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Programming the Parallax Propeller using Machine Language 
 
An intermediate level tutorial by deSilva © 2007 
Version 1.21  2007-08-21 
 
 
Preface 
 
There are permanent requests for guidance to the Propeller Machine 
Language. Of course everything is well explained in the excellent 
Parallax documentations; the didactical accent of Parallax however 
seems to be on how to use SPIN with the hardware features of the 
Propeller. 
 
But the advanced programmer recognizes soon (it takes ½ hour up to 
a fortnight) that he has to make his way to machine language 
programming when he wants to accomplish anything more than 
blinking LEDs or applying prefabricated “objects”.  
 
This tutorial was not written for the beginner: You need already a 
good understand of the Propeller’s architecture and some 
background from successful SPIN programming.  Of course you also 
know how to work the PropellerTool (=the IDE) and maybe Ariba's 
most useful PropTerminal. 
 
My intention is not to “start at the very beginning”, but to help 
you over the first frustrations caused by the  machine language 
peculiarities of the Prop. 
 
I only lately discovered that for more than a year now Phil 
Pilgrim has prepared his "Propeller Tricks and Traps" 
http://forums.parallax.com/forums/attach.aspx?a=14933 in a quasi 
complementary way to this tutorial. You will greatly profit from 
his work after you made it through the first three or four 
chapters of this tutorial! Some of his "tricks" will surely find 
their way into my still unwritten "Best Practices" Chapter!    
 
As I have programmed my first micro processor 30 years ago – and 
that was not the first machine code I got into contact with – I 
may seem biased and unsympathetic from time to time. Please excuse 
that! I am open to all suggestions how I can improve this 
tutorial: Just add a posting or send a PM! 
 
And now: Have Fun! 
 
Hamburg, in August 2007 
deSilva  
 
 
 
Versions 
1.11 Issues wrt layout fixed; starting an Appendix for SPIN 
1.20 Major misunderstanding wrt MUX-instruction fixed 
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Chapter 1: How to start 
 
As the architecture of the propeller differs considerably from 
other controllers, I shall shortly repeat its main features and 
components. This is of course well laid down in the Propeller Data 
Sheet and Manual, and – please do not look too disappointed! – 
throughout this tutorial I shall present you little more than what 
you will find in the excellent official documentation. But I shall 
present it in a different way. 
 
Sidetrack A: What the Propeller is made of 
There is 32k ROM, with little interest to us during the first chapters. Plus: 
 - 32 KB RAM 
 - 8 processors („COGs“) each running at 20 MIPS 
 - a 32 Bit I/O Port (“INA, OUTA, DIRA”) 
 - a system clock („CNT“) 
           - 8 semaphores (“LOCKs”) 
And in each of the 8 COGs: 
          - 2 KB (512 x 32-bit cells) ultra fast static RAM 
          - 2 timers/counters (“CFGx”, “PHSx”, “FRQx”, where x = A or B) 
          - a video processor (“VCFG”, “VSCL”, connected to Timer A) 
 
Note what this adds up to: 
160 x 32-bit MIPS -  48 kB static RAM -  16 x 32-bit timers/counters -   8-fold video logic 
 
When you belong to the 75% more visually oriented persons in the world, you may feel more 
comfortable with the “architectural diagram” of the chip in this Diagram 1 
 

 
 
If not already done, take your time to study ALL DETAILS!. (Note: The diagram is web-linked to a 
hires pdf. Or simply visit the Parallax page!) 
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When programming in machine language you must generally be very 
clear with all hardware concepts: The COG-HUB interface, exact 
timing, working of timer/counters, the “bootstrap”. I shall 
include sections explaining some of those concepts from time to 
time as “sidetracks” 
 
Sidetrack B: What happens at RESET/Power On? 
 

 A part of the ROM is copied into “COG” #0: This is the Bootstrap Loader. It looks at pins 30+31 
and tries to serially communicate with the propeller IDE or someone else using the same protocol. 
(Note: This protocol is open available, but its use is nevertheless a little bit tricky) The data 
received from the IDE are then stored into HUB-RAM. Optionally they can also be moved into an 
EEPROM connected at pins 28+29. 
 
However this connection may fail! 
In that case: 
 

 The lower 32 kB of a serial EEPROM, connected to pins 28+29 are moved into RAM. 
 
If this also fails the Propeller goes idle until the next reset or a new Power-On. Otherwise we now 
have some defined data in the HUB RAM – copied from the EEPROM or received through the 
serial connection - that are assumed to be a PROGRAM! Alas, the Propeller cannot execute 
programs from the HUB-RAM! 
 

 During the next bootstrap step, another part of the ROM - the SPIN-Interpreter (Size: 2 KB!) - is 
copied into processor (=„COG“) #0, and – finally! - this program begins – from  HUB memory 
address 16 onwards - to interpret what it assumes is translated SPIN code! 
 
Uff! 
 
Let’s talk about processors – called “COGs” in Propeller lingo. 
What do they do? There is an always correct answer: They execute 
instructions! A standard processor gets these instructions from a 
globally addressed memory (in a so called “von-Neumann-
architecture”) or from a dedicated instruction memory (in a so 
called “Harvard-architecture” – this is the way PICs and AVRs are 
organized!). Having two memories allows to “tune” them according 
to specific needs (e.g. non-volatile, read-only, fast access 
time), and also to access them in parallel! 
 
A Propeller processor gets its instructions from its internal COG-
memory, space limited to 496 instructions! Now, please don’t rush 
to give your Prop to your nephew to play with! Remember, you have 
8 of those COGs and the COG-memory is RAM, so it can be reloaded! 
Furthermore, we have 32-bit instructions, giving them much more 
power than a common 8-bit instruction has.   
 
So it seems we have a flawless von-Neumann architecture, where 
instructions and data lay mixed in one memory. Each instruction is 
32 bits long and the data – is also 32 bits long. Now this is 
funny! Does memory not consist of bytes?? 
 
No, it does not! It consists of tiny electrical charges caught in 
semiconductor structures ☺  And it is SOMETIMES packaged in sizes 
of eight. COG  memory is packaged in sizes of 32. Period! 
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We best call those packages “cells” to avoid misunderstandings! So 
we have 496 multi-purpose cells, some will contain our program, 
some data – there are additional 16 cells used as I/O registers; 
we come to that later. 
 
I know you are now absolutely crazy to have your first instruction 
executed, but be patient! You have to first learn how your 
instruction will have its way into a cell of one of the COGs. 
 
Sidetrack C: Loading COGS 
We left our last sidetrack with the SPIN interpreter running in COG #0, starting to read things from 
the HUB-memory. This has to be SPIN byte code, generated by the Propeller IDE, nothing else! So 
what we need is a SPIN-instruction that will load our bespoken MACHINE-instruction into the 
“machine”, i.e. into an internal cell of a COG. Luckily we already know something like that: It is 
called COGNEW and it starts a new version of the SPIN Interpreter in a new COG, to interpret a 
specific SPIN Routine. 
 
Heh, but this is not what we want to do!? Right! But for reasons known only to the inventors loading 
our own machine code into a COG is also called COGNEW. The first parameter is a HUB address, 
the second parameter an arbitrary value we can use ad libitum. 
 
  COGNEW(@myCode,0) 
 
This SPIN instructions initiates the copying of nearly 2000 bytes, beginning at @myCode into the 
cells of the next available COG. This is a basic hardware feature of the Propeller (Otherwise, how 
would it start the bootstrap routine  in the first place!), needing no supervision of any kind. One 
consequence of being such elementary is that it will always load a COG completely, unaware of 
the meaning or use of those bits it copies... 
Note that this will thus always take 500*16/80_000_000 = 100 micro seconds, but the SPIN 
interpreter will continue his task meanwhile in parallel, performing up to 20 SPIN instructions 
 
Note also that both parameters of COGNEW must be multiples of 4. I know you will forget that 
immediately, but you have been warned!  
 
I can hear you crying in despair: “BUT WHAT ABOUT MY CODE?” Please! Be patient, we come to 
that very soon. 
 
 
The Propeller IDE knows of two different languages: SPIN and 
Propeller Assembly (or “machine code”). Machine code is 
encapsulated in the DAT sections, where no SPIN code is allowed. 
For reasons explained later, we will ALWAYS start our machine code 
sections with 
  ORG 0 
and end them with 
  FIT 496 
Both are NOT machine instructions. They are called assembly 
directives, and there are very few of them; in fact there is none 
more but RES. 
 
In the DAT section we can use the names of all defined constants 
or variables of the object as long as it makes sense. We most 
notably can use the names of all I/O “features” aka I/O registers: 
INA, OUTA, DIRA, VCFG, VSCL, PHSA, PHSB, FRQA, FRQB, CFGA, CFGB.  
 
So let’s start! 
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PUB ex01 
    cognew(@ex01A, 0) 
 
DAT 
        ORG  0 
ex01A 
        MOV  DIRA,   #$FF   '(Cell 0) Output to I/O 0 to 7 
        MOV  pattern, #0    '(Cell 1) Clear a “registers” 
loop 
        MOV  OUTA, pattern  '(Cell 2) Output the pattern to P0..P7 
        ADD  pattern, #1    '(Cell 3) Increment the „register“ 
        JMP #loop           '(Cell 4) repeat loop      
 
pattern LONG $AAAAAAAA      '(Cell 5)       
        FIT 496 
 
Before you run this program, make sure you have nothing expensive 
connected to pins 0 to 7! The Hydra has an LED at pin 0 which will 
light up and an audio jack at pin 7, which is very convenient. 
 
