SX/B Online Help

[Councer VAR Wby ce

TrrsiB=8400000000

[EoRYcounte oRokTo 255 M
[PAUSES100,

NEXT,

WIJ A)( ﬁ Copyright © 2004-2007 Parallax, Inc.
T All Rights Reserved

599 Menlo Drive, Suite 100 version 1.51.03 -- 14 MAY 2007
Rocklin, CA 95765

Tel: 916-624-8333
Fax: 916-624-8003
SX-Key and BASIC Stamp are registered trademarks of
Toll-free Sales: 888-512-1024 (Continental US only) Parallax Inc. SX/B and the Parallax logo are trademarks
Toll-free Support: 888-99-STAMP (Continental US only)  of Parallax Inc. SX is a trademark of Ubicom; used with
permission. 1-Wire is a registered trademark of

Visit us on the web:www.parallax.com Maxim/Dallas Semiconductor. I°C is a registered
trademark of Philips Corporation. Other trademarks
SX Microcontrollers Forum: forums.parallax.com/forums herein are the property of their respective holders.

Comments and feedback: editor@parallax.com

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 1



SX/B Compiler Overview

The SX/B compiler is a BASIC language compiler for the Parallax SX family (SX20, SX28, SX48) microcontroller (as
well as the older Ubicom™ SX18 and SX52), and was designed to meet two specific goals:

1. Expedite the task of the professional engineer by creating a simple, yet robust high-level language for the
SX microcontroller. This allows SX-based projects to be prototyped and coded quickly.

2. Assist the student programmer wishing to make the transition from pure high-level programming (i.e.,
PBASIC) to low-level programming (SX assembly language).

SX/B is an non-optimizing, inline compiler. What this means is that each BASIC language statement is converted
to a block of assembly code in-line at the program location; no attempt is made to remove redundant instructions
that would optimize code space. This allows the advanced programmer to modify code as required for specific
projects, and -- perhaps more importantly -- provides an opportunity for the student to learn SX assembly
language techniques by viewing a 1-for-1 (from BASIC to assembly language) output.

Conventions Used in this Document
In syntax descriptions, curly braces {} are used to indicate optional items. For example:

PULSOUT Pin, Duration {, Resolution}n this case, the parameter for Resolution is optional.

In syntax descriptions, brackets [] indicate that the parameter must be one of the presented items (separated
with the pipe | character). For example:

DEVICE [SX18 ] SX20 | SX28 | SX48 | SX52] {, ...}

In this case, the DEVICE directive must indicate SX18, SX20, SX28, SX48, or SX52 (and may also include other
optional items).

Example code is presented on a blue-tinted background:

Main:
FOR RB = 0 TO 255
PAUSEUS 10 000
NEXT
END

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 2



Version 1.51.03 -- Release date 05 JUL 2006

e  SUBs may have 5 parameter bytes ONLY if it requires exactly 5

mySub SUB 5 ' This is legal
mySub SUB 2,5 ' This is NOT legal

e Added and enhanced SX/B commands:
e LOOP NEVER option
e SUB...ENDSUB and FUNC...ENDFUNC structure
e ANALOGIN command
e READINC command
e NOP command
e Added Conditional Compilation Directives:
e ' {$DEFINE name}
e '"{$UNDEFINE name}
e '{$INFDEF name}
e '"{$INFDEF name}
e '{$ELSE}
o '{$ENDIF}
e  Predefined "SX18", "SX28", "SX48", or "SX52" by DEVICE directive

e Directive may NOT be nested.

Example of Conditional Compiling Directives
' {SDEFINE USE RB} ' Remove this line to use RC

'{SIFDEF USE_RB}
LEDS PIN RB

' {SELSE}

LEDS PIN RC

' {SENDIF}

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 3



Version 1.50.01 -- Release date 05 JUL 2006

Added Word (16-bit) variables

16-bit pseudo-ports: RBC (5X28/48/52), RCD (5X48/52), RDE (5X48/52)
Added defined functions (FUNC) to return up to four bytes

Improved and updated instructions for compatibility with Word variables

New SX/B instructions

-- Pin commands (5X48/52 only): PULLUP, SCHMITT, CMOS, TLL
-- COMPARE

-- COUNT

-- ON expression GOTO | GOSUB

-- TIMER1 and TIMER2 (5X48/52 only)

-- WDATA directive

Version 1.42.01 -- Release date 17 OCT 2005

Improved: DATA does not have to appear in listing before it is used

Improved: __PARAMX storage for SX48/52 during interrupts
-- SX48/52 now has 216 array elements

Fixed: LOOKUP jump

Fixed: _ REMAINDER for SX18
Fixed: __ PARAMCNT for SX48/52
Fixed: RETURNINT var for SX48/52

Version 1.42 -- Release date 29 AUG 2005

Fixed: Error with foo(bar) = SUBROUTINE_NAME

Version 1.41 -- Release date 08 AUG 2005

Fixed: Error with >> and << operators.

Fixed: Order of Label/String address values to offset, base
-- now Little Endian

Improved: Removed redundant instructions from READ.

Version 1.40 -- Release date 03 AUG 2005

Improved: Baud rate performance for SERIN/SEROUT

Added: Error raised if SERIN/SEROUT baud rate too high for target FREQ
Added: Support for stored and inline strings (see READ)

Fixed: foo(1) = foo(1) + bar(1).7

Fixed: foo(1) = foo(1) - bar(1)

Fixed: bitVar = foo(1).7

Fixed Error: UNKNOWN COMMAND "LET" when using unknown variable name

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 4



e  Fixed Error: When unknown variable is used with PAUSEUS

Version 1.31 -- Release date 08 JUL 2005
o Fixed: INTURRUPT and RETURN bug that affected SX48 and SX52
. Removed: MOV W, #0when RETURN used without value
. Improved: PWM Duration timing accuracy
e  Added: Checks FREQ directive against DEVICE setting

Version 1.30 -- Release date 01 JUL 2005
. Added: ID directive

. Added: Subroutines can behave like functions, returning a value directly to a variable
-- Example: foo = SubName

e PAUSE and PAUSEUS now allow fractional constants

. Allow bitVar = byteVar
-- bitVar = 0 when byteVar = 0; bitVar= 1 when byteVar <> 0

) Fixed: bitVar = ~bitVar error

Version 1.22 -- Release date 9 MAY 2005
o Documented: DINZ, and SWAP
e BANK directive updated -- may be used without parameters
. Added: EXIT for FOR...NEXT and DO...LOOP
. Fixed: Run-time error with LOAD

Version 1.21 -- Release date 27 APR 2005
. Added: DO...LOOP

Version 1.20 -- Release date 22 APR 2005
o Improved: SX/B supports all SX micros (SX18, SX20, SX28, SX48, and SX52)
o Added: Subroutine (SUB) declaration simplifies programming
o Added: Code pages handled automatically
. Added: IF...THEN...ELSE...ENDIF
e  Added: Commands for Philips I?°C® communications (master only)
. Added: Commands for Dallas/Maxim 1-Wire® communications
. Added: SWAP and DINZ commands
o Added: BANK support (for SASM) -- simplifies access to non-global variables

Version 1.2 embodies major structual improvements and simplification over version 1.1, specifically in the area
of declared subroutines and the automatic handling of code pages. Most programs written for version 1.1 will
compile without change, however, it is recommended that these programs be updated to version 1.2
specifications to take full advantage of the SX/B compiler.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 5



Version 1.10 -- Release date 15 DEC 2004
e  Allow BRANCH to use @ with Label
e  Allow RETURNINT BytelVar
o Added FOR...NEXT overflow checking
e  Added NOPRESERVE option to INTERRUPT
. Allows bits to be passed as parameters (sets _ PARAMx to 0 or 1)
. Added _RAM() system array (use with '@' RAM addresses)
. Allows computed constants (SASM only, not for SX/B commands)
3 Improved timing accuracy of PAUSE, PAUSEUS, PULSIN, PULSOUT, SERIN, and SEROUT

Version 1.00 -- Release date 01 NOV 2004

. Initial release

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 6



Disclaimer of Liability

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used
with Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and
health, resulting from use of any of our products. You take full responsibility for your SX microcontroller
application, no matter how life-threatening it may be.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 7



SX/B Definitions
I/0O Pins

I/0 pins are defined using the PIN definition -- either as a group, or as a single pin -- using the following syntax:

Symbol PIN
Port{.Bit} {{OUTPUT} | {INPUT{SCHMITT |NOSCHMITT |CMOS|TTL} {PULLUP|NOPULLUP} {INTR RISE]
INTR FALL}}

DigCtrl PIN RA OUTPUT ' 4 OUTPUT pins
Segments PIN RB OUTPUT ' 8 OUTPUT pins
Sio PIN RC 7 INPUT ' 1 INPUT pin

OUTPUT - Pin will be set to an output at startup

INPUT - Pin will be set to an input at startup

SCHMITT - Enables Schmitt trigger input levels

NOSCHMITT - Disables Schmitt trigger input levels

CMOS - Enables CMOS input levels (50% VDD)

TTL - Enables TTL input levels (1.4 V)

PULLUP - Enables built-in pullup resistors

NOPULLUP - Disables built-in pullup resistors

INTR_RISE - Enables interrupt on riding edge (Port RB only)
INTR_FALL - Enables interrupt on falling edge (Port RB only)
As of SX/B version 1.5, three 16-bit pseudo-ports have been added:

e RBC - ports RB and RC
e RCD - ports RC and RD (5X48/52)
e  RDE - ports RD and RE (5X48/52)

On power-up or an external reset (via MCLR), an SX/B program clears all I/O pins (port bits cleared to 0) and
initializes them to inputs (TRIS bits set to 1).

