 IF midiStatus = $F0 THEN ' handle SysEx bytes
 GETBYTE @midiDB1
 IF midiDB1 = $F7 THEN Main ' wait for end ($F7)
 runStatus = $00
 GOTO Sys_Cmd
 ENDIF

 IF midiStatus = $FF THEN ' reset?
 CtrlLo = %00000000
 CtrlHi = %0000
 runStatus = $00
 ENDIF
 GOTO Main

' ---
' Subroutine Code
' ---

' Use: GETBYTE @aVar
' -- if data is in buffer, the next byte is move to 'aVar'

GETBYTE:
 regAddr = __PARAM1 ' save return address

Buf_Wait:
 IF rxHead = rxTail THEN Buf_Wait ' anything in buffer?

 temp1 = rxBuf(rxTail) ' get byte at tail
 INC rxTail ' update tail position
 rxTail.4 = 0 ' keep 0 - 15
 __RAM(regAddr) = temp1 ' move byte to target
 RETURN

' Use: GETCHANNEL
' -- reads channel inputs and refreshes 'channel'

GETCHANNEL:
 channel = ~CtrlHi ' get channel number

Column #122: Even Mo’ MIDI

Page 122 • The Nuts and Volts of BASIC Stamps (Volume 6)

 SWAP channel
 channel = channel & $0F
 RETURN

' Use: GETPORT @note
' -- validates note in range of device setting
' -- returns 0 - 11 if in range
' -- returns $FF if out of range

GETPORT:
 temp1 = __PARAM1 ' save address
 temp2 = __RAM(temp1) ' get current value

 baseNote = ~Octave ' get base octave value
 baseNote = baseNote >> 1
 baseNote = baseNote & 7 ' mask out unused bits
 baseNote = baseNote + Transpose ' adjust for instrument
 baseNote = baseNote * 12 ' calculate base (C) note
 IF temp2 < baseNote THEN ' below range?
 temp2 = $FF ' yes - mark OOR
 ELSE
 temp2 = temp2 - baseNote ' adjust for upper end
 IF temp2 > 11 THEN ' above range?

 temp2 = $FF ' yes - mark OOR
 ENDIF
 ENDIF
 __RAM(temp1) = temp2 ' move port or OOR to RAM
 RETURN

' Use: SETCTRL ctrlPort, portVal
' -- sets 'ctrlPort' (0 - 11) to 'portVal.0'

SETCTRL:
 temp1 = __PARAM1 ' save port
 temp2 = __PARAM2 ' save status

 IF temp1 < 8 THEN ' lower port?
 IF temp2.0 = 1 THEN
 temp2 = 1 << temp1 ' create bit mask
 CtrlLo = CtrlLo | temp2 ' activate port
 ELSE
 temp2 = 1 << temp1 ' create bit mask
 temp2 = ~temp2 ' invert mask
 CtrlLo = CtrlLo & temp2 ' clear port
 ENDIF
 ELSE
 IF temp2.0 = 1 THEN
 temp1.3 = 0 ' subtract 8 from port

Column #122: Even Mo’ MIDI

The Nuts and Volts of BASIC Stamps (Volume 6) • Page 123

 temp2 = 1 << temp1 ' create bit mask
 CtrlHi = CtrlHi | temp2 ' activate port
 ELSE
 temp1.3 = 0 ' subtract 8 from port
 temp2 = 1 << temp1 ' create bit mask
 temp2 = ~temp2 ' invert mask
 CtrlHi = CtrlHi & temp2 ' clear port
 ENDIF
 ENDIF
 RETURN