Before we “look” at the pins using a 'scope or a frequency 
counter, we do some quick calculations: The (default) RCFAST clock 
is 12 MHz. With a few notable exceptions each machine instruction 
takes 4 clocks (Keep this in mind!), so we have 333 
ns/instruction: MOV, ADD, JMP. Thus the loop takes exactly 1 us. 
We should now get the following readings: 
 
 P0 : 500 kHz 
 P1 : 250 kHz 
  ... 
 P7 : 3.9 kHz 
 
Deviations around 3% will be normal with the RC-clock. 
 
This is fast! And imagine, we can run the Prop even 7 times 
faster! 
 
Now, lets "dissect" our program!  
We see some “move-instructions” called MOV; it has two 
“parameters” (or operands). We call the left hand one “dest” and 
the right hand one “source”. So obviously things are moved from 
right to left: This is exactly as you write your assignments in 
SPIN (or in most other languages). 
 
When you have already got experience with a machine language of a 
common micro processor (8051, 68000, AVR, PIC,..) you will now 
expect to learn something about “addressing modes” , “registers” 
etc. etc. You will indeed! 
 
There are two schools of thinking: One (that’s me and the Data 
Sheet!) says: there are 512 registers in a COG. The other school 
(that’s the rest of the world) says: There are no registers at all 
in a COG, except 16 I/O registers memory mapped to addresses 496 
till 511. 
 
It is not a problem if you do not follow my way of thinking, you 
can easily translate it into your own view of the world. 
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So let’s look at the MOV-instruction in Cell 2: It copies the 
content of register 5 aka pattern into register $1F4 aka OUTA. The 
MOV-instruction in Cell 0 copies the number 0 into register 5. 
These are the two addressing modes available in the Prop machine 
language: register addressing and immediate addressing. (But you 
will see soon that this is only 97% of the truth: There are some 
instructions that can move data to and from HUB memory!) 
 
Each and every instruction is able to perform this “immediate 
addressing” on its right hand operand. You indicate this by an "#" 
symbol in front of this operand, although it is logically a part 
of the operation code. 
 
What have we else? Ah, there is also an ADD-instruction! Obvious 
what it does: It adds a 1 to register 5.  
 
And nothing more obvious than JMP, however … Why do we have this 
funny "#" here, too?? A typo? 
 
No - think straightforward! When we used pattern in the MOV and 
ADD instruction, we wanted the processor to LOOK INTO that 
register to load or store that value. When we write #1 (in ADD), 
we want the processor to use this very value! 
 
So what do we want the processor to do when jumping? NOT look up 
some register, but just jump to this very cell number we stated: 
#loop. 
 
But! We also could ask the processor to jump to some “computed” 
destination we stored into a register. This is generally called 
indirect jumping, is a very important concept, and essential for 
all subroutine calls. 
 
It is very easy for the beginner to forget the "#", and as this is 
correct code it will not be detected automatically. If your 
program terminates in a funny way, first look at all your JMPs for 
this mistake! 
 
The last line in the program looks familiar: This is just the way 
we used the DAT section before. Defining and presetting variables. 
But note that after this DAT section has been copied into a COG 
(via the COGNEW instruction) the processor looks at it in a 
different way than the SPIN interpreter does at the “archetype” in 
the HUB! For the COG it is “register 5”; look for yourself what it 
can be in HUB: just press F8 and study the memory map. I set 
pattern to $AAAAAAAA so that you can find it easier. 
 
To finish this first chapter – and before going on to explain more 
instructions and programming techniques – we shall memorize the 
structure of the 32 bits of an instruction: 
 
   6 Bits: instruction or operation code (OPCODE) 
   3 Bits: setting flags (Z, C) and result 
   1 Bit:  immediate addressing 
   4 Bits: execution condition 
   9 Bits: dest-register 
   9 Bits: source register or immediate value 
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You by no means shall learn this by heart! It shall rather give 
you an impression what’s all inside a tiny instruction – and 
what’s not, so you can also understand some constraints… 
 
You see that the range of an immediate value is restricted 
(between 0 and 511). This is no limitation for JUMPs, as this is 
exactly the size of the whole COG. But if you want to set or add 
other values you have to preset them into a dedicated cell, as we 
did in the example (LONG $AAAAAAAA). Funnily, this takes no 
additional time! You may be accustomed from other processors, that 
immediate addressing is FAR more efficient than direct addressing. 
This is not so with the Prop, as direct addressing is just – 
register addressing!   
 
And don’t worry about the things you do not yet understand, 
enlightenment comes in the next chapters. 
 
 
 
Interlude 1: the Syntax of the Propeller Assembly Language 
 
You have swallowed the first machine language program ex01 – have you already digested it? You 
should have questions, when you had never seen such code before. 
 
The way you write machine language in the form of an assembly program is very similar through all 
computers, but not equal. There even exists a standard how to write assembly code, where few 
are aware of and nobody cares for. 
 
The basic principle is to write one instruction per line, elements of this instruction as: labels, 
opcode, operands, pre and post-fixes are separated either by blanks, tabs or commas. A comma is 
generally used when the element “left to it” can contain blanks in a natural way, e.g. when writing a 
constant formula you should like to have this freedom… 
 
You can also define and preset data cells. Generally such presets can be “chained” – separated by 
commas for the reason stated above. SPIN programmers should be at ease  here as everything is 
exactly as in SPIN. 
 
The same holds for comments. 
 
There is generally something called “directives”, which do not lead to code or data but rather tell 
the assembler to “arrange” things. A typical “directive” would be a constant definition, but this is 
independently done in the CON section. 
 
“Macro-Assemblers” can have up to a hundred of directives; but there are just three directives for 
the Propeller: 
 
ORG 0   ‘ start over “counting cells” at 0 
FIT n   ‘ rise alarm when the recent cell count surpasses n 
RES n   ‘ increment the cell count by n without allocating HUB memory 
 
Some important rules: 

- Use ORG with 0 only 
- Don’t try to allocate instructions or data after you used RES 
- Always finish with FIT 496 
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If you are one of those single minded technocratic bean counters like me, you might be interested 
in what is called “syntax” of the assembly language. There is a fine system for 50 years now for 
such things, called BNF (“Backus-Naur Formalism”). 
 
 
directive     ::= ORG 0 | FIT constant | resDirective 
resDirective  ::= [label] RES constant 
label         ::= localLabel | globalLabel 
localLabel    ::= ":"identifier 
globalLabel   ::= identifier 
number        ::= decimal | hexadecimal | binary | quaterny 
constant      ::= constantName | number | constantFormula 
constantName  ::= label | nameFromCON 
 
instruction   ::= [ label ] 
                  [ prefix ] opcode [ dest "," ] source [postfix]* 
prefix        ::= IF_C | … 
opcode        ::= MOV | … 
dest          ::= constant 
source        ::= [ "#" ]constant 
postfix       ::= WZ | WC | NR 
 
dataItem      ::= [ label ] size constant [ "["constant"]" ] 
                  [ ","constant [ "["constant"]" ] ]* 
size          ::= LONG | WORD | BYTE 
 
program       ::=  
               [ ORG 0 ] 
               [ label | instruction | dataItem ]* 
               [ resDirective ]* 
               [ FIT constant ]   
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Chapter 2 
 
Technically speaking, the Prop has a “two address instruction set” 
sporting a systematic “option for immediate addressing” (0…511). 
There are no other systematic addressing modes as known from other 
processors (indexed, pre/post-in/decrementing). Should we need 
this (and we shall!) , we shall have to “modify” instructions, in 
that we compute the requested address and “implant it” into an 
existing instruction. This has been turned down by computer 
science for decades. The great Edsgar Dijkstra is supposed to have 
written an article titled “Self modifying code considered 
harmful”, but the manuscript has got lost. The Propeller however 
cannot live without this; there are even three handy instructions 
to support this, called MOVI, MOVS and MOVD. We will work through 
examples in Chapter 5. 
 
 
Sidetrack D: Who is afraid of OUTA? 
Reconsidering our first code example ex01: If we understand this COG concept of parallel 
processors as displayed in Diagram 1 correctly, there is more going on in the chip than just the 8-
bit counter in our COG. All right we have made sure that we can play with pins 0 to 7 but the 
incrementing also sets higher bits in OUTA……   
The rules are: 
-          A physical pin is enabled for output, when the corresponding DIRA bit  
           in at least one  COG is set to 1. 
- A physical pin, enabled for output, is set to high when the corresponding OUTA bit 
           in at least one COG is set to 1. 
 
Well, nearly... 
The correct second part should read: 
- A physical pin, enabled for output, is set to “high” when the corresponding OUTA bit 
           in at least one of the COGS where it is enabled for output is set to 1. 
 
Which just means everything is as expected. When still in doubt consult the hi-res of Diagram 1; 
the relevant AND- and OR-gates are drawn in great detail!  
 
 
So we now can communicate with “outer space” via ear-offending 
square waves, but how can we get into contact with the “inner 
space”, the fat 32 kB HUB memory? How can we execute instructions 
from that memory or access data? 
 
Did you listen carefully? The COG-Processors fetches its 
instructions from COG memory. No exceptions! That means, IF we 
want to have larger programs than fitting there we shall have to 
reload them. This is tricky and how to do it efficiently will be 
part of the "Master Level Tutorial" ☺ You might find some cryptic 
remarks in the Parallax Forum: Look for "LMM: Large Memory Model". 
 
But reading or writing data to and from HUB is a snap. There is a 
set of 6 specific instructions for it (BTW: This is labelled to be 
a "load-store-architecture" in Computer Science lingo):  
 
- WRBYTE und RDBYTE 
- WRWORD und RDWORD 
- WRLONG und RDLONG 
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to be used quite straightforward: 
 
   RDBYTE cellInCOG, hubAddress 
 
But how do we know of any appropriate HUB address? There are two 
possibilities: 
 - 1) You can provide a parameter with COGNEW, which 
conventionally is a pointer to some HUB memory, perfect to be used 
with e.g. RDBYTE. This parameter is “automatically” copied into 
the cell 496 of the loaded COG and can be symbolically referenced 
by the name PAR. (Remember: It has to be a multiple of 4!) 
 