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 8



Constants

Constant values can be declared in four ways: decimal (default), hex, binary, and ASCII using the following
syntax:

Symbol CON Value
Hex numbers are preceded with a dollar sign ($), binary numbers are preceded with a percent sign (%), and

ASCII characters and strings are enclosed in double quotes ("). If no special punctuation is used then the SX/B
compiler will assume the value is decimal. An underscore character may be used in numbers for clarity.

MaxCount CON 4 000 ' decimal

LedMask CON SFO ' hex

SegMap CON %0110 0101 ' binary

Letter CON "A" ' ASCII character
Baud CON "T9600" ' ASCII string

Constant names can be any combination of letters, numbers, and underscores (_), but the first character must
not be a number. Also, constant names cannot use reserved words, such as SX/B instruction names (SERIN,
GOTO, etc.) and SX aliases (RA, OPTION, etc.). The maximum number of characters allowed for a constant
name is 32.

As of version 1.10 you may define computed constants for use by SASM in assembly routines. For example:

B2400 CON 16 ' 2400 Baud

B9600 CON 4 ' 9600 Baud
BitTm CON B9600 ' samples per bit
BitTml5 CON 3*BitTm/2 ' 1.5 bits

In the examples above, the first three constants may be used anywhere in the program. The final definition, for
BitTm15, is a computed constant and my be used anywhere a variable is allowed. Note that computed constants
may not be used where a constant value is required (e.g., the frequency parameter of FREQOUT).

String constants can be used to create "shortcuts" that ease programming, in effect, allowing the programmer to
create new commands. For example:

GOSUB RX Byte, @serByte ' get command

can be replaced with:

SERRX @serByte ' get command

by defining the following string constant:

SERRX CON "GOSUB RX Byte, "

Using string constants in this manner has generally been superceded by the SUB and FUNC definitions (for

subroutine names and parameter requirements). See below for an improved method of declaring subroutines and
functions.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 9



Variables
SX/B supports words, bytes, arrays of bytes, and bit variables using the following syntax:

Symbol VAR Word{.bitIndex}
Symbol VAR Byte{ (Size)}{.bitIndex}
Symbol VAR Bit

Variable space (bytes):

Device |General Arrays Max. Array
SX18/20] 20 |6x16 + 1x5 + 1x4| 16 (each)
SX28 19 |6x16 + 1x5 + 1x3|16 (each)

SX48/52| 17 223 223

result VAR Word ' word (16 bits)

count VAR Byte ' one byte (eight bits)
display VAR Byte (4) ' array of bytes

timer VAR Byte (NumTimers) ' named constants are allowed
alarm VAR Bit ' one bit

When defining byte arrays, only constant values or named constants may be used for the Size parameter, and
array elements are zero-based, that is the elements are indexed from zero to Size-1. For example, myArray(10)
contains the elements myArray(0) through myArray(9). In the SX18/20/28 arrays are limited to 16 elements; in
the SX48/52 arrays may have up to 223 elements. When defining arrays for the SX18/20/28 it is best to define
them largest to smallest to maximize RAM use efficiency.

Note that word variables may not be used in the index of an array. You can, however use the LSB of a word
variable like this:

idx VAR Word
Start:
FOR idx = 1 TO 10
Leds (idx LSB) = idx
NEXT
END

Variable names may be aliased (renamed) for programming convenience. This also allows a group of bit variables
to be included in the same byte for single-line evaluation or modification

clock VAR Byte (3) ' clock array
secs VAR clock (0) ' seconds

mins VAR clock (1) ' minutes

hrs VAR clock (2) ' hours

flags VAR Word ' all flags
hiTemp VAR flags.15 ' high temp flag
loTemp VAR flags.1l4 ' low temp flag

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 10



Internal SX aliases may also be renamed for improved program readability. For example:

Segs PIN RB ' display segments (anodes)
TRIS Segs VAR TRIS B ' segments TRIS reg
DigCtrl PIN RA ' digit control (cathode)
TRIS Dig VAR TRIS A ' digits TRIS reg

Variable names can be any combination of letters, numbers, and underscores (_), but the first character must not
be a number. Also, variable names cannot use reserved words, such as SX/B instruction names (SERIN, GOTO,
etc.) and SX aliases (RA, OPTION, etc.). The maximum number of characters allowed for a variable name is 32.

On power-up or an external reset (via MCLR), an SX/B program initializes all variables to zero unless the
NOSTARTUP option is used with the PROGRAM directive.

Variables are usually passed by value using this form:
varl = var2 ' copy var2 to varl

... actually copies the value of var2and places it into varl. The address (RAM location) of a variable may be
passed by prefacing the variable name with '@'":

varl = @var2 ' put address of var2 into varl

This feature is particularly useful for passing address parameters to subroutines, especially when using PUT,
GET, or the _ RAM() system array.

Note that when assigning a bit variable the value of a byte or word, as in...
bitVar = variable

... the bit variable will get cleared to zero if the variable is zero, otherwise the bit variable will be set to one. If
you would rather copy a specific bit from a byte or word variable, simply use the bit index you wish to copy:

bitVar = variable.bitIndex
Word variables have an additional assignment option with two byte values (variables or constants):

wordVar = 1lsbValue, msbValue

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 11



Program Labels

An SX/B program uses labels to define entry points into code sections or data tables. When used as a code entry
point or data table name, label names must start in column one (not indented), end with a colon(:), and be on its
own line. When used elsewhere in the program, labels are named without the colon, as in the example below:

Start: ' colon required
idx = 0
PAUSE 500
Main: ' colon required
READINC Msg + idx, char ' no colon required
INC idx
IF char = 0 THEN Start ' no colon required
SEROUT Sio, Baud, char
GOTO Main ' no colon required
b o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o o o o o e e
Msg: ' colon required

DATA "SX/B makes the SX fun!", 13, O

Label names can be any combination of letters, numbers, and underscores (_), but the first character must not
be a nhumber. Also, label hames cannot use reserved words, such as SX/B instruction names (SERIN, GOTO, etc.)
and SX aliases (RA, OPTION, etc.). The maximum number of characters allowed for a label name is 32.

Comments
Comments can be used to add additional information to a program. The apostrophe character (') begins a
comment section; anything to the right of the comment character will be ignored by the compiler. This allows

comments to be added to a line of code. Using the comment character is also a convenient way to disable a line
of code without removing it from the program.

' Display a running counter on RB

Main:
INC RB ' update LEDs

' INC RB ' this line disabled
PAUSE 100 ' insert delay
GOTO Main ' run forever

Note: For backward-compatibility with older versions of the BASIC programming language, REM may be used to
define a line comment, though this style is outdated and generally discouraged.

REM This is an old-fashioned style comment and typically not used.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 12



Inline Assembly Instructions

SX assembly instructions can be inserted into an SX/B program using the "\" (back-slash) character to preface the
assembly code statement. For large blocks of assembly code ASM...ENDASM is recommended.

LedsLo PIN RB OUTPUT

LedsHi PIN RC OUTPUT

cntr VAR Word ' 16-bit counter

Start:

Main:
\ MOV LedsLo, cntr_ LSB ' copy low byte to LEDs
\ MOV LedsHi, cntr MSB ' copy high byte to LEDs
PAUSE 100
\ INC cntr LSB ' update counter
\ sz ' skip if cntr LSB is zero
\ JMP Main ' jump to Main
\ INC cntr LSB ' increment high byte
\ JMP Main ' jump to Main

Note: Array elements hold the address of a variable so they should not be used in inline assembly instructions.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 13



Subroutine Declaration

The programming and use of subroutines is simplified by declaring the subroutine name and the parameter(s) (if
any) required. Additionally, the declaration of subroutines allows them to return a byte value (see FUNC, below,
for return word values). Declaring subroutines offers significant advantages to the programmer:

e  The compiler can check code for the correct number of parameters
e GOSUB is no longer required to call the subroutine

e  The subroutine can return a direct (byte) value
-- This is simpler than passing the variable's address (@someVar)

e Code page management is automatically handled
SX/B subroutines are defined using the following syntax:
Label SUB {Min{, Max}}

Where Min is the minimum number of required parameters (if any) and Max is the maximum number of
parameters passed to the subroutine. If Maxis not specified then Minis the fixed number of parameters allowed.

