Interface for PSC

Prerequisite

The following example assumes you are working with VB Express to Stamp template.

The PSC has as many as 32 channels each channel is controlled in the same exact way. That fact makes designing this application very simple and compact. By designing just one User Control we can create a form that contains only the servo controllers we intend to use and we can use as many as we want without any additional code.

The events of our user control set and write the parameters we need to send to the PSC. The mouse down event tells us which servo is currently being controlled and assigns the channel number to the “channel” variable. The mouse up event passes the position and ramp values to the serial output string as low_byte, high_byte and ramp. There is a little additional code that gives us visual information in the main form of our application.

The following code is only a working example of what can be done. In your final project you can add enhancements and make changes to whatever suits you best

User Control

As the user control is the core component of this application and contains the most code that is where we will start.

Add a User control to the VB Express to Stamp template and name the User control Servo.

Before we add anything to our user control adjust the following properties of the blank form. Size=60,260 and BorderStyle=Fixed3D.

Now add a Track bar and adjust the following properties

Maximum=1000

Minimum=500

Orientation=Vertical

Size=45,170

LargeChange=1

TickFrequency=10

TickStyle=Both

Value=750

Add a NumericUpDown below the Track bar with the following properties

Maximum=63

Size=34,20

Add a Label below the NumericUpDown with the following properties

Text=750

Lastly place another Label above the Track bar leaving the properties at their default.

Position the controls how you like them then switch to User control code view.

User Control code

First declare the variables for use with our user control

Private hi_value As Byte

Private lo_value As Byte

Private ramp_value As Byte
The Track bar mouse up event has a raise event instruction called Valuechanged that will fire an event in the main form that writes the data to the PSC so we will declare it here.

Public Event ValueChanged(ByVal sender As Servo, ByVal e As System.EventArgs)
Then as each control loads we will label it with the channel number subtracting 1 to bring it in line with the PSC channel number

Private Sub Servo_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

Label2.Text = "Chan " & Val(Microsoft.VisualBasic.Right(Me.Name, 1))- 1

End Sub
Next we have the three properties our control will return to the main form lo_byte hi_byte and ramp.

Public ReadOnly Property hi_byte() As Byte

 Get

 Return hi_value

 End Get

End Property
Public ReadOnly Property lo_byte() As Byte

 Get

 Return lo_value

 End Get
End Property
Public ReadOnly Property ramp() As Byte

 Get

 Return ramp_value

 End Get

End Property
Finally the three Track bar mouse events that pass channel, position and ramp information to the main form and the labels that provide visual information.

Private Sub TrackBar1_MouseDown(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles TrackBar1.MouseDown

 channel = Val(Microsoft.VisualBasic.Right(Me.Name, 1)) – 1

End Sub
Private Sub TrackBar1_MouseUp(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles TrackBar1.MouseUp

 hi_value = TrackBar1.Value >> 8

 lo_value = TrackBar1.Value And &HFF
 ramp_value = NumericUpDown1.Value

 RaiseEvent ValueChanged(Me, New System.EventArgs)

End Sub
Private Sub TrackBar1_Scroll(ByVal sender As Object, ByVal e As System.EventArgs) Handles TrackBar1.Scroll

 Label1.Text = TrackBar1.Value

End Sub
Before we can use our new control we have to declare two global variables in Module 1 and write the Valuechanged event in Form 1

Module 1 code

Public channel As Byte

Public sData As Byte() = New Byte(7) {&H21, &H53, &H43, channel, &H0, &H0, &H0, &HD}
The byte variable channel will keep track of the currently selected channel

The byte array sData is the string to be written to the PSC. The first three elements are pre-assigned the ASCII values for “!SC”. Element 3 is assigned the byte value for channel. Element 4 will contain the ramp value and elements 5 and 6 will contain the position low byte and high byte. Element 7 is pre-assigned the carriage return value.

Important Before continuing Build or Rebuild the project

Add the User Controls

Return to Form 1 in design view and you should see our user control in the toolbox. Drag three of the controls onto Form 1.

Form 1 code

Apart from access to the Communications (Form 2) remove all other code in Form 1

Private Sub Servo_ValueChanged(ByVal sender As Servo, ByVal e As System.EventArgs) Handles _

 Servo1.ValueChanged, Servo2.ValueChanged, Servo3.ValueChanged

 Dim activeControl As Servo

 activeControl = CType(sender, Servo)

 sData(4) = activeControl.ramp

 sData(5) = activeControl.lo_byte

 sData(6) = activeControl.hi_byte

 If _port.IsOpen Then

 _port.Write(sData, 0, 8)

 End If

End Sub
The one thing to remember is that for each servo user control added to Form 1 it must be included in the Handles argument of the Valuechanged event.

For example

1 servo

Private Sub Servo_ValueChanged(ByVal sender As Servo, ByVal e As System.EventArgs) Handles _

 Servo1.ValueChanged
2 servos

 Private Sub Servo_ValueChanged(ByVal sender As Servo, ByVal e As System.EventArgs) Handles _

 Servo1.ValueChanged,Servo2.ValueChanged
3 servos

 Private Sub Servo_ValueChanged(ByVal sender As Servo, ByVal e As System.EventArgs) Handles _

 Servo1.ValueChanged,Servo2.ValueChanged,Servo3.ValueChanged
And so on.

All the hilighted code can be copied and pasted into the VB IDE

Run and test.