- 2) The second option is more tricky. Remember that the code to 
be loaded into a COG is always part of the HUB memory first (lets 
call this the “archetype”, as we already did above). So it can be 
modified by SPIN instructions. (Imagine: It is quite simple to 
write an Assembler in SPIN!) But in any case we can set some of 
the DAT variables before we load it into its COG. 
 
Confused? Here is the deconfusing example 2:  
 
VAR 
    LONG aCounter 
 
PUB ex02 
    patternaddr := @aCounter 
    COGNEW(@ex02A, 0) 
    COGNEW(@ex02B, @aCounter) 
    REPEAT 
       aCounter++ 
       
DAT 
        ORG    0 
ex02A 
        MOV    DIRA, #$FF  ' 0..7 for output 
:loop 
        RDLONG OUTA, patternAddr 
        JMP    #:loop 
patternAddr 
        LONG   0          ' address of a communication variable 
                          ' must be stored here before loading COG        
 
        ORG    0 
ex02B 
        MOV    DIRA, altPins ' 8..15 for output 
:loop 
        RDLONG r1, PAR 
        SHL  r1, #8  
        MOV  OUTA, r1 
        JMP    #:loop 
 
altPins LONG $FF<<8 
r1      LONG 0 
 
 
I thought this was a place as good as any place to introduce some 
new concepts. Methods (1) and (2) to establish communication 
should be clear as daylight now. Of course the second COG we 
activate has to avoid the pins 0 to 7, so we shift its activity 



 
Programming the Parallax Propeller using Machine Language V12.doc     Version 1.21                 Page 11 of 40    

area 8 pins up. Making such small changes can have unforeseen 
consequences to machine code: It now is no longer possible to move 
the output pattern directly into OUTA, we have to “shift” it and 
meet a new instruction for this. In fact there is a complete 
family of similar instructions, consisting of: 
 

SHL : left shift, filling zeroes 
SHR : right shift, filling zeroes 
SAR : arithmetic right shift, filling bit 31 
ROR : rotate right (i.e. bit 0 connected to bit 31)  
ROL : rotate left (i.e. bit 0 connected to bit 31) 
RCL : rotate with carry left 
RCR : rotate with carry right 

 
We also have to introduce a new intermediate cell “r1” – this is 
the typical use of a “register”, just needed between two or three 
instructions and then to be forgotten. It is best to use a “name 
convention” for such kinds of cells, especially when your programs 
become larger. “r1” … ”r99” or “A”… “Z” - but you should stay 
consistent through all your programs. 
 
Have you noticed the “:” ? Surely, but what does it mean? In fact 
“nothing at all”. It just helps to be forgotten after its use, so 
this name can be re-used in another context. This is very handy 
for the less imaginative who tends to call his labels “lab”, 
“loop”, “rep” or such. The scope of these “local” names is from a 
“global” label to the next “global” label. 
 
Something you will not have noticed immediately is, that the 
RDLONG takes much more time than 4 clocks. 
 
 
Sidetrack E: Why the HUB is called the HUB 
Trivial as it sounds: Nearly every aspect of the Propeller is displayed in its basic "architectural 
diagram 1". You see the HUB and the 8 COGs: The HUB turns and meets a COG each 2 clock 
cycles, adding up to a cycle time of 16 clock ticks until it returns to the same COG. 
 
The science of parallel processing - older than 30 years – has devised a lot of communication 
schemes between parallel devices: busses, cross bars,… The COG mechanism of synchronized 
time slots is the most basic (and stable!) one. It resembles a “bus token protocol” in general 
communication theory. And it is a waste of bandwidth… 
 
But we do not want to criticize, we want to understand. So each 16th  clock cycle a COG is able to 
read or write to the “main memory”. Whenever it tries to do this  “out of sync”, it has to wait. This is 
why the timing of the RD.., WR.., and other HUB-instructions is  so imprecise: they take 7 to 22 
clock ticks, depending on where the COG-wheel is, at the time this instruction has been issued 
inside a COG. 
 
Once you succeed in  a memory transfer, you are “synchronized”, i.e. you know you will be 
connected exactly 16 ticks later. That leaves you 2 intermediate instructions only (= 8 ticks  plus 7+ 
ticks) to again read or write to HUB memory…   
 
 
Well, get out your ‘scope again or connect the loudspeakers to pin 
7! What has become of our fine 500 kHz? Oh dear! You understand, 
why? 
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Of course we can as well write back into the HUB memory, the 
instruction is WRLONG (or WRWORD, WRBYTE respectively 
 
   WRLONG cogCell, hubAddress 
 
Note that the operands are in the same order as with RDLONG. Which 
means the dataflow is now from left to right! This is the only 
exception in the system and for that reason a common source of 
confusion. 
 
When in doubt I memorize this: It is possible to write to and read 
from the first 512 bytes in HUB-memory using "immediate 
addressing"! Though this is rarely used, it is part of the general 
"system". And "immediate" values are only allowed for the right 
hand operand… 
 
Now, back to less arcane stuff! Subroutines are the building 
blocks of complex programs and nearly as important as JMPs. Of 
course they are kind of "jumped to", but allow to "return control 
to the sender". 
 
If you are an experienced assembly programmer I see sparkles in 
your eyes: PUSHing parameters to the STACK, CALLing routines 
recursively, POPing all unneeded garbage!  
 
Oh, dear - I am so sorry! None of that – really, nothing at all! 
 
No, the propeller is a true RISC machine: One clock per 
instruction (well, four to be honest - but that will soon change 
with Prop II)! And that holds even for CALLs. Do you know how many 
clock cycles a CALL instruction needs on an AVR mega8? Look it up! 
 
But this is worth thinking about for a moment: How can you realize 
a subroutine call without a stack?  
 
Here comes the answer: 
' ex03A 
DAT 
        ORG    0 
ex03A     
        MOV    m10par, #30           ' this number 30 ...  
        JMPRET times10_ret, #times10 ' ... to be multiplied by 10 
 
' more code of the main program 
        .....                          
 
' here starts the subroutine 
times10 
        MOV    m10par2, m10par   ' make a copy 
        SHL    m10par2, #2       ' this yields x 4  
        ADD    m10par, m10par2   ' plus 1 = 5 
        ADD    m10par, m10par    ' times 2 = 10  
        JMP    times10_ret       ' indirect jump 
 
times10_ret 
        LONG   0 
 
m10par  LONG   0 
m10par2 LONG   0 
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The subroutine performs an optimised multiplication by 10; this is 
straightforward. Note that we need a lot of intermediate registers 
(m10par, m10par2) as we cannot PUSH or POP anything… 
 
Again we meet a new instruction 
   JMPRET ret, subr 
It stores the return address into the lower 9 bits of cell ret and 
jumps to some place called subr -  if this is a label (which it 
generally is), don’t forget the "#"! 
 
Returning is quite simple; it’s just 
   JMP ret 
Note that this is an indirect jump, without any "#"! 
 
There are subroutines which have multiple exits, but most have 
only one. In this situation we can use a clever trick: Instead of 
exiting by: 
             JMP times10_ret 
times10_ret  LONG 0 
 
we simply code: 
 
times10_ret  JMP# 0 
 
Uff! 
 
Now lets slow down !  
How did everything start in the first place?  
 
   JMPRET times10_ret , #times10 
 
O.k: it jumps to times10 AFTER it stored the return address into 
cell times10_ret … Not quite: into THE LOWER 9 BITS of cell 
times10_ret. 
 
You see: This is the magic of self modifying code! And you also 
understand that we need the "#" here because we now want no 
indirection, as the very return address has been already stored 
into the instruction. 
 
And if you think that is terribly complicated, you are probably 
right… 
 
You shall have your break now, but before you spend a sleepless 
night, I have some medicine for you. There is a shortcut for:  
JMPRET subr_ret, #subr - which is:  CALL #subr 
 
And – hurrah! – there is also a shortcut for: 
JMP# 0 - which is:  RET 
 
And if you think this is not medicine but a placebo, you could 
again be right ☺ 
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Chapter 3: Flags and Conditions 
 
What we need now is a list of instructions so that we can program 
useful stuff (FFT, 3D graphics, speech recognition, mp3 
decoding,...) 
 
After processors became equipped with more than 8 instructions 
some years ago, there is only one answer to this request: RTFM. 
What we can do in this tutorial is just point to the most 
important ones and shed light on some too cloudy things.   
 
The most useful one is arguable the “decrement-and-jump-if-not-
zero” (DJNZ) instruction. Most things work more or less 
differently on the Propeller than on other controllers but the 
DJNZ is a remarkable exceptions: It works EXACTLY as on other 
processors having this instruction.  
 
- DNJZ is a „conditional jump“, used for counting loops.  
“IF-decisions” are implemented by two other “conditional jumps” 
- TJZ “Test and Jump if Zero” 
- TJNZ “Test and Jump if not Zero” 
 
 
[i]TBD: We’ll see an example soon.[/I] 
 
 
Those three instruction check a register to find out whether it is 
“empty” or not. All other conditional instructions depend on so 
called flags, which have to be evaluated by some previous 
instruction. 
 
"Conditional Instructions?" This will be new to many experienced 
programmers! There are a few  processors that sport a "skip"-
instruction. This can be considered as an "instruction prefix", 
determining whether the instruction in question is to be executed. 
However this kind of programming technique is generally not taught 
in courses and the (compound) instructions become quite long. 
 
The Propeller however has included the concept of "conditional 
execution" into his basic system. 4 bits of each instruction are 
dedicated to this purpose! 
 