The following short segment shows how predefined subroutines simplify SX/B program development:

TX BYTE SUB 1, 2 ' sub with 1 or 2 parameters
Start:

TXBYTE "*" ' send one asterisk

TXBYTE "-", 20 ' send 20 dashes

TXBYTE ' raises syntax error

END

SUB TX BYTE

templ =  PARAMI ' save character
IF  PARAMCNT = 2 THEN

temp2 =  PARAMZ ' save repeats
ELSE

temp2 = 1 ' set to 1 if not specified
ENDIF
DO WHILE temp2 > O

SEROUT SOut, Baud, templ ' send the byte

DEC temp?2 ' dec repeats
LOOP
ENDSUB

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 14



Subroutines can also behave like functions in other languages, returning a byte value directly to a variable after
the subroutine call. For example:

char = RX_BYTE

The value/variable to be returned to the calling code is placed after RETURN at the end of the subroutine code:

SUB RX BYTE

SERIN Sin, Baud, templ ' wait for serial input
RETURN templ ' return to caller
ENDSUB

When defining subroutines that require no parameters (as RX_BYTE, above), it is best to define the subroutine
with a zero parameter count, as this will prevent the compiler from generating an assembly instruction (CLR
__PARAMCNT) that is not needed by the program:

RX BYTE SUB 0 ' receive serial byte

Subroutines do not have to be declared, but doing so allows the subroutine code to be placed anywhere in the
listing (without declaration the code must be in the first half of a code page), GOSUB is no longer needed to call
the subroutine, and the compiler is able to check the for the proper number of parameters. The only requirement
is that the SUBdeclaration(s) be placed in the first half of a code page. The advantages of the SUB declaration
far outweigh the minor effort required to add the declaration.

When declaring a subroutine for string handling, it must be set to accept at least two parameters (base and offset
address values). See READ for details on handling strings with SX/B.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 15



Function Declaration

As of SX/B 1.5, a subroutine can return one to four bytes when defined as a function. As with SUB, FUNC
routines are declared in the first half of a code page, but the actual code may reside anywhere.

SX/B functions are defined using the following syntax:
Label FUNC ReturnCount{, Min{, Max}}

Where ReturnCountis the number of bytes (1 - 4) returned by the function, Minis the minimum number of
required parameters (if any), and Max is the maximum number of parameters passed to the function.

The following short segment shows how to define and use a function that returns a 16-bit value:

FREQ IN FUNC 2 ' function returns two bytes
Start:

freql = FREQ IN ' get frequency

END

FUNC FREQ IN

COUNT Fpin, 1000, tmpwWl ' count cycles for one second
RETURN tmpWl ' return two bytes
ENDFUNC

Note that a function can return more bytes than the target variable. If, for example, a function is designed to
return a word and the target output variable for that function is a byte, only the LSB of the return value will be
assigned.

The programmer may assign additional return bytes manually, immediately following the function call. In the

example below the function is designed to return a 32-bit result. The low word of the result is automatically
assigned by the compiler, the high word of the result is manually assigned on the line that follows.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 16



result VAR Word ' 32-bit result
resultHi VAR Word

tmpW1l VAR Word ' subroutine work vars
tmpW2 VAR Word

tmpW3 VAR Word

WATCH result, 32, UHEX ' display 32-bit result

PROGRAM Start

Start:
result = MULT32 SFFFF, $0010 ' get low word
resultHi =  PARAM3,  PARAM4 ' get high word
BREAK ' display result in Debug
END

' Use: MULT32 valuel, value?2
-- multiplies two values
-- when mixing a word and byte, the word must be declared first

FUNC MULT32

IF _ PARAMCNT = 2 THEN ' byte * byte
tmpWl =  PARAMI1
tmpW2 =  PARAM2
ENDIF
IF  PARAMCNT = 3 THEN ' word * byte
tmpWl = __WPARAMlZ
tmpW2 = _ PARAM3
ENDIF
IF  PARAMCNT = 4 THEN ' word * word
tmpWl = __WPARAMlZ
tmpW2 = __WPARAM34
ENDIF
tmpW3 = tmpWl ** tmpW2 ' calculate high word
tmpW2 = tmpWl * tmpW2 ' calculate low word
RETURN tmpW2, tmpW3 ' return 32 bits, LSW first
ENDEFUNC

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 17



The discussion above applies to simple variables only. When using an array element
as the target, all bytes are automatically assigned. For example:

bigval VAR Byte (4)

bigVal = MULT32 $1234, $1234

In this case, bigVal(0) .. bigVal(3) are assigned to the return variables _ PARAM1 .. _ PARAM4 from the function.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 18



SX/B Directives

DEVICE (required)
DEVICE [SX18/SX20 | SX28 | SX48 | SX52] {, ...}
The DEVICE directive specifies the device type (e.g, SX18, SX28), oscillator type, and other SX fuse settings.

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

DEVICE SX48, OSC4MHZ

Note that for the SX18, SX20, or SX28, the "TURBO", "STACKX", and "OPTIONX" options
must be used. For the SX48 or SX52 they are not used.

Consult the SX-Key Development System Manual for a complete list of SX DEVICE options.

IRC_CAL

IRC_CAL/IRC SLOW | IRC_4MHZ | IRC_FAST]

The IRC_CAL directive specifies the calibration value for the internal RC oscillator.

When the options IRC_SLOW or IRC_FAST are specified, the IRCTRIM bits in the FUSEX device configuration
register are programmed to the minimum or maximum frequency value. When the option IRC_4MHZ is specified,
the SX-Key software performs a calibration procedure whenever a program is downloaded to the SX chip and
adjusts the IRCTRIM bits so that the internally generated clock frequency comes close as possible to 4 MHz.

IRC_CAL IRC 4MHZ ' calibrate internal RC clock

When not specified, the IRC_CAL setting is defaulted to IRC_SLOW.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 19



FREQ

FREQ Hertz{, EffectiveHz}

The FREQ (frequency) directive is used to set the frequency (in Hertz) of the SX-Key's internal programmable
oscillator to be used during debugging. FREQ is also used by the SX/B compiler for calculating delays in timing-
sensitive instructions (PAUSE, SERIN, SEROUT, etc.), so connecting a clock source that differs from the
compiled FREQ setting will affect stand-alone operation.

FREQ 4 000 000

Note that frequency can be any number from 31_250 to 110_000_000, but debugging via the SX-Key only works
with frequencies between 400_000 and 11_0000_000. The underscore characters are used to help make the
number more readable, as in 50_000_000, which is 50 MHz, but this convention is optional.

The optional parameter EffectiveHz is used to calculate the timing for SX/B instructions. If the program uses an
interrupt to perform background functions this value can be used to compensate for the time spent in the
interrupt routine. For example, if the interrupt is 100 cycles and is called every 1000 cycles, you would adjust the
frequency by 10% by using:

FREQ 4 000_000, 3 600 000

ID

ID ID String

The ID (identification) directive is used to write up to eight bytes of text into the ID word of the SX chip. This is
used to record a version number or other unique identification for the code. This ID word can be read out of the
SX chip at any time, regardless of the code protect setting. The line below will write GPXv2.1 into the ID word:

ID "GPXv2.1"

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 20



WATCH

WATCH Variable{.Bit}, Count, Format

The WATCH directive allows the definition of format for viewing and modifying variables at runtime during debug
mode. The variable's name, number of bits or bytes to view, and display format may be specified.

WATCH hertz, 16, UDEC
WATCH timer, 8, UDEC
WATCH flags.0, 1, UBIN

The table below lists the available format settings for the WATCH directive.

Format | Operation

UDEC | Displays value in unsigned decimal format
SDEC | Displays value in signed decimal format

UHEX | Displays value in unsigned hexadecimal format
SHEX | Displays value in signed hexadecimal format
UBIN | Displays value in unsigned binary format

SBIN | Displays value in signed binary format

FSTR | Displays value in fixed-length string format
ZSTR | Displays value in zero-terminated string format

Consult the SX-Key Development System Manualfor additional information about the WATCH directive.
Note: As of SX/B version 1.5, WATCH may be used in a simplified format:

WATCH anyVariable

The compiler will insert the correct number of bits and specify UDEC format.

LOAD

LOAD ‘'FileName.SXB"

The LOAD directive is used to insert an SX/B source code file at the current location.

LOAD "LCD.SXB"

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 21



INCLUDE

INCLUDE ‘FileName"

The INCLUDE directive is used to insert an SX assembly code file at the current location.

INCLUDE "I2C.SRC"

PROGRAM

PROGRAM /[abe/{NOSTARTUP}

The PROGRAM directive sets the execution start point (at a label) for the SX/B program. Note that the
PROGRAM directive must appear after the (optional) INTERRUPT hander, and in the first code page ($000 -
$199).

When the NOSTARTUP option is used the SX/B compiler will not insert the normal start-up code that pre-
initializes all RAM addresses to zero; in this case the programmer is responsible for appropriate initialization,
except the FSR which is cleared (see BANK, below)

Note that when the NOSTARTUP option is used the TRIS registers are not initialized, so you must set up the
ports as INPUTs or OUTPUTSs.

PROGRAM Start
Start:
OUTPUT RB

Main:
INC RB
PAUSE 1000
GOTO Main

BANK

BANK {DefaultBank} {NOCODE}

The BANK directive loads the BANK (FSR) variable with DefaultBank. The value will also be reloaded after any
instruction that modifies BANK (FSR). DefaultBank may be a constant or a byte variable that is in the global RAM
area (location <$10). If DefaultBank is the first variable declared, it will be in the global area.

If the NOCODE option is specified the BANK (FSR) is not changed immediately. This is useful if you know that the
BANK (FSR) has ready been set, so there is no need to set it again. Since BANK is a compiler directive it's affect
is strictly top-down, that is, its affect does not follow program flow if the program branches to a different section
of code.

If BANK is used with no parameters, it will set the BANK (FSR) to the DefaultBank. This is useful in assembly
routines, otherwise you would have to store the current FSR before using it.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 22



BREAK

BREAK

The BREAK directive inserts a breakpoint into the assembly code which can useful during program debugging.