So that we get all the figures right, we should have mentioned 
that there are in fact two flags only in each processor, called C 
(“Carry”) and Z (“Zero”). Theses names have historic roots, as 
arithmetic overflow ( C ) and “emptiness” ( Z ) are two important 
applications for these flags. Most processors have more (some MUCH 
more) flags, but the Prop has just 2. Which means that there are 
16 states (= 2(2*2)

) to be possibly considered as a “condition”: 
 

No Carry 
No Carry and Not Zero 
No Carry and Zero 
No Carry or Zero 
No Carry or Not Zero 
Carry 
Carry and Not Zero 
Carry and Zero  
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Carry or Zero 
Carry or Not Zero 
Not Zero 
Zero 
Carry == Zero 
Carry <> Zero 
Never 
Always 

 
There exist even more mnemonics, as after certain instructions as 
”compare” (CMP) flags are set to reflect the numerical relations 
 < , > , => , =< , == , <>  
which are straightforward combinations of the “basic flags”, but 
have additional mnemonics. The reader should consult table 5-2 (p. 
369) in the Manual for further details. 
 
Let’s repeat: each and every instruction can be executed depending 
on any combination of the two Flags C and Z; this takes neither 
additional space nor additional time. You can also execute DJNZ or 
TJZ as conditional instruction. I have never seen this but it 
could be useful for VERY tricky programs ☺   
 
Before we can make some instructive examples we have to understand 
how these two flags are set, reset, or left unchanged. Every 
experienced assembly programmer knows that this can be a 
nightmare! A small instruction inserted for some reason in a chain 
of instructions can destroy a clever and efficient algorithm build 
on a flag. 8080 instructions are extremely clever, in that 8-bit 
instructions generally influence flags and 16-bit instructions 
don’t – with exceptions… 
 
Now there is good news! You can forget all past problems, as a 
Propeller instruction will only influence a flag, if you tell it 
so! This is indicated by some “postfix” notation: you write WC 
(“with carry flag”) or WZ (“with zero flag”) at the end of the 
instruction. 
 
Now you only have to memorize in what situation an instruction CAN 
set any flag (if it is allowed to do this). Some basic rules are: 
 
- Moves, arithmetic, and logical instructions change Z whether the 
result is zero or not. 
- Arithmetic instructions change C according to an “overflow”  
- Logical instructions set C to form an even parity of all bits. 
For the rest of instructions this is more complex :-)   
 
 
After all these pages of theory we do need an example: We want to 
count all set bits in a word (Imagine it’s the result of shifting-
in 32 samples of some signal and we want to estimate its duty 
cycle)    
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'ex04A 
theWord    long $XXXXXXXXXX 
counter    long 0 
result     long 0 
 
      MOV result, #0       ' will accumulate the number of bits 
      MOV counter,  #32    ' we check so many bits 
:loop ROL theWord, #1 WC   ' Carry reflects Bit 31, and rotate 
left 
      IF_C ADD result, #1 
      DJNZ counter, #:loop 
 
This program has many benefits: theWord remains unchanged after 
the algorithm has completed; it takes a defined and constant time, 
and the action (ADD #1) can easily be exchanged against something 
else. 
 
Here is an alternative: 
 
'ex04B 
theWord    long $XXXXXXXXXX 
result     long 0 
 
      MOV result, #0         'will accumulate the number of bits 
:loop 
      SHR theWord, #1 WC WZ  'Carry reflects bit0, and right shift 
                             'Z indicates empty register 
      ADDX result, #0 
      IF_NZ JMP #:loop 
 
This program destroys theWord, but works generally faster; we 
could also get rid of the counter (6 cells against 8 cells in 
ex04A) 
 
Note there is not really a difference between 
   ADDX result, #0 
and 
   IF_C ADD result, #1 
 
You know “Perl”? Right! “There is more than one way to do it”  ☺ 
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Chapter 4. Common and not so common instructions 
 
Learning of a new processor, an often heard question is: "What can 
he do my old processor can’t?" (Note: ships are female , computers 
male.) 
 
(a) “Number crunching” is out. In fact the floating point 
simulation is not at all bad, but rather below 100 kFLOPS which 
leaves a broad gap to mathematical co-processors, not to mention 
SIMD units sported in PC processors since the P3. 
 
(b) Missing also a fixed point multiplication and division 
instruction, ambitious signal processing is also out, though some 
audio applications are feasible.  
 
Don’t cry! There is a wonderful set of 32 bit instructions for 
less ambitious but nevertheless high performance computing: 
 
(c) There is 32-bit addition (ADD), subtraction (SUB) und compare 
(CMP) signed (...S) as well as unsigned,  even supporting multi 
precision arithmetic(...X) 
 
(d) MOV, MOVI, MOVS, MOVD, NEG, ABS and ABSNEG; remember we have 
2-address instructions throughout, thus NEG and ABS can also make 
copies in another register; an example: 
    NEG regA, #1    ' We just set regA to –1; very handy! 
 
(e) Logical/bitwise operations (AND, ANDN, OR, XOR, TEST) 
 
(f) A complete set of  shift instructions, with an arbitrary shift 
value (0..31), given  directly (“immediate”) or from a register – 
this is really a high end feature! (RCL RCR ROL ROR SHR SHL SAR) 
 
(g) We discussed the jump-instructions already in chapter 3: 
 
  TJZ r, jumpdest 
  TJNZ r, jumpdest  
Jumps, if r is empty, or not empty respectively; note that no 
"flags" are used or changed 
 
  DJNZ r, dest 
Similar to TJNZ, but register r is decremented before the test. 
These three instructions take 4 clocks only , IF they jump. If 
they „fall through”, the instruction pipeline has to start over 
which needs 4 additional clocks to get in „phase“ again. 
 
(h) But the Prop also sports a set of instructions rarely found in 
other processors. Writing your first machine programs you better 
avoid them, as misunderstandings might fool you into errors 
difficult to identify. However there are good reasons to have 
these instruction, as they speed up certain classes of algorithms 
considerably!  
 
   MAX a, clipval 
The main problem with this instruction is that it is the 
mathematical MINIMUM-operation. The best description what is does 
is: “upper clipping”: it clips  “a” to “clipval” if necessary. 
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This is a heavily used operation in all kinds of graphics 
programming. 
  
   MIN a, clipval 
This is „lower clipping“, promoting „a“ to „clipval“, had it been 
less before (i.e. the mathematical MAXIMUM operation). So be 
careful for the funny name it has been given! 
 
Both instructions are also available as a signed variant (MINS, 
MAXS) 
 
   CMPSUB a,b 
Subtracts „b“ from „a“, but only if this should leave a non-
negative value in “a”. This will support division; here a most 
trivial application:  
 
' ex07A 
' compute  c := a divided by b; c and b assumed to be positive 
     MOV     c, #0 
:loop  
     CMPSUB  a,  b WC WZ 'Carry is set, if operation performed 
     IF_C          ADD  c, #1 
     IF_C_AND_NZ   JMP  #:loop 
' the division remainder is in "a"  now 
 
We also could have coded (without any further advantage): 
 
' ex07B 
' compute  c := a divided by b; a and b assumed to be positive 
      NEG     c, #1 
:loop      
      ADD  c,  #1 
      CMPSUB  a,  b WC WZ ' Carry is set, if operation performed 
      IF_C_AND_NZ   JMP  #:loop 
' the division remainder is in "a“ now 
 
We shall see an advanced version of division later! Can you 
already imagine, how it will differ? Hint: Think what you have 
learnt in school ☺ 
 
(i) A very peculiar instruction: 
   REV a, n 
Clears upper n Bits und reverses the sequence of the (32-n) lower 
bits of register “a”. 
Reverse? That is: bit0 <-> bit 32-n, bit1 <-> bit 32-n-1, etc. 
 
(j) And there also is a somewhat isolated very special subtraction 
instruction 
   SUBABS a,b  doing  a := a - |b| 
 
 
(k) The next instructions come in groups of 4, as their results 
depends on the setting of one of the flags, either C, NC, Z, or NZ  
 
Four „multiplex“ instructions 
   MUX* r, mask 
Set all bits in register r with a corresponding ONE in mask to ONE 
or ZERO, depending on the following table. Sorry, I tried to 
explain in other ways but it either did not work or had been wrong 
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☺ Bits in r where the corresponding bit in mask is ZERO are not 
affected at all. 
 

  |C |NC|Z |NZ  <- * 
--+------------ 
C | 1  0  -  -  
NC| 0  1  -  - 
Z | -  -  1  0 
NZ| -  -  0  1 
 ^ 
 | 
Flag 

 
 
We have also 4 similar conditional „negate“ instructions 
   NEG* dest, source 
depending on the flags C, NC, Z or NZ either a  MOV or a NEG is 
executed. Equivalent code would be: 

IF_*  NEG dest, source 
IF_N* MOV dest, source 

 
 
Last and least we have 4 „account balancing“ instructions 
   SUM* sum, source 
depending on the flags C, NC, Z or NZ either an ADDS or a SUBS is 
executed. 
 
(l) The last group of instructions is well known from SPIN 
programming: 
CLKSET 
COGID    COGINIT  COGSTOP   
LOCKNEW  LOCKRET  LOCKCLR  LOCKSET 
WAITCNT 
 
They work similar as their SPIN-equivalents, so there is no need 
to elaborate on them further (You do know SPIN, don't you?) 
 
 
Interlude 2: Some arithmetic examples 
 
I think it is now time to present you some professional code you should be able to understand by 
now, taken from the Parallax libraries: multiplication, division, and square roots. I left the original 
comments. 
 
' Multiply x[15..0] by y[15..0] (y[31..16] must be 0) 
' on exit, product in y[31..0] 
' 
mult  shl   x,#16     'get multiplicand into x[31..16] 
      mov   t,#16     'ready for 16 multiplier bits 
      shr   y,#1 wc   'get initial multiplier bit into c 
:loop   
      if_c add y,x wc 'conditionally add multiplicand into product 
      rcr   y,#1 wc   'get next multiplier bit into c. 
                      ' while shift product 
      djnz  t,#:loop  'loop until done 
             
mult_ret 
      ret             'return with product in y[31..0] 
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This is shorter than you thought, isn't it? Just 7 instructions! But time consuming! And it's not a 
32x32 multiplication but 16x16. This is very common; the hardware multiplication in the Prop II will 
most likely also be a 16x16 multiplication only. But you can easily build up on it to 32x32. How? 
Well, remember “binoms” from shool? No? 
 
It's: (a+b)2 = a2 + 2*a*b + b2 
The rest is simple coding… 
 
The algorithm should be clear to you: It is “standard” multiplication in the same way you do it in the 
decimal system. However it has one great advantage: The multiplication table is just 1x1=1 ☺ 
 
When you do not understand a program you must “trace” it, step by step: Make a list with columns 
for all relevant variables, and write down - line for line - how they change! 
 
' Divide x[31..0] by y[15..0] (y[16] must be 0) 
' on exit, quotient is in x[15..0] and remainder is in x[31..16] 
' 
divide   shl y,#15     'get divisor into y[30..15] 
         mov t,#16     'ready for 16 quotient bits 
:loop    cmpsub x,y wc 'if y =< x then subtract it, set C 
         rcl x,#1      'rotate c into quotient, shift dividend 
         djnz t,#:loop 'loop until done 
divide_ret 
         ret           'quotient in x[15..0], rem. in x[31..16] 
 
This should be also much shorter than you expected! ( 6 instructions). Note the clever use of 
CMPSUB! As we are dealing in the binary system, there is no need to “loop” CMPSUB as we did in 
our preliminary example ex07 above! The algorithm is “school division” - in the binary system.  
 
 
' Compute square-root of y[31..0] into x[15..0] 
' 
root          mov     a, #0        'reset accumulator 
              mov     x, #0        'reset root 
              mov     t, #16       'ready for 16 root bits 
 
:loop         shl     y, #1   wc   'rotate top two bits of y …  
              rcl     a, #1        ' … into accumulator 
              shl     y, #1   wc 
              rcl     a, #1 
              shl     x, #2        'determine next bit of root    
              or      x, #1 
              cmpsub  a, x    wc 
              shr     x, #2 
              rcl     x, #1 
              djnz    t, #:loop    'loop until done 
 
root_ret      ret                  'square root in x[15..0] 
 
This is left for your own ingenuity ☺
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Chapter 5: Indirect and indexed addressing 
 
Indexed addressing is needed when we want to extract some element 
from a “vector”: X [ I ] . (Indirect addressing is a special case 
with I == 0.) Other processors use different concepts to 
accomplish this need, sometimes limiting either “index” or “base 
address” to eight or sixteen bits… Post- and pre-incrementing the 
index is also a common option. To close this discussion, there is 
nothing at all of this kind within the Prop ☺ 
 
Of course we have learnt to access the HUB memory using RDLONG or 
WRLONG with a pre-computed address in a cog register. It might 
look like this: 
 
'ex07A 
   MOV r, I 
   SHL r, #2          ' x 4 = byte address in HUB 
   ADD r, X 
   RDLONG r, r 
 
To become familiar with this kind of memory access let’s just 
compute the sum of 20 numbers allocated in HUB memory: 
 
'ex07B 
   MOV addr, X 
   MOV sum, #0 
   MOV count, #20 
:loop 
   RDLONG r, addr 
   ADDS sum, r 
   ADD addr, #4     ' the next long 
   DJNZ count, #:loop 
 
But how do we manage things when this 20-number-vector is 
allocated inside our own COG? 
 
Enter self modifying code! 
 
'ex07C 
' we assume X to X+19 contain 20 longs to be added up 
     MOVS :access, #X  ' this instruction modifies a COG cell (*)         
     MOV sum, #0 
     MOV count, #20 
:loop 
:access  
     ADDS sum, 0-0     ' the lower 9 bits of this instruction… 
                       ' … will be modified by (*)  
     ADD :access, #1   ' modify a cell to point to the next number 
     DJNZ count, #:loop 
     …   
X:   RES 20 
 
The alert reader has spotted a new instruction : MOVS ! What’s 
that? Well, there are three specific MOV-instruction taking into 
account the need for modifying instructions; MOVS (“source”) will 
only store to bits 0 to 8 ; MOVD (“dest”) will only store to bits 
9 to 17, and MOVI (“instruction”) will only store to bits 23 to 
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31. Forget to use these instructions for clever byte manipulation; 
they are meant for 9-bit manipulation :- ) But some I/O registered 
are organized in a way you can utilize these instructions. 
 
And note: There is a strict rule: NEVER modify the next 
instruction to be executed! We shall elaborate on this in 
Sidetrack F! 
 
I said: "…not meant for byte manipulation…", but with a little 
help from Fred Hawkins I devised this little gem: 
 
'ex08A  
'How to pack 4 bytes into a COG cell and write it to the HUB 
 
  MOVI x, byte0  ' store to the upper 9 bits… 
                 ' … leaving bit 31 a "don't care" 
  SHR x, #8      ' shift right so upper 9 bits become free again  
  MOVI  x, byte1 ' repeat… 
  SHR x, #8 
  MOVI  x, byte2 
  SHR x, #7      ' Attention! Don’t shift out the LSB … 
  SHR x, #1 WC   ' … but keep it in the carry flag 
  MOVI  x, byte3 
  RCL x, #1      ' shift LSB back: bit 31 was a don’t care … 
                 ' …  but now no longer is 
  WRLONG x, huba 
 
It can be done much simpler by this code: 
 
'How to pack 4 bytes into a COG cell and write it to the HUB 
'ex08B 
  WRBYTE x, byte0 
  ADD  x, #1  
  WRBYTE x, byte1 
  ADD  x, #1  
  WRBYTE x, byte2 
  ADD  x, #1  
  WRBYTE x, byte3 
 
But how much time will ex08B take? Compare it to ex08A! 
Now, but wait! What about the "order of the bytes"? In example A 
byte0 was the LSB and now … It’s the MSB!! 
 
Well, not really! This has to do with something already Capt’n 
Gulliver had his issues with: Little Endians! A LONG in the 
Propeller HUB is stored in a way that its LSB comes first, and the 
MSB last. No further comment, except you will never notice this 
inside the COG, as you cannot break-up its internal cell 
structure.   
 
Can we "improve" ex08B further? 
Yes, we can! Assume byte0 to byte3 are contained in consecutive 
registers as follows: 
 
byte0 long “a” 
byte1 long “b” 
byte2 long “c” 
byte3 long “d” 
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'How to pack 4 bytes into a COG cell and write it to the HUB 
'ex08C 
   MOVD wrpatch:, #byte0 ' “implant” byte0's addr into instruction 
   MOV count, #4         ' prepare to store 4 bytes in the loop  
:wrloop 
:wrpatch 
   WRBYTE 0-0, byte0     ' the 9 dest-bits 0-0 will be patched 
   ADD  :wrpatch, aOneInDestPosition ' a very clever patch 
   DJNZ count, #:wrloop 
 
 
aOneInDestPosition LONG  %1_0_0000_0000 
count  LONG 0 
 
Doesn’t this look much more fancy! And – listen – it will not take 
much more time than the ex08B, as we had some "time to spend" 
between the WRs… 
 
Note how we cleverly avoided to hurt the basis rule of Propeller 
Code Patching: “Never change the NEXT instruction!” 
 
And it does not even need more cells (=7) than ex08B ☺ 
 
 
Sidetrack F: How the instruction pipeline works 
 
So you have learnt that most Propeller instructions take 4 ticks (which is 50 ns @ 80 MHz); even I 
told you so. Well, I am sorry: That was a lie! 
 
A “standard” instruction takes 6 ticks: 
 
 T=0:  Fetch Instruction 
 T=1:  Decode instruction 
 T=2:  Fetch „dest“ operand 
 T=3:  Fetch „source“ operand 
 T=4:  Perform operation 
 T=5:  Store result back into “dest” 
 
You can see that most of the time passes in accessing the COG memory (T=0,2,3,5). One could 
think, it should be nice to skip some of those time slots, if there is no source operand to fetch, 
because we have an “immediate” instruction (T=3); or T=5, if we do not store back anything. 
 
But the Propeller – like most other advanced processors – uses a completely different approach to 
speed things up: it “interleaves” memory accesses for the NEXT instruction in the gaps (T=1 and 
4), where the memory is not used for the CURRENT instruction. This will look like this: 
 
     CURRENT instruction         LAST/NEXT instruction 
 T=-1:                           Fetch "source" for LAST operation  
 T=0: Fetch Instruction          Perform LAST operation 
 T=1: Decode instruction         Store result back into "dest" 
 T=2: Fetch „dest“ operand 
 T=3: Fetch „source“ operand 
 T=4: Perform operation          Fetch NEXT instruction 
 T=5: Store result into "dest"   Decode NEXT instruction 
 T=6:                            Fetch "dest" for NEXT instruction 
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There is no way to do it better ! The memory is now used in every cycle; and a new instruction is 
fetched every 4th  cycle. 
 
You can now understand, why it will not work to patch the NEXT instruction, as this is fetched at 
T=4, whereas the patch only happens at T=5! 
 
And it is important to uphold this inter-locking! 
 
However there are two kinds of instructions that cannot be “locked-in”, as they will take an 
unknown amount of time. One is the WAIT-familie, the timing of which is something like this:  
 
 T=0:   Fetch WAIT instruction 
 T=1:   Decode instruction 
 T=2:   Fetch "dest" operand 
 T=3:   Fetch "source" operand 
 T=3+N: Wait zero to N ticks 
 T=4+N: Store result back into "dest" 
  
Without any wait, this will take 5 ticks. There is no interleave of the NEXT instruction; the fetch of 
the NEXT instruction will be performed only at T=5+N 
 
Now wait! A  "standard" instruction takes 6 ticks, a "waitless wait" just 5; shouldn't it then take just 3 
ticks in the context of the pipe flow? 
 