Start:
OUTPUT RB BREAK

Main:
INC RB
GOTO Main

Note that only one BREAK directive may be used in an SX/B program. To create the effect of multiple
breakpoints, the programmer may insert the BREAK directive into a subroutine that can be called from any point

in the program.

ADDRESS (obsolete)

ADDRESS PageAddr

The ADDRESS directive sets the starting location for the instructions that follow.

Page 1:
ADDRESS 5200

Note that as of version 1.2, it is no longer necessary for the programmer to manually set code page addresses.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 23



SX/B Operators

Unary Operators

- (Negate)
Variable = -Value

Places the negative (two's complement) value of Value (which may be a constant or variable) into Variable.

Start:
OUTPUT RB

Main:
RB = SOF ' RB = %$00001111
RB = -RB ' RB = %$11110001
END

~, NOT (Bitwise Not)

Variable = o~ Value
Variable = NOT Value

Places the bitwise inversion of Value (which may be a constant or variable) into Variable. Each result bit is subject
to the following logic:

NOT 0 = 1
NOT 1 = 0
Start:
OUTPUT RB
Main:
Xx = SFO ' ' xx = %11110000
RB = NOT xx ' RB = %$00001111
RB = NOT RB ' RB = %$11110000
RB = ~RB ' RB = %00001111
RB.0 = ~RB.O ' RB = %00001110
RB.1 = NOT xx.7 ' RB = %00001100
END

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 24



Binary Operators

+ (Addition)
Variable = Valuel+ Value2

Adds two values (variables or constants) and places result in Variable. Note that when Variable is a byte the
result will be truncated to eight bits.

Start:
OUTPUT RB

Main:
RB = SOF ' RB = 200001111
RB = RB + S$FO ' RB = $11111111, C = 0
RB = RB + 2 ' RB = %00000001, C =1
END
- (Subtraction)

Variable = Valuel - Value?

Subtracts ValueZ from Valuel and places the result in Variable. If the result is less than zero, two's-compliment
format is used to store the result.

Start:
OUTPUT RB

Main:
RB = $OF ' RB = %00001111 (15)
RB = RB - 7 ' RB = %00001000 (8), C =1
RB = RB - 10 ' RB = %11111110 (-2), C = 0
END

* (Multiplication)
Variable = Valuel * ValueZ

Multiplies Valuel by Value2? and places the result in Variable.

Start:
OUTPUT RB

Main:
RB = %$00001111 ' RB = %00001111 (15)
RB = RB * 16 ' RB = $11110000 (240)
RB = RB * 2 ' RB = %$11100000 (224)
END

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 25



/ (Division)
Variable = Valuel | Value2

Divides Valuel by ValueZ and places the (integer) result in Variable.

Start:
OUTPUT RB

Main:
RB = S$SFO ' RB = %$11110000 (240)
RB = RB / 16 ' RB = %00001111 (15)
RB = RB / 4 ' RB = %00000011 (3)
END

/[ (Modulus)
Variable = Valuel [|] Value?

Divides Valuel by Value2 and places the remainder in Variable.

Start:
OUTPUT RB

Main:
RB = 25 ' RB = %00011001 (25)
RB = RB // 10 ' RB = %$00000101 (5)
END

Note: The remainder of a division (modulus) is available immediately after the division or modulus operation. This
code:

digl0 = value / 10
dig0l = __ REMAINDER

.. uses half the instruction space of:

digl0 value / 10
dig0l = value // 10

The only requirement for using __REMAINDER (or __ WREMAINDER for word values) is that the assignment to
another variable must be the first instruction following the division or modulus operation.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 26



*/ (Multiply Middle)
WordVar = Valuel *] Value?

Multiplies Valuel by ValueZ , returning the middle 16 bits of the 32-bit result to WordVar. This has the effect of
multiplying a value by a whole number and a fraction. The whole number is the upper byte of the multiplier (0 to
255 whole units) and the fraction is the lower byte of the multiplier (0 to 255 units of 1/256 each).

The */ (star-slash) operator gives you an excellent workaround for SX/B's integer-only math. Suppose you want
to multiply a value by 1.5. The whole number, and therefore the upper byte of the multiplier, would be 1, and the
lower byte (fractional part) would be 128, since 128/256 = 0.5. It may be clearer to express the */ multiplier in
hex -- as $0180 -- since hex notation keeps the contents of the upper and lower bytes separate.

WATCH tmpWl

Start:
tmpWl = 100
tmpWl = tmpWl */ $0180 ' Multiply by 1.5 [1 + (128/256)]
BREAK ' view in Debug Watch window
END

** (Multiply High)
WordVar = Valuel ** Value?

Multiplies Valuel by ValueZ, returning the high 16 bits of the result to WordVar. When you multiply two 16-bit
values, the result can be as large as 32 bits. Since the largest variable supported by SX/B is 16 bits, the highest
16 bits of a 32-bit multiplication result are normally lost. The ** (star-star) operator gives you these upper 16
bits.

For example, suppose you multiply 65000 ($FDES8) by itself. The result is 4,225,000,000 or $FBD46240. The *
(multiplication) operator would return the lower 16 bits, $6240; the ** operator returns $FBD4.

WATCH tmpWl, 16, UHEX
WATCH tmpW2, 16, UHEX

Start:
tmpWl = SFDES
tmpW2 = tmpWl ** tmpWl ' Multiply valuel by itself
BREAK ' view in Debug Watch window
END

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 27



MAX

Variable = Value MAX Limit

Places Value into Variable limiting the maximum value of Variableto Limit.

Start:
OUTPUT RB

Main:
FOR idx =

0 TO 15 ' idx = 0 .. 15

RB = idx MAX 7 '"RB =0 .. 7
PAUSE 100

NEXT idx
GOTO Main

MIN

Variable = Value MIN Limit

Places Value into Variable forcing the minimum value of Variableto Limit.

Start:
OUTPUT RB

Main:

FOR idx = 0 TO 15
RB = idx MIN 7

' idx = 0 .. 15
'RB =7 .. 15

PAUSE 100

NEXT idx

GOTO Main

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 28



& AND (Bitwise AND)

Valuel & Value2
Valuel AND Value2

Variable
Variable

Performs a bitwise AND operation on Valuel and Value2, then places the result in Variable. Each result bit is
subject to the following logic:

0&0=0
0&1 =0
1 &0=0
1 &1 =1
SEAFTIE 8
OUTPUT RB
Main:
RB = $O0F & %11111111 ' RB = 00001111
RB = RB AND $%$11111100 ' RB = $00001100
END

|, OR (Bitwise OR)

Variable = Valuel | Value2
Variable = Valuel OR Value?

Performs a bitwise OR operation on Valuel and Value2, then places the result in Variable. Each result bit is
subject to the following logic:

0] 0=0

0] 1=1

11 0=1

11 1=1

Start:
OUTPUT RB

Main:
RB = %$00001111 ' RB = %00001111
RB = RB | %11000000 ' RB = %$11001111
RB = RB OR %00011111 ' RB = %11011111
END

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 29



A, XOR (Bitwise Exclusive OR

Valuel1 ~ Value2
Valuel XOR Value?

Variable
Variable

Performs a bitwise Exclusive OR operation on Valuel and Value2, then places the result in Variable. Each result
bit is subject to the following logic:

0O0~0=020

0o~1 =1

1 ~0=1

1 ~1 =20

Start:
OUTPUT RB

Main:
RB = %$00001111 ' RB = %00001111
RB = RB ©~ %$11000000 ' RB = %11001111
RB = RB XOR %00011111 ' RB = %$11010000
END

<<, SHL (Shift Left)

Variable = Valuel << Value?
Variable Valuel SHL Value?

Left shifts the bits of Valuel by the number specified in ValueZ2. Bits shifted off the left end (MSB) of a number
are lost; bits shifted into the right end of the number are zeros. Shifting the bits of a value left n number of times
has the same effect as multiplying that number by 2 to the nth power. For instance 15 << 3 (shift the bits of the
decimal number 15 left three places) is equivalent to 15 * 23 (15 * 8).

Start:
OUTPUT RB

Main:
RB = %$00001101 << 2 ' RB = %00110100
RB = RB SHL 4 ' RB = %01000000
END

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 30



>>, SHR (Shift Right)

Variable = Valuel >> Value?
Variable Valuel SHR Value?

Right shifts the bits of Valuel by the number specified in ValueZ2. Bits shifted off the right end (LSB) of a number
are lost; bits shifted into the left end of the number are zeros. Shifting the bits of a value right n number of times
has the same effect as dividing that number by 2 to the nth power. For instance $F0 >> 3 (shift the bits of the
decimal number 240 right three places) is equivalent to 240 / 23 (240 / 8).

Start:
OUTPUT RB
Main:
RB = %$10110000 >> 2 ' RB = %00101100
RB = RB SHR 4 ' RB = %00000010
END

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 31



SX/B Aliases
SX Registers

SX18SX20SX285X48SX52

IND Indirect Register $00

RTCC Real Time Clock/Counter $01

PC Program Counter $02

STATUS Status Register $03

PA2 Page Select bit 2 STATUS.7

PA1 Page Select bit 1 STATUS.6

PAO Page Select bit 0 STATUS.5

_TO Time Out STATUS.4

PD Power Down STATUS.3

Z_ Zero STATUS.2

DC Digit Carry STATUS.1

C Carry STATUS.O

FSR File Select Register $04

RA Port A $05

RB Port B $06

RC Port C $07

RD Port D $08

RE Port E $09

RBC Ports B & C as 16-bit entity $06 (LSB) + $07 (MSB)
RCD Ports C & D as 16-bit entity $07 (LSB) + $08 (MSB)
RDE Ports D & E as 16-bit entity $08 (LSB) + $09 (MSB)
PORTA Port A $05

PORTB Port B $06

PORTC Port C $07

PORTD Port D $08

PORTE Port E $09

TRIS_A Data Direction register for RA
TRIS_B Data Direction register for RB
TRIS_C Data Direction register for RC
TRIS_D Data Direction register for RD
TRIS_E Data Direction register for RE

PLP_A‘ Pull-Up resistor enable for RA
PLP_B? Pull-Up resistor enable for RB
PLP_C! Pull-Up resistor enable for RC
PLP_D* Pull-Up resistor enable for RD
PLP_E! Pull-Up resistor enable for RE
LVL_A! TTL/CMOS select for RA
LVL B* TTL/CMOS select for RB
LvL C? TTL/CMOS select for RC
LVL_D* TTL/CMOS select for RD
LVL_E? TTL/CMOS select for RE
ST_B! Schmitt-Trigger enable for RB
ST_C! Schmitt-Trigger enable for RC
ST_ D! Schmitt-Trigger enable for RD
ST_E! Schmitt-Trigger enable for RE

WKEN_B! Wake Up enable register
WKED_B! Wake Up edge select register
WKPND_B *?>MIWU pending register

R N N N N N N N R N N N N N N NS Y
R N N N N N N N R N N N N N N NS Y
R N N N N N N N N N N N N N AN S SN NN

N O N O N N N N NN
N N O N O O O O N N N N NN

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 32



e CMP_B "2 Comparator enable register v v v v ¥
e T1CPL Low byte of Timer T1 capture register ¥ X ¥ v
e T1CPH High byte of Timer T1 capture register ¥ X ¥ v
e TIRICML Low byte of Timer T1 compare register 1 XX X v v
e TIRICMH High byte of Timer T1 compare register 1 ¥ X v
e TIR2CML  Low byte of Timer T1 compare register 2 ¥ X ¥ v
e TIR2CMH  High byte of Timer T1 compare register 2 ¥ X v
e TICNTA Timer T1 control register A O A S
e TICNTB Timer T1 control register B ¥ X ¥ v
e T2CPL Low byte of Timer T2 capture register ¥ X ¥ v
e T2CPH High byte of Timer T2 capture register ¥ X v
e T2RICML  Low byte of Timer T2 compare register 1 ¥ X v
e T2R1ICMH High byte of Timer T2 compare register 1 ¥ X ¥ v
e T2R2CML  Low byte of Timer T2 compare register 2 ¥ X v
e T2R2CMH  High byte of Timer T2 compare register 2 ¥ oOoX M N
e T2CNTA Timer T2 control register A ¥oOox M
e T2CNTB Timer T2 control register B ¥oOox M
e MODE Mode register v v vV
o M Mode register v v v
. A A S A

OPTION Option register

! When changed (i.e., Register = Value), the SX/B compiler automatically inserts the correct Mode (M) register
instruction.
2 When changed (i.e., Register = Variable), Variable is swapped with Register.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 33



SX/B Variables

SX18SX205X285X48SX52
e _ RAM() Provides access to any RAM address $00 v o N
e _ PARAM1 First byte parameter $08 / $0A * v
e _ PARAM2 Second byte parameter $09 / $0B * v
e _ PARAM3 Third byte parameter $0A / $0C~ v ¥ v v
e _ PARAM4 Fourth byte parameter $0B / $0E ~ A S S A
e _ WPARAM12 First word parameter $08,09 / $0A,$0B * N N S A
e _ WPARAM23 Second word parameter $09,$0A / $0B,$0C " + + « v
e _ WPARAM34 Third word parameter $0A,$0B/ $0C,$0D " v v « «
e _ REMAINDER Remainder after a division $08 / $0A * N R S A
e _ WREMAINDER Remainder after a division $08,$09 / $0A,$0B" v « ¥
e _ PARAMCNT  Number of parameters passed to subroutine $0C / $0E * v ¥ v v
e _ INTPARAMFSR Save/Restore location of "M" and __ PARAMx$F5 A A S S
e TRISA' TRIS_A copy $FA v
e TRISB' TRIS_B copy $FB R A A S
e _TRISC' TRIS_C copy $FC L S
e TRISD' TRIS_D copy $FD L A S S
e TRISE' TRIS_E copy $FE X X X ¥

SX/B Constants

SX18 SX20 SX28 SX48 SX52
e _ FREQMHZFrequency (in MHz) as set in FREQ directive. A A S A

* Note: Location depends on module used: SX18/20/28 or SX48/52
" Note: These registers must not be modified by the programmer, otherwise some SX/B instructions will be
adversely affected.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 34



SX/B Commands

2 m All SX chips
m SX48/52 only

» = ANALOGIN
+» » ASM
» = BRANCH

m CLEART1

m CLEART2

m CMOS
» = COMPARE
# m COUNT t
» m DATA
» m DEC
-~ m DINZ
» = DO ... LOOP
- m END
s w EXIT
» = FOR ... NEXT
# m FREQOUT *
» w GET
» = GOSUB ... RETURN
7 & GOTO
» m HIGH
¢ m 12CRECV t
» m 12CSEND
» m [2CSTART t
» m [2CSTOP t
# = IF ... THEN
» wm1F... THEN ... ELSE

» u INC

# a INPUT

# @ INTERRUPT

s m LET

# m LOOKDOWN

/ m LOOKUP

s u LOW

- = ON

/ @ OUTPUT

# @ OWRDBIT t

» m OWRDBYTE t

# @ OWRESET *

~ # OWWRBIT t

» s OWWRBYTE t

# m PAUSE T

# @ PAUSEUS t
m PULLUP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

ANALOGIN InPin, OutPin, Result {, Prime }
ASM Instruction(s) ... ENDASM

BRANCH Offset, LabelO {, Labell, Label2, ...}
Obsolete - replaced with TIMER1 CLEAR
Obsolete - replaced with TIMER2 CLEAR
CMOS Pin {, Enable}

COMPARE Mode, Result

COUNT Pin, Duration, Variable

DATA Const0 {, Constl, Const2, ...}

DEC Vlariable

DINZ Variable, Label

DO {WHILE | UNTIL Condition } ... LOOP {NEVER | UNTIL | Condition |

WHILE Condition

END

{IF Condition THEN} EXIT

FOR ByteVar = StartVal TO EndVaKSTEP {-}StepVal; ... NEXT
FREQOUT Pin, Duration, Freq

GET Location, ByteVar {, ByteVar, ...}

GOSUB Labe/... RETURN { Value }

GOTO Label

HIGH Pin

I2CRECV Pin, ByteVar, AckBit

I2CSEND Pin, ByteVal{, AckVar}

I2CSTART Pin

I2CSTOP Pin

IF Condition [THEN | GOTO] [Label | EXIT]

IF Condition THEN Statement(s){ ELSE Statement(s) } ENDIF
INC Variable

INPUT Pin

INTERRUPT Instruction(s) ... RETURNINT {Cycles}
{LET} Expression

LOOKDOWN 7arget, Valuel, {Valuel, Value2, ...} Variable
LOOKUP Index, Valuel, {Valuel, ValueZ, ...} Variable
LOW Pin

ON Expression [GOTO | GOSUB] Label0 {, Labell, Label2}
OUTPUT Pin

OWRDBIT Pin, Bitvar

OWRDBYTE P~in, ByteVar

OWRESET Pin {, ByteVar}

OWWRBIT Pin, BitVal

OWWRBYTE Pin, ByteVal

PAUSE laluel {f, | *] Value2}

PAUSEUS laluel {/, | *] Value2}

PULLUP Pin {, Enable}

Page 35



» m PULSIN T PULSIN Pin, State, ByteVar {, Resolution}

» = PULSOUT * PULSOUT Pin, Duration {, Resolution}
» m PUT PUT Location, Value {, Value, ...}
» m PWM T PWM Pin, Duty, Duration
# s RANDOM RANDOM Seed {, Duplicate}
» = RCTIME * RCTIME Pin, StartState, ByteVar {, Resolution}
# s READ / READINC READ | READINC Base {+ Offset}, ByteVar {, ByteVar, ...}
» = RESETWDT RESETWDT
» = REVERSE REVERSE Pin
m SCHMITT SCHMITT Pin {, Enable}
» m SERIN t SERIN Pin, BaudMode, ByteVar {, Timeout, Label}
» m SEROUT * SEROUT Pin, BaudMode, Value
» m SHIFTIN SHIFTIN DPin, CPin, ShiftMode, ByteVar {|Count}
» = SHIFTOUT SHIFTOUT DPin, CPin, ShiftMode, Value {|Count}
» = SLEEP SLEEP
# @ SOUND t SOUND Pin, Note, Duration
» m SWAP SWAP Variable
= TIMER TIMER[1 | 2] Command {Value {, Value}}
» = TOGGLE TOGGLE BitVar
- TTL TTL Pin {, Enable}
- m WDATA WDATA Const0 {, Constl, Const2, ...}

tNote: While all SX/B commands will run at any FREQ setting, commands that are time-sensitive (particularly
PAUSEUS) have been designed for FREQ settings between 4 MHz and 50 MHz. FREQ settings outside this range
(e.g. low-power applications running at 32 kHz) are not recommended when using time-sensitive instructions.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 36



ANALOGIN mample

ANALOGIN InPin, OutPin, Result {, Prime}

Function

The SX/B ANALOGIN command converts an analog voltage to a digital value by using a method known as
continuous calibration. This method requires one input pin and one output pin on the SX chip. The only required
hardware is two resistors and one capacitor.

e InPin is the input pin.

e OutPin is the output pin.

e Result is a byte variable that will receive the value.

e Prime is the number of priming cycles to execute before taking the measurement. Prime is optional; if
not specified the default is 1 cycle.