Very clever! But being so "variable"  WAIT (and a HUB instruction) is not locked in the pipeline! 
The fetch of the next instruction – which happens at T = 4 for a standard instruction - does not 
happen at  T = 3+N  but at T = 5+N only – or so it seems... 
 
The other exception is the HUB-family. The timing of an RDLONG is something like this: 
 
 T=0:   Fetch HUB-instruction 
 T=1:   Decode instruction 
 T=2:   Fetch "dest" operand 
 T=3:   Fetch "source" operand 
 T=3+N: Wait zero to 15 ticks for HUB to sync 
 T=4+N: Address HUB 
 T=5+N: LOAD/STORE to/from HUB 
 T=6+N: Store result back into “dest” 
 
We can now also try to understand the timing of a conditional jump instructions; The processor 
always "predicts" a jump will be taken and fetches the NEXT instruction from this address at T = 4. 
If the instruction "falls through", this was a bad prediction, and the fetch has to be repeated at T = 
6. However T = 6 is not meant to be a "fetch" phase, as the jumps are locked into the pipe, in 
contrast to the WAIT and HUB instructions. And the next "scheduled fetch" is T=8 ... 
 
Note: The mechanism presented here is not well described in official Parallax documents and 
depends mostly on my own “educated guesses”. 
 
 
BTW: Have you also spotted “RES”? In ex07C? This is the last 
“assembly directive”! It “reserves” memory without allocating it, 
which will say: There is no HUB memory for these cells! When you 
think about this for a while you will come to the conclusion, that 
this is either not possible, or only at the end of the program 
with no presets or instructions following. And right you are! 
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Chapter 6 Locks and Semaphores 
 
There is much uneasiness about this: Do I really need “locks”? Or 
“flags”? But Why? I never needed them before! 
 
Fact is that every parallel system – be it true hardware or faked  
software – mandatorily needs them, nota bene not for all 
applications. Thus (binary) semaphores have to exist in the Prop 
hardware, called “locks”.  
 
Consider the following scenario: 

A department store has one entrance and one exit only to better control the stream 
of daily customers. Now the management wants to learn how many customers (or 
employees) are in the building at a given time of the day. They think they can 
optimise staff assignment and close the store more confidently in the evening… 
High reliable photoelectric relays are installed at the exit and the entrance… 

 
Generally there are two kind of answers the question: „How many 
persons are inside the store?“ 
 
ex09A 
(- at he entrance-) IF signal THEN inCount += 1 
(- at the exit -)   IF signal THEN outCount += 1 
(- at the office -) personsInStore := inCount - outCount 
 
This approach has some disadvantages: 
- both  counts can overflow 
- the result must always be “calculated”, thus it is not 
available “truly” online. 
 
But if both is no issue you should always prefer that solution! 
 
ex09B 
(- at he entrance-) IF signal THEN personsInStore += 1 
(- at the exit -)   IF signal THEN personsInStore -= 1 
(- at the office -) display (personssInStore) 
 
This is probably the simple solution that comes to mind first, but 
there is a pitfall here! 
 
If the code – as given – is NOT serially executed, but we have 
independent processing units near both gates, it can happen that 
both access the “accumulator” personsInStore contemporaneously. 
 
Of course there is no such thing as contemporaneousness, but you 
never know and this is in fact the basic philosophical issue of 
digitising signals… 
 
Now assume the department store technician is a Propeller fan ☺ 
and runs “exit-supervision” in COGA and “entrance-supervision” in 
COGB 
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' department store ex09C 
CON 
  entPin = 2 
  exPin  = 3 
VAR 
LONG personsInStore 
 
PUB  main 
  PersonsInStore := 0 
  cognew(@entrance, @ personsInStore) 
  cognew(@exit, @ personsInStore) 
 
DAT 
  ORG 0  
entrance 
  WAITPEQ :null, #entPin 
  WAITPNE :null, #entPin 
  RDLONG :e, PAR 
  ADD :e, #1 
  WRLONG :e, PAR 
  JMP #entrance 
 
:null LONG 0   
:e    RES  1 
 
  ORG 0        'note that this ORG is most important!   
exit 
  WAITPEQ :null, #exPin 
  WAITPNE :null, #exPin 
  RDLONG :a, PAR 
  SUB :a, #1 
  WRLONG :a, PAR 
  JMP #exit 
 
:null LONG 0   
:a    RES  1 
 
It is obvious that you will get into trouble if we encounter the 
following scenario: 
 

RDLONG a,.. 
ADD a, #1 
RDLONG e,.. 
ADD e, #1 
WRLONG a,.. 
WRLONG e,.. 

 
One entering customer will not be counted. The probability for 
this is unknown… 
 
But can we fix this bug principally?  
 
Well, we just have to chain the three instructions: RDLONG - ADD - 
WRLONG to an unbreakable (“un-interruptable”) unit! 
 
Standard processors generally give you one or the other (or both) 
of the following solutions:: 
- „Disable Interrupts“  



 
Programming the Parallax Propeller using Machine Language V12.doc     Version 1.21                 Page 27 of 40    

- A special "ReadAndModify" instruction 
 
Having separate hardware, only the second solution is applicable; 
the „ReadAnd Modify“ instruction on the Propeller is called 
LOCKSET or LOCKCLEAR respectively. 
 
However it cannot use an arbitrary HUB-cell but one of eight 
specific bits (called LOCKs) only. 
 
So we can secure our code in the following way: 
 
'ex09D 
 
' we enter here when relay issued signal 
:l 
   LOCKSET  sema  WC 
   IF_C JMP #:l  'wait for our partner leaving his "critical area" 
 
' now WE enter our “critical area” 
  RDLONG :a, PAR 
  SUB :a, #1 
  WRLONG :a, PAR 
  LOCKCLEAR sema  ' we leave our "critical area" 
 
 
 
The complete changed program now looks this way; we also 
“improved” it a little bit in some details the interested reader 
might profit from understanding… 
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' department store ex09E 
VAR 
  LONG personsInStore 
 
PUB  main 
 
 PersonsInStore := 0 
 semaNumber := LOCKNEW ' rserves a new semaphore 
                       ' (Good code would check for < 0) 
 countAddress := @ personsInStore 
 
 pin := 2 
 delta := 1 
 COGNEW(@guard, 0)    ' Entrance 
 WAITCNT(cnt+512*16)  ' it takes time to load a COG 
 
 pin := 3 
 delta := -1 
 COGNEW(@guard, 0)    ' Exit 
 
DAT 
guard 
  WAITPEQ :null, pin 
  WAITPNE :null, pin 
:w 
  LOCKSET semaNumber WC 
  IF_C JMP :w 
  RDLONG a, countAddress 
  ADD a, delta 
  WRLONG a, countAddress 
  LOCKCLR semaNummer 
 
' debounce switch 
  MOV a, :debounceTime 
  ADD a, CNT 
  WAITCNT a, #0 
  JMP #guard 
 
:null long 0 
:debounceTime  LONG 80_000_000/1000 * 10  ' 10 ms   
pin            LONG 0 
delta          LONG 0    
semaNumber     LONG 0 
countAddress   LONG 0 
a              RES  1 
 
 
 



 
Programming the Parallax Propeller using Machine Language V12.doc     Version 1.21                 Page 29 of 40    

Chapter 7: Video without Video 
 
Another fascinating feature of the Prop is the easiness with which 
it can generate video signals. There is a little bit magic in the 
NTSC colour generation, but not much. We shall understand 
everything after we have worked ourselves through the following 
three chapters. A little bit lengthy – may be – but not really 
complex. 
 
There is some  specific hardware we shall call video logic in each 
COG, which is also handy for 
- general 8-bit output 
- especially if connected to a D/A converter of the R2R kind 
 
This should be no surprise, as video is just an analogue signal as 
any other (or even three in the case of VGA: R, G, B) 
 
A COG uses one of his timers ("A") to produce a certain clock to 
drive this video logic. This timer can be programmed in a wide 
range, thus allowing a wide range of applications! How to do this 
is explained in Parallax’s excellent Application Note AN001. I 
have no intention to repeat the contents of it here. I do it for 
the German readers, but it would be folly to retranslate this! 
Just BTW – you English readers have no idea how privileged you are 
to understand the excellent Parallax documentation written in your 
mother language. Do use this privilege! 
 
But we will see the timer working later in the examples of course. 
 
Back to the “video logic”: it has three modes of operation 
- Composite Video (Baseband) 
- Broadband Video (“TV”) 
- VGA 
 
There are a few peculiarities in the former two that might confuse 
us in the beginning, so we start with the VGA mode. In this 
chapter we shall not yet wonder why it is called VGA – it’s just a 
name! 
 
So we set this mode – “Vmode = 01” - in VCFG (“Video 
configuration”) - one of the two visible video registers; the 
other is called VSCL- “video scale”. You will most likely have to 
look at the tables in the Propeller Datasheet (or manual) from 
time to time to find your way through the different fields in the 
32-bit configuration register. It makes no sense to copy these 
tables here.    
 
Whatever mode we have selected, there is not much difference for 
the rest of the handling.  
 
There are also two hidden registers, I like to call PIXELS and 
COLORS (as I know of no official names): they must exist somewhere 
in the COG, though they cannot be read but just be set using the 
WAITVID instruction. This instruction in fact is the theme and 
centre of this chapter! 
 
Let’s imagine we have somehow connected the bespoken clock to the 
PIXELS register. PIXELS is a (arithmetic) “right-shift-register”, 
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and we are now shifting-out pixels, starting at the LSB end, 
either bit by bit, [b]or[/b] bit-pairs by bit-pairs. These are two 
different sub-modes called “2-color-mode” or “4-color-mode” for 
reasons that will become obvious later. 
 