Explanation

The method works by taking advantage of the input pin's threshold voltage. This is the voltage level that makes
the input pin read as either a "0" or a "1". Normally on the SX the input threshold is set to the "TTL" level, which
is 1.4 volts. So voltages above 1.4 volts are read as a "1" and voltages below 1.4 volts are read as a "0". To allow
the measured voltage to range from 0 volts to Vdd we need to set the pin to the "CMOS" threshold level, which is
1/2 vdd (or 2.5 volts when operating the SX from a 5 volt supply).

' Example program using ANALOGIN command

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4 000 _000
InPin PIN RA.0 INPUT CMOS
OutPin PIN RA.1 OUTPUT
10K 10K
'RA.1 Pin ----\/\/\/--———- +——\/\/\/-———- Voltage to measure
! |
'RA.0 Pin ——--—-—-——————- +
! | 0.01uF
' +==| (-= GND
a VAR Byte

PROGRAM Start NOSTARTUP

Start:
ANALOGIN InPin, OutPin, a, 2
WATCH a
BREAK
GOTO Start
END

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 37



For this example we will assume the SX is operating from 5 volts, and that you have set the input pin to "CMOS"
threshold levels (the easiest way to do this is to use the PIN definition "InPin PIN INPUT CMOS"). Here is how the
components are connected:

10K 10K
SX Output Pin ----\/\/\/----- A VAVAVESEEE Voltage to measure

SX Input Pin —---—---—---—---—-- +
| 0.01uF @ 4MHz or 0.001luF @ 50MH=z
+--] (-— GND

What the ANALOGIN command does is read the input pin, and make the output pin the opposite of what the
input pin reads. If the input pin reads "0", it makes the output pin a "1". If the input pin reads "1", it makes the
output pin a "0". It does this 255 times, and keeps a count of how many times the input pin was a "1". This count
is what is returned as the result of the command. This value is proportional to the voltage level.

Basically the ANALOGIN command attempts to keep the input pin right at the threshold voltage. If the voltage
input was not connected, and the capacitor wasn't there, the output would just toggle from high to low. And the
count would end up being 128. Now if you added the cap, the output pin would still toggle, but not every time
(since it takes the cap some time to charge and discharge), but over the long run it would still return a count of
128.

Now imagine if you have the complete circuit connected and the voltage input is 0 volts. The input pin will read
as a "0" so it will make the output pin high (5 volts). So nhow we have 0 volts through a 10K resistor and 5 volts
through a 10K resistor. That will make the junction (where the cap and input pin are connected) equal 2.5 volts.
So the input pin will never get above 2.5 volts regardless of how long the output pin stays high, so it will always
read as a "0" and our count will be zero.

Now imagine if the input voltage is 5 volts. The input will read as a "1", so it will make the output low (0 volts).
Now we have the same situation reversed. The voltage at the input pin can never get below 2.5 volts regardless
of how long the output pin stays low, so it will always read as a "1" and our count will be 255.

When the input voltage is between 0 volts and 5 volts, then things get interesting. If the input voltage is 1.25
volts (1/4 the maximum), then the input pin will see a pattern of 0's and 1's such that the number of 0's is 3
times the number of 1's. Over 255 samples it will return a count of 63 (since only 1 in 3 reads of the input pin
were 1's). Depending on the clock speed of the SX and the value of the capacitor, the pattern may be something
like "000100010001" or it may be something like "000000110000001100000011". But over the 255 samples you
will still get a count of about 63 1's in the pattern.

It may take some experimentation to get the optimum values for the capacitor. In general the faster the SX clock,
the lower the capacitor value, and the slower the SX clock, the higher the capacitor value.

Another factor that affects the stability of ANALOGIN is that the method assumes the input pin is already at the
threshold voltage before it starts counting the 1's read at the input pin. To accomplish this the ANALOGIN
command actually primes the capacitor by running 255 samples BEFORE starting to count the pulses. Then it
runs another 255 samples while counting the 1's. There is an optional parameter that can be used with the
ANALOGIN command if you want or need more priming cycles (255 samples per cycle). More priming cycles
allow the use of a larger capacitor and that gives more stable readings, but takes more time to complete the
ANALOGIN command. So if you can afford the extra time, and want a more stable reading, then increase the
value of the capacitor and increase the number of priming cycles.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 38



Okay so what if you want to read voltage ranges other than 0 volts to 5 volts. Well if you want get full scale
values from a voltage lower than 5 volts, one easy way is to just set the input pin to it's default setting of “TTL"”
threshold levels. Since the “TTL" threshold level is 1.4 volts, and the ANALOGIN values range from 0 volts to 2x
the threshold level, this will result in 0 for 0 volts and 255 for 2.8 volts. Wider voltage ranges can be read by
using asymmetrical resistor values. If you make the resistor connected to the measured voltage a larger value
than the resistor connected to the SX output pin, you can read voltages greater than 5 volts.

Note that the values returned by ANALOGIN will be dependent on the impedance of the voltage being
measured. The resistors used should be several times larger than the impedance of the input voltage. For
example if you were using a 10K pot to create voltage from 0 to 5 volts the resistance of the pot would effectively
be added to the 10K resistor. This would make the resistor values unequal. Let’s suppose the pot was centered.
The output of the pot would equate to a 2.5K resistor connected directly to a 2.5 volt supply. This 2.5K resistance
would be in series with the 10 k resistor connected from the pot to the cap. Since the pot would have effectively
zero resistance when turned to each end point, you would still get the full range of values, but the values would
not be linear through the range of the pot.

Related instructions: IF ... THEN and ON

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 39



ASM...ENDASM

ASM Instruction(s) ... ENDASM

Function

ASM allows the insertion of a block of assembly language statements into the SX/B program. The assembly
language block is terminated with ENDASM. Code in the ASM..ENDASM block is inserted into the program
verbatim.

Explanation
Certain time-critical routines are best coded in straight assembly language, and while the \ symbol allows the
programmer to insert a single line of assembly code, it is not convenient for large blocks.

' Use: inByte = SHIFTIO outByte
' —- sends (via ShOut) and receives (via ShIn) bytes LSBFIRST

SHIFTIO:
\ CLR tmpBl ' clear input byte
\ MOV idx, #8 ' do 8 bits

ShIO Loop:

ASM MOVB ShOut,  PARAMI1 0 ' move LSB out to pin
MOV _ PARAM3, #50 ' 50 us pause @ 4 MHz
DJINZ __PARAM3, S
XOR RA, #%00000001 ' toggle clock

MOV __ PARAM3, #50
JNZ __ PARAM3, $

CLC

RR tmpB1l ' prep for input bit

MOVB tmpBl.7, ShIn ' capture input bit (LSB)
XOR RA, #%00000001 ' toggle clock

CLC

RR  PARAMI ' prep for next output bit
DJNZ idx, ShIO Loop ' repeat for 8 bits

ENDASM RETURN tmpBl

Related example: INTERRUPT Examples

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 40



BRANCH o

BRANCH Offset, Label0 {, Labell, LabelZ, ...}

Function
Jump to the program Label specified by Offset which can be a Byte or Word variable. Note that the value of
Offset should not be greater than the number of labels-1, otherwise the BRANCH instruction will be skipped.

e  Offset is a Byte or Word variable that specifies the index of the address label, in the list, to branch to. If
the Offset exceeds the number of labels, the program will continue at the line following BRANCH. When
Offsetis a Word, only the LSB is used.

e Labels specify the possible targets for the BRANCH instruction.

Explanation
The BRANCH instruction is useful when you want to do something like this:

Test Value:

IF value = 0 THEN Case 0 ' value = 0: go to label "Case O"
IF value = 1 THEN Case 1 ' value = 1: go to label "Case 1"
IF value = 2 THEN Case 2 ' value = 2: go to label "Case 2"
IF value = 3 THEN Case 3 ' value = 3: go to label "Case 3"
IF value = 4 THEN Case 4 ' value = 4: go to label "Case 4"

You can convert a long list of IF-THEN statements to BRANCH to like this:
Test Value:
BRANCH value, Case 0, Case 1, Case 2, Case 3, Case 4

No Branch:

Related instructions: IF ... THEN and ON

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 41



BRANCH Example

RA.8 <3 Sy
228

]
j

RE.7 T

RE.& ad )
RE.5 = !
RE.4 x. '
RE.2 [ "y

RE.2 x. .
RE.1 a )
RE.8 i )

' Controls eight channels of lights using RB. Sequence is selected by

' switches connected to RA.0 and RA.1.

The delay between steps is fixed

' by a constant, but could easily be modified to be variable by using

' RCTIME.

DEVICE SX28,
FREQ 4 000_000
ID "BRANCH"

]

' IO Pins

]

Select PIN
Lights PIN

1

' Constants

' Variables

A\l

choice VAR
maxSteps VAR Byte
idx VAR Byte

OSC4MHZ,

RA INPUT
RB OUTPUT

STACKX, OPTIONX

selected sequence
steps in sequence
step pointer

PROGRAM Start

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page

42

Syntax



Start:
LOW Lights

Main:
PAUSE StepDelay
choice = Select & %0011
BRANCH choice, Show O,
GOTO Main

Show_0:

READ PatternO, maxSteps

IF idx <= maxSteps THEN
READINC PatternO0 + idx,
INC idx

ELSE
idx = 1

ENDIF

GOTO Main

Show 1:
READ Patternl, maxSteps
IF idx <= maxSteps THEN
READINC
INC idx
ELSE
idx = 1
ENDIF
GOTO Main

Show_ 2:
READ Pattern2, maxSteps
IF idx <= maxSteps THEN
READINC
INC idx
ELSE
idx = 1
ENDIF
GOTO Main

Show_3:
READ Pattern3, maxSteps
IF idx <= maxSteps THEN
READINC
INC idx
ELSE
idx = 1
ENDIF
GOTO Main

Show 1,

Patternl + idx,

Pattern2 + idx,

Pattern3 + idx,

' clear lights

' inter-step delay
' get show

Show 2, Show 3

' get steps in sequence
' check idx range

Lights ' get next step pattern
' point to next step

' reset idx if needed

Lights

Lights

Lights

' User Data

PatternO:

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 43



SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 44



C M OS (SX48/52 Only)

CMOS Pin {, Enable}

Function
Configures Pin for CMOS input threshold (50% of Vdd) on the SX48 or SX52. This command does not apply to
the SX18, SX20, or SX28 (use the LVL_A, LVL_B, and LVL_C registers).

e  Pin is any SX48/52 1/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e  Enableis a constant, 0 or 1, that enables (1) or disables (0) the CMOS input threshold. When not
specified, Enable defaults to 1. If Enableis 0, the pin will be configured for TTL input threshold.

Explanation

Every I/O pin has selectable logic level control that determines the voltage threshold for a logic level 0 or 1. The
default logic level for all I/O pins is TTL but can be modified by writing to the appropriate logic-level register
(LVL_A, LVL_B, LVL_C, LVL_D and LVL_E). The logic level can be configured for all pins, regardless of pin
direction, but really matters only when the associated pin is set to input mode. By configuring logic levels on
input pins, the SX chip can be sensitive to both TTL and CMOS logic thresholds. The figure below demonstrates
the difference between TTL and CMOS logic levels.

+5% (Wid) —— 45 () ————
Logic 1 Logre &

S0%a Wdd
1.4%

Logic @ La e g

0% (vas) 0% (vas)
TTL Logic Level CMOS Logic Level
The logic threshold for TTL is 1.4 volts; a voltage below 1.4 is considered to be a logic 0, while a voltage above is

considered to be a logic 1. The logic threshold for CMOS is 50% of Vdd, a voltage below %2 Vdd is considered to
be a logic 0, while a voltage above "2 Vdd is considered to be a logic 1.

Start:
CMOS RE.7, 1 ' set to CMOS level
CMOS RE.6 ' set to CMOS level
CMOS RE.5, O ' disable CMOS level, set to TTL level

Related instructions: TTL, PULLUP, and SCHMITT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 45



COMPARE i

COMPARE Mode, Result

Function
Enable or disable the SX comparator, compare voltages on RB.1 and RB.2, and retrieve comparison result to store
in Result.

e  Modeis a variable or constant (0 — 2) that enables or disables the comparator (RB.1 and RB.2) and
determines if the optional comparator output pin (RB.0) is enabled or not. See the table below for an
explanation of the Mode values.

e Resultis a variable (usually a bit) in which the comparison result is stored.

Quick Facts

SX18 / SX20 / SX28 / SX48 [ SX52
Mode values 0: Disables comparator.
1: Enables comparator with RB.0 as Resu/t output.
2: Enables comparator without RB.0 as Resu/t output.
Result values 0: Voltage RB.1 > RB.2; RB.0 optionally outputs 0.
1: voltage RB.1 < RB.2; RB.0 optionally outputs 1.

Explanation
The COMPARE instruction enables or disables the built-in comparator hardware on the SX's pins RB.0, RB.1, and
RB.2. I/O pins RB.1 and RB.2 are the comparator inputs and RB.0 is, optionally, the comparator result output pin.

By default, the comparator feature is disabled. Using the COMPARE instruction with a Mode argument of 1 or 2
enables the comparator feature (using input pins RB.1 and RB.2) and returns the result of the comparison in
Result. If Modeis 1, the result of the comparison is also output on I/O pin RB.0. The following is an example of
the COMPARE instruction:

COMPARE 1, result ' enable comparator, output result on RB.O

This example enables the comparator (setting RB.0 to output the result, with RB.1 and RB.2 as the comparator
inputs) and writes the result of the comparison into resu/t. Both resu/t and the output pin RB.0 will be 0 if the
input voltage on RB.1 was greater than that of RB.2. Resu/t and the output pin RB.0 will be 1 if the input voltage
on RB.1 was less than that of RB.2.

The following are points to remember with Comparator mode:

e Port BI/O pins 1 and 2 are the comparator inputs and I/O pin 0 is, optionally, the comparator result
output.

e Port B I/O pin 0 may be used as a normal I/O pin by setting the OE bit of the Comparator register
(COMPARE modes 0 and 2).

e The comparator is independent of the clock source and thus will operate even if the SX chip is halted or in
SLEEP mode. To avoid spurious current draw during SLEEP mode, disable the comparator.

Related project: 8-bit ADC

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 46



COMPARE Example Syntax

+5
16k
+5
16K
RE.Z 1 + iy
RE.1 <3 - 18k
RE.@ = '

478 4 L
S P ——
|l
' File...... COMPARE . SXB
' Purpose... Demonstrates the use of the SX Comparator with COMPARE
' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com
' Started...

' Updated... 05 JULY 2005

' Demonstrates the use of the SX comparator with COMPARE and the auto-
' matic control of the RB.0 output state.

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "COMPARE"
L
' Variables
L
result VAR Bit

COMPARE 1, result ' test with output to RB.O
LOOP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 47



COU NT Example

COUNT Pin, Duration, Variable

Function
Count the number of cycles (0-1-0 or 1-0-1) on the specified pin during the Duration time frame and store that
number in Variable.

e  Pin is any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e Durationis a variable or constant (1 — 65535) specifying the time during which to count. The unit of time
for Duration is expressed in milliseconds.

o  Variable is a Byte or Word variable in which the count will be stored. Note that array elements are not

allowed.
Quick Facts
SX18 / SX20 / SX28 / SX48 / SX52
Units in Duration 1ms
Duration range 1 ms to 65.535 sec
Minimum pulse width 50 / FREQ
Maximum frequency FREQ / 100

(square wave)

Explanation

The COUNT instruction makes the Pin an input, then for the specified Duration, counts cycles on that pin and
stores the total in Variable. A cycle is a change in state from 1 to 0 to 1, or from 0 to 1 to 0. Each loop in the
COUNT routine requires 40 clock cycles, so the incoming signal must remain high or low for at least 40 cycles to
be measured accurately. The maximum frequency that COUNT can accurately handle is about 1% the clock
frequency driving the SX. A 20 MHz clock source, for example, would allow the COUNT instruction to count
transitions in a 200 kHz square wave (or period of 5 psecs).

If you use COUNT on slowly changing analog waveforms like sine waves, you may find that the value returned is
higher than expected. This is because the waveform may pass through the SX's 1.4-volt logic threshold slowly
enough that noise causes false counts. You can fix this by enabling the SCHMITT trigger configuration on the pin
used for COUNT.

Related instructions: PULSIN

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 48



COUNT Example

+5

]

Ra.@

228

18K

v e e e
]
' File...... COUNT. SXB
' Purpose... Demonstrates SX/B COUNT instruction
' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com
' Started...
' Updated... 05 JUL 2006
]
]
L
' Program Description

' This program will count the transitions on the FregIn (RA.0) pin for
' one second. Run the program in Debug mode,

then select Poll from the

Debug control panel.

TURBO, STACKX, OPTIONX

DEVICE SX28, OSC4MHZ,
FREQ 4 000_000

ID "COUNT"

]

' IO Pins

]

FreqglIn PIN RA.O INPUT
]

' Constants

]

Duration CON 1000

]

' Variables

]

hertz VAR Word

measured cycles

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Syntax



SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 50



DATA / WDATA e

Label:
DATA Const0 {, Constl, Const2, ...}
WDATA Const0 {, Constl, Const2, ...}

Function
Creates a table of data values for use with the READ instruction.

e Label is the symbolic name for the table and serves as a pointer to the location of table index zero.

e  Const is any constant (byte, ASCII character, or computed value).

Explanation
The DATA and WDATA directives allow the programmer to create a table of [read only] values for use in the
SX/B program. Using DATA or WDATA is a convenient way to store output patterns and text messages.

DATA is typically used to store byte values, WDATA for word values. If a value greater than 255 is used in a
DATA table the value will be stored as two bytes, LSB first. WDATA always stores values as two bytes and, as
above, the order is LSB, then MSB.

You must make sure the program does not attempt to execute the DATA or WDATA statements. By convention,
DATA and WDATA are placed after the main program loop to prevent the execution of these statements.