Now, what happens to these 32 out-shifted bits (or 16 out-shifted 
bit-pairs)? Where are they shifted to? Good question! To our great 
surprise, they are NOT shifted out of any I/O pin! 
 
Rather, they are used to [b]address[/b] one of two bytes A or B 
(or one of four bytes A, B, C, or D) of the COLORS-register! Have 
a look at this Diagram 2: 
 

 
 
Now, exactly one of these bytes A, B, C, or D is output at some 
configurable 8 pin group (I/O 0..7, 8..15, 16..23) Be careful with 
group 24..31 the use of which is also possible. 
 
Well, this is nearly all to be said about Propeller video, except 
some minor details. 
 
Did I already explain how to set PIXELS and COLORS? It is done by 
the WAITVID instruction. So if you want to output a specific bit 
pattern, just do: 
 
WAITVID (eightbitPattern, 0) 
               ^          ^ 
               |          | 
             COLORS     PIXELS 
 
Now 32 „times“ (the most right eight bits of) eightbitPattern is 
output. When you have selected the 4-color mode this happens only 
16 “times”; but it will be difficult to spot the difference… 
 
We call this sequence of output patterns a “register frame” (being 
of length 32 or 16) 
 
Now we want to do something more adventurous: output a sequence of 
bytes like $FF, $1F, $07, $00; when we connect a R2R network to 
the eight pins it would look like a saw tooth at the end. 
 
Using „4-color mode” this can be accomplished by: 
 
   WAITVID ( $FF_1F_07_00, %%0123 ) 
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This is just ONE saw tooth followed by zero values; but we easily 
can generate 4 “saw teeth”: 
 
   WAITVID ( $FF_1F_07_00, %%0123012301230123 ) 
 
But there is a further configuration parameter („frame clock“,  in 
the second video register VSCL), allowing to reduce the number of 
output patterns. Setting  “frame clock” to 4 means that only the 
most right 4 (or 8) bits from the PIXELS are processed before the 
WAITVID instruction releases the video logic again; the “register 
frame” has now a length of 4 rather than 16. 
 
This all sounds a little bit complicated .. What is the advantage 
when compared to some simple OUTA instructions? 
 
Very little: It can work faster, and you do not have to take 
special care for timings and wait times. WAITVID has got its name 
for a very good reason. Before it starts shifting out the operands 
it waits for the end of a previous video operation! The next 
instruction is fetched as soon as the new shifting has been 
started. This is handy! 
 
' ex10A 
VSCLpreset   LONG  $1_004 
VCFGpreset   LONG  %0_01_1_00_000_00000000000_0XX_0_11111111 
 
'please do look up the meaning of all those parameters!! 
 
colors       LONG $FF1F0700        
   MOV VSCL, VSCLpreset 
   MOV VCFG, VCFGpreset 
LOOP 
   WAITVID colors, #%%0123 
   JMP #loop 
 
This 4-byte saw tooth is output at pins XX*8 to XX*8+7  at most(!) 
every 8 clocks = 100 ns/4 bytes = 40 MB/s. This is not bad! Note 
that the limit is NOT the – still unknown – clocking of the video 
logic, but our ability to control this logic  with instructions! 
 
When we want to output more ambitious signals, we either have to 
compute them or load them from HUB; this slows things down 
further! 
 
'ex10B 
loop 
  RDLONG colors, address  
  WAITVID colors, #%%0123 
  ADD address, #4 
  DJNZ period, #loop 
 
Though slowed down, this still yields 10 MB/s 
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But a “hand made” loop is not necessarily MUCH slower: 
 
'ex10C 
LOOP 
  RDBYTE val, address 
  SHL    val , #ioPinPos 
  MOV    OUTA, val 
  ADD    address, #1 
  DJNZ   period, #loop 
 
This is around 3 MB/s. 
 
When we want later to generate video (4- 6 MHz) or true VGA (25-30 
MHz), we already see that we are working at the frontier. Using a 
“register frame” of just 4 will not do; we shall need a frame 
length of 8, 16 or even 32 (in “2-color-mode”) 
 
But why do I sound that this could be an issue? Why don't we use a 
"register frame" of 32 all the time in the first place? 
 
Think! When shifting 32 bits in 2-color-mode the only option is to 
either output byte A or B from the COLOURS register: "Black" or 
"White" (or whatever you have stored there). The choice widens 
when using 4-color mode, but you are restricted to those patterns 
in the COLORS register for the whole register frame. This is 
severe constraint as soon as you use a frame size above 4! 
 
--- 
 
Here is another extreme example, we use just one I/O pin rather 
than all 8 
 
'ex10E 
VSCL_preset   LONG  $1_020 
VCFG_preset   LONG  %0_01_0_00_000_00000000000_0XX_0_00000001 
colors        LONG  $01_00        
 
   MOV VSCL, VSCL_preset 
   MOV VCFG, VCFG_preset 
loop 
   RDLONG  data32, address 
   WAITVID colors, data32 
   ADD     address, #4 
   DJNZ    length, #loop 
 
We can output this bit stream with 32 bit per 400 ns, i.e. 80 
Mbit/s per channel (or 40 Mbit/s per two channels in “4-color-
mode”). 
 
 
Someone may still wonder how to use the clock to drive the video 
logic. As seen above we can use the system clock for 80 MHz. It 
generally makes no sense to use a much higher clock rate, as we 
can no longer feed the video logic without disruptions; this would 
lead to unwanted “bursts” and “jitter”… We have to always adjust 
the video clock so that there will be a small wait left for a new 
WAITVID!  
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Sidetrack G: How to program Timer A 
Programming timer A is done setting CTRA and FRQA, e.g.: 
 
  MOVI   FRQA, #56          '56*80/512 = about 8,75 MHz 
  MOVI   CTRA, #%00001_101  'internal,  PLL = *16/4 = *4 = 35 MHz 
 
Need an explanation? All right: We use the [b]internal[/b] timer mode, so the timer signal (bit 31 of 
PHSA) is NOT output to any I/O pin but rather connected to shift bits out of the PIXELS register. 
This frequency is determined by the value of FRQA, which is added each system clock tick onto 
PHSA.  
 
Logically this derived clock is always a fraction of the system clock, but this derived clock is used to 
control a PLL circuit multiplying the clock by 16! In addition to this boost, the PLL will compensate 
for any jitter if the fraction programmed for the timer is an “odd” number. PLLS work only within 
certain ranges: the datasheet says: 4 to 8 MHz (which means the clock at PLL output is 64 to 128 
MHz). 
 
However we will generally not use THAT clock, but a derived clock by dividing this frequency by 2 
(32 – 64 MHz), 4, 8, 16, 32, 64, or 128 (500-1000 kHz).  
 
To program a timer (i.e. the FRQA register) we often use the MOVI instruction, when the value can 
be “so la la” (1% off). Note that we have to calibrate the crystal and consider temperature anyway 
when we want to do much better! A ONE in bit 23 results in an Timer overflow after 512 steps  = 80 
MHz/512 = 156 kHz. This is not good for the PLL (at least according to the datasheet – in practice 
it will do fine); 25 is the minimum value. The given value in ex10 (=56) will yield  8,75 MHz before 
we enter the PLL. 
 
The next Diagram 3 will show these relations (timer and video 
logic) in a simple sketch; please ignore the 4 boxes in the lower 
right corner; they are needed in the next chapter only. 
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I have to apologize that there had been no complete examples up to 
now. The reason is, they would have made no sense. If you want to 
just copy code to see something happen you can as well use one of 
the many video drivers. But now you should have developed enough 
understanding of what is going on! 
 
The name of this chapter was: “Video without Video”. No kidding: 
We will NOT have video now! Rather we will “count up” a set of 8 
I/O pins (0..7), as slow as possible using the “video logic”. And 
don’t be surprised: as we are not interested in speed we can 
easily use SPIN for the next examples. (You know SPIN, don’t 
you??) 
 
'ex11A 
CON 
  _clkmode = xtal1 + pll8x 
  _xinfreq = 10_000_000 
   
  _pinGroup = 0 
  _pinMask = $FF<<(_pinGroup*8) 
 
PUB  Main | n 
   DIRA := _pinMask 
   CTRA := %00001_000 << 23  ' internal, PLL % 128 
   FRQA := POSX/CLKFREQ*4_000_000 
                                
   VSCL := $1_004            ' register frame = FOUR elements 
   VCFG := %0_01_0_00_000_00000000000_000_0_11111111 +  
           (_pinGroup << 9)  ' VGA, 2-color-mode 
   REPEAT 
      WAITVID (n++ ,0) 
 
A cheap frequency counter will show us 240 Hz at pin 7 (MSB). My 
intention was to output just ONE element per frame (VSCL := 
$1_001), but the signal looked not very stable in that case. I 
think I have just spotted the reason: Just ONE element per frame 
has driven WAITVID to 240 Hz *4 *128 = 128 kHz corresponding to 8 
us which is below the execution time of the SPIN loop! 
 
 
As I just got crazy about the new ViewPort tool, I have to include 
a screenshot (Diagram 4): 
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But we can do much slower! 
'edx11B 
   VSCL := $ff_0ff  'now just 1 element/frame but stretched by 255 
 
The frequency counter at pin 7 (MSB) now shows 4Hz (= 240/255*4) 
 
In ex11A we shifted out 4 (equal) elements per register frame, 
which took the four-fold time. We could also shift out all 32 
(equal) elements of PIXELS, but the field sizes in VSCL would not 
allow this (only 12 bits for "frame clock"); so we have to 
restrict ourselves to 16 elements. 
'ex11C 
   VSCL := $ff_ff0 '16 elements (frame length), 255-fold stretched 
 
As expected the MSB (pin 7) now outputs at a quarter Hz 
 
Last and least we shall challenge the slowest frequency of the 
timer the PLL will work with. I still succeeded at 65 kHz (the 
data sheet said: 4 MHz!)  
'ex11D 
   FRQA := POSX/CLKFREQ*65_000 
 
There are few frequency counters showing anything at pin 7 now. 
But an LED connected to pin 0 virtuously blinks in a two second 
rhythm. (16*255*16/65_000 = 1 s) 
 
 
 
 
 
 
Interlude 3: What Video is all about: A very gentle approach 
 
Among recent high-tech devices a TV set is most likely the stupidest thing you can imagine. You 
have to tell it EVERYTHING in most detail! Not once, not twice, no, thirty times – each and every 
second! European TV sets are somewhat smarter; they only need to be reminded 25 times per 
second to their task. 
 
This is no coincidence: TV technology was invented somewhere between Morse's Telegraph  and 
Bell's Telephone. The first TV standards where already established around 1928 (30 lines, 12.5 Hz 
screen refresh) 
 
I can only think of one device stupider than a TV set: A (non multi-sync) VGA monitor. 
 
But how do they work at all? Well in early times a beam of electrons was focussed on the other - 
more or less plane and transparent -  end of a large radio tube. This end had been coated with 
some phosphorescent material that transmuted the electronic power into photonic light (Poetic – 
isn’t it?) People were magically attracted by this effect as many are still today. 
 
This beam took its way from the upper left corner to the lower right corner, covering the whole 
"screen" in exactly the way we read or write in most European languages. 
 
During this path (which according to today’s standards takes exactly  16.683 ms) its “luminosity” is 
changed, so a differentiated image can be displayed. The signal you will need to control the beam 
looks like the next Diagram 5: 
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(It is only a small part of the 16 ms – just one “line” of very few pixels and of just a few us.  And 
thanks to Andy, who prepared it!) 
 
Such kind of signal was originally directly applied to one of the grids of the tube. 
 
In contrast to a popular prejudice, electrons rarely move with light speed. So when the beam 
returns from  right to left its “beam power” had to be reduced as much as possible, down to “super 
black” so to speak; this phase is called “horizontal sync”, followed by a “porch” until the beam has 
reached its new starting position at the left hand side. There has to be a similar gap in the signal 
when the beam is moving from bottom right to top left every 1/60 second. 
 
When you want the Prop to produce “video” you have to generate exactly that kind of signal – 
nothing else at all, no feed back, no input, no test, no check, no if: It will be the most 
straightforward task in your career as a programmer. Of course you have to know the rules   
  
There was no such thing as a “pixel” at that time. The size of the spots of light emitted from the 
screen depended on the tubes capability to “focus” the beam. In Y-direction the TV set had to care 
for the “spacing” of the line, so the number of lines had to be “implemented” in the devices and 
thus to be standardized early; in X-direction the bandwidth of the video amplifiers set a limit. The 
levels of the luminosity however stayed “analogue”. 
 
The modern NTSC-M standard defines 720 horizontal and 486 vertical visible pixels. 
 
With the advent of Colour TV “pixels” became more obvious to the public: for each of those 
formerly somewhat theoretical pixels three coloured dots had to be etched onto the tube. (Needed 
a lot of busy Chinese, I think!) Of course they couldn’t use less pixels than in the black and white 
standard for such an expensive device! 
 
And the new Colour TV had to be “compatible” in both directions, that meant: a "monochrome" TV 
should not be disturbed by “colour signals”, and a Colour TV should be able to live happily without 
colour. 
 
The solution for this can be considered as one of the magic moments of mankind! 
 
When you look at the 'Diagram 3  you have little hints of colours (I shall try to find some more 
instructive images, alas my equipment does not allow me to catch those phantastic oscillograms 
myself at the moment). What you see is the “levels of grey”, the "luma"-signal. The ingenious idea 
now was to just add a small digital (!) signal – on the Prop adding one "level". However this signal 
was not locked in the framework of the “luma pixels”, but time shifted (also called: “phase” shifted) 
a little bit. The amount of this “jitter” or “displacement” was (and is!) used to define a “colour”: No 
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displacement means “blue”, etc. Obviously the basic clock of this "chroma signal" has to be very 
precise, the value is: 3.579.545,00 Hz - and that's not kidding! Note the ",00"! 
 
This specific feature made me say TV sets are somewhat more intelligent than VGA monitors are  

 
 
To generate this displacement of the "chroma signal" is a little bit tricky to accomplish, and this is 
the “little magic” going on in the COG’s video logic: You just say: “Blue”, and that’s is! 
 
A black and white TV wouldn’t care, even wouldn’t notice this at all! A colour TV will have to make 
aware that those displaced signals have to be spotted for. But displaced to what reference? For 
this reason at the beginning of each line - in the midst of the “back porch” - an “awareness signal” 
is generated, called “colour burst”. The TV set will sync to it (using a PLL in the old days) to detect 
the displacements. 
 
This “colour burst” however is NOT part of the “magic” – you have to generate it yourself in your 
home made driver…   
 
There are more standards all over the world but NTSC-M: PAL and (the very similar) SECAM are 
most notable. As most small TV sets or car monitors are produced in countries using NTSC (No, I 
do NOT refer to the United States :-) ), they understand this as their “mother language”. PAL is 
often an “add on”. It is different with the living-room TV.  For the Propeller this (and “other formats” 
as 16:9) is most annoying. Much of the simplicity of video generation gets lost when you try to 
consider and care for multiple formats.   
 
We also have to understand another more technical detail called “interlacing”. The alert reader has 
long noticed that deSilva has flopped again: "16 ms? That's not 1/30 second!"  
Oh, dear! But you shall find enlightenment soon: The standard requires to transmit the screen 
contents 30 times per second (29.97 times to be very precise). Doesn’t that flicker? You bet it 
does! One could choose special screen coating for high afterglow (=”persistence”), as you most 
likely have seen on RADAR screens. But this is no real solution for fast changing images. A better 
solution was to split the screen lines (the "frame") into two groups – odd ("upper field") and even 
("bottom field") lines – and transmit (and display) them one after another, each 243 double spaced 
lines taking 1/60 seconds. This uses afterglow “a little bit”, and most people now notice flicker only 
from the corner of their eye.  
 
This had consequences for the producers of small and cheap monitors. They could successfully 
develop the attitude that only 243 lines matter and reduced the (expensive) TFT cells to 234 lines 
(it is unclear why exactly 234, maybe it started with a typo?). As this would result in very “un-
square” pixels, they boldly also cut the 720 horizontal pixels in halves; 320 is  used in most of 
those devices today, adapting to 16:9 formats increased this again, to 480 horizontal pixels. 
 
This is what your Propeller displays to in many cases: 320x 234 or 480x 234.  
 
Pictures look best when exactly adapting to this format. Be extremely careful with “interlacing”. It 
will reduce quality considerably on those monitors. Interlacing can improve quality on large living-
room TV sets and some high end car monitors (> $100) sporting true 640x480 pixels. PC monitors 
will rarely have a video input. Frame catcher cards or USB frame catchers are tricky – you have to 
consult their manual, but not always with success… 
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The End 
 
No, this is NOT the end! 
DeSilva has many ideas how to continue: 
- Best Practices 
- Efficient Use of multiple COGs 
- Time vs. Space 
- Debugging with Ariba's PASD 
 
Also there are still three half-bred sections missing, "The end of 
video", some remarks wrt the NR post-fix, and a sidetrack "Tricks 
with OUTB"  
 
But he will have two evening classes about Propeller Programming 
in the next months,  having to be prepared - and the material used 
there will not be in English… 
 
When time is left, deSilva will re-activate his Multi-Prop project 
again: A "stackable" low-cost system for "number crunching". 
Photographs will follow… 
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Appendix: Pitfalls of SPIN 
 
Real Programmers don’t use SPIN!? O yes, they do! SPIN is 
extremely handy for slow applications. However it has it's 
drawbacks and pitfalls also (and especially!) a machine programmer 
must be aware of: 
 
Scope 
 
-1) The rules are relatively simple: NO OVERLOADING! NO SHADOWING! 
 
-2) There is no other possibility to access variables of other 
objects  but using GETters and SETters, however they spend 
considerable time, in contrast to modern OOP design, where you 
find a tendency to offer them "for free" (i.e. compilers generate 
inline code). 
 
-3) GETting an address is fine and in the spirit of SPIN as being 
a "structured assembly language"  
This pointer needs not necessarily address an "array", but can 
point to any place in VAR or DAT space (but see the next section 
for further pitfalls)  
 
Memory Allocation 
 
-4) VAR variables are resorted by the compiler: LONGS first, 
follow WORDs, follow BYTES; unawareness of this can lead to deep 
frustration  
 
-5) In contrast DAT variables are padded if appropriate! 
 
-6) Never forget: VAR is "object space"; only DAT is "global"! 
 
Tree of Objects 
 
-7) Each time you define a name in the OBJ section a new object is 
"instantiated". That means a new set of VAR memory is (statically) 
allocated. DAT and CODE always stays the same. 
 
This is extremely frustrating when you have "library objects" used 
from multiple spots of your program. Take Float32. You may need it 
from the main object and some "sub-object" (maybe FloatString). 
FloatString normally uses the independent and slow FloatMath; so 
you are inclined to change that to Math32 as well. This is where 
your problems start ☺ But after you understand their root, you can 
easily fix Math32 (2 variables in VAR -> DAT) 
 
-8) There is a bug – at least according to my opinion – in COGNEW, 
as it does not deliver the object context to the SPIN Interpreter 
in the new COG, which means you can only use procedures from your 
own object. 

'Example 
   OBJ 
       Sub1 : "sub1" 
   PUB main 
       COGNEW (sub1.go(0),@stack) 
'Does not work, and there is no warning        
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