CR CON 13
PROGRAM Start

Start:

LEDs = %00000000

TRIS LEDs = 300000000 ' make leds outputs
Main:

idx = 0

TX Msg:

DO
READ StartMsg + idx, char
IF char = 0 THEN EXIT
SEROUT Sio, Baud, char
INC idx

LOOP

ENDIF

Show Count:
INC counter
IF counter = 10 THEN

counter = 0

ENDIF

READ SegMap + counter, LEDs

PAUSE 1000

GOTO Main
SegMap: ' segments maps
! .gfedcba

DATA 300111111 ' 0

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 51



DATA %00000110 !
DATA %01011011 !
DATA 301001111 !
DATA 301100110 !
DATA %01101101 !
DATA %01111101 !
DATA %00000111 !
DATA %01111111 !
DATA 301100111 !

O o0 Jo U Wb

StartMsg:
DATA "SX/B Really Rocks!", CR, O

BigTable:
WDATA %$00000000 00001111
WDATA %$00000000_ 11110000

WDATA %00001111 00000000
WDATA %$11110000 00000000

Note: When defining embedded strings as in the example above, the string may be up to 128 characters.

Related instruction: READ

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 52



DATA / WDATA Example

478 478

RE.7 Ty RC.7 Ay

RE.E d ] RC.E h

FE.S L y RC.5 x.

FE.4 had ] RC.4 =

RE.Z iy RC.2 e |

FE.Z k. ] RC.Z2 ad

RE.1 = b RC.1 h

RE. @ e b RC.G h

|l —_—
\l

' File...... WDATA.SXB

' Purpose... Display LED patterns from WDATA table

' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com

' Started...

' Updated... 05 JUL 2006

' This program shows how to store and retrieve 16-bit values from a WDATA
' table. Note that the index for READ is updated by two for each loop
' as the WDATA table uses 2-byte values.

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000_000

ID "WDATA"
L
' IO Pins
L
Leds PIN RBC OUTPUT ' 16-bit RB/RC port
L
' Variables
L
idx VAR Byte

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 53

Syntax



PROGRAM Start

Start:
Main:
DO
READINC Chaser + idx, Leds ' new pattern into LEDs
PAUSE 50
IF idx > 14 THEN ' end of table?
idx = 0 ' yes, reset
ENDIF
LOOP

' User Data

Chaser:
WDATA $00000000 00001111
WDATA %$00000000_ 00111100
WDATA %$00000000_ 11110000
WDATA %$00000011 11000000
WDATA %00001111 00000000
WDATA %$00111100 00000000
WDATA %$11110000_ 00000000
WDATA %$11000000_ 00000011

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 54



DEC

DEC Variable

Function
Decrement value of Variable by one.

. Variable is byte variable, byte array element, or word variable.

Explanation
The DEC instruction subtracts one from the specified variable. If the variable holds zero it will roll over to its
maximum value (255 for bytes, 65535 for words) after DEC.

flags VAR Byte(2)
result VAR Word

Main:
flags(0) = 0
DEC flags (0) ' flags(0) = flags(0) - 1

result = $0000
DEC result ' result is now S$SFFFF

Related Instruction: INC and DINZ

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 55



DJNZ

DINZ \Variable, Label

Function
Decrement value of Variable by one and jump to Label if Variableis not equal to zero.

o Variable is byte variable, byte array element, or word variable.

e Label is a program label that is followed by operational code (do not use DJNZ with a DATA or WDATA
table label).

Explanation
The DINZ instruction decrements Variable by one and if the result of that operation is not zero the program will
jump to the location specified by Label.

Start:
flashes = 5

Main:
HIGH RA.O
PAUSE 100
LOW RA.O
PAUSE 400
DJINZ flashes, Main ' flash until flashes = 0
END

Related instruction: DEC

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 56



DO ... LOOP

DO { WHILE | UNTIL Condition }
Statement(s)

{ EXIT }

LOOP

DO

Statement(s)

{ EXIT }
LOOP { NEVER | UNTIL Condition | WHILE Condition }

Function
Create a repeating loop that executes the program lines between DO and LOOP, optionally testing before or
after the loop statements.

e  Condition is a simple statement, such as "idx = 7" that can be evaluated as True or False. Only one
comparison operator is allowed (see IF...THEN for valid condition operators).

e  Statement is any valid SX/B statement.

Explanation
DO...LOOP loops let your program execute a series of instructions indefinitely, or until a specified condition
terminates the loop. The simplest form is shown here:

Alarm On:
DO
HIGH Alarm LED
PAUSE 500
LOW Alarm LED
PAUSE 500
LOOP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 57



In this example the alarm LED will flash until the SX is reset. DO...LOOP allows for condition testing before and
after the loop statements as show in the examples below.

Alarm On:

DO WHILE AlarmStatus = 1
HIGH Alarm LED
PAUSE 500
LOW Alarm LED
PAUSE 500

LOOP

RETURN

Alarm On:
DO
HIGH AlarmﬁLED
PAUSE 500
LOW Alarm LED
PAUSE 500
LOOP UNTIL AlarmStatus = 0
RETURN

When the second form is used the loop statements will run at least once before the condition test.

Related instructions: FOR...NEXT and EXIT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 58



END

END

Function
Ends program execution.

Explanation
END prevents the SX from executing any further instructions until it is reset, either externally (via MCLR\ pin) or
by a watchdog timer timeout. END does not place the SX in low power (SLEEP) mode.

Main:

FOR idx = 1 TO 10
HIGH RB.O

PAUSE 100

LOW RB.O

PAUSE 100

NEXT

END

Related instructions: SLEEP and RESETWDT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 59



EXIT

{IF Condition THEN} EXIT

Function
Causes the immediate termination of a loop construct (FOR...NEXT or DO...LOOP) when Condition evaluates
as True.

e  Condition is a simple statement, such as "x = 7" that can be evaluated as True or False.

Explanation
The EXIT command allows a program to terminate a loop construct before the loop limit test is executed. For
example:

Main:
FOR idx = 1 TO 15
IF idx > 9 THEN EXIT
SEROUT TX, Baud, "*"
NEXT

In this program, the FOR idx = 1 TO 15 loop will not run past nine because the IF idx > 9 THEN EXIT
contained within will force the loop to terminate when /dx is greater than nine. Note that the EXIT command only
terminates the loop that contains it. In the the program above, only nine asterisks will be transmitted on the TX

pin.

Here is the DO...LOOP version of the same program:

Start:
idx = 1

Main:
DO
IF idx > 9 THEN EXIT
SEROUT TX, Baud, "*"
INC idx
LOOP WHILE idx <= 15

EXIT may also be used by itself when part of a larger IF...THEN...ENDIF or DO...LOOP block:

IF idx > 9 THEN
SEROUT TX, Baud, CR
idx = 1
EXIT

ENDIF

Related Instructions: FOR...NEXT, DO...LOOP, and IF...THEN

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 60



FOR ... NEXT e

FOR Variable = StartVal TO EndVal {STEP {-}StepVal}
Statement(s)

{ EXIT }

NEXT

Function
Create a repeating loop that executes the program lines between FOR and NEXT, incrementing or decrementing
ByteVar according to StepVal until the value of ByteVar reaches or passes the EndVal.

e Variable a byte or word variable used as a loop counter.
e StartVal is a constant or variable that sets the starting value of the counter.

e  EndVal is a constant or a variable that sets the ending value of the counter.

e StepVal is a constant or a variable by which Variable is incremented or (when negative) decremented
during each iteration of the loop.

Explanation

FOR...NEXT loops let your program execute a series of instructions for a specified number of repetitions. By
default, each time through the loop, Variableis incremented by 1. It will continue to loop until the value of the
Variable reaches or exceeds £ndVal. Also, FOR...NEXT loops always execute at least once. The simplest form is
shown here:

Blink LED:

FOR idx = 1 TO 10 ' blink 10 times
HIGH LED ' light the LED
PAUSE 200 ' wait 0.2 secs
LOW LED ' extinguish the LED
PAUSE 300 ' wait 0.3 secs

NEXT

In this simple example, the FOR instruction initializes /dxto 1. Then the HIGH, PAUSE, LOW, and PAUSE
instructions are executed. At NEXT, /dxis checked to see if it is less than 10. If it is, /dx will be incremented by 1
and the loop instructions run again. When /dx is equal to 10 the loop terminates and the program continues at
the instruction that follows NEXT.

Note that when using word variables for StartVal or EndVal, Variable must be a word variable as well. If a
Variable is a byte, and a word constant is used for either StartVa/or EndVal, the constant value(s) will be
truncated to eight bits.

Related instructions: DO...LOOP and EXIT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 61



FOR ... NEXT Example Syntax

478 .
RE.7 Sy M

RE.6 e |
RE.S
RE.4
RE.3
RE.2
RE.1
RE.8 ]

' Demonstrates FOR-NEXT loops in SX/B with a "ping-pong" LED display.

' Device Settings

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 000

ID "FOR-NEXT"

b e e e e e e e e e e e e e e o e o e o e e — — — —— — —— — —— — —— — —— ——— —— —— —— — o —— —— —— — o —— —— —— — o — o —— —
' IO Pins

b e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o e o o e o o o o o o e o o o o o o o o
LEDs PIN RB OUTPUT ' LED outputs

b e e e e e e e e e e e e e e — — — —— — —— — —— — —— — —— ——— —— —— —— — o —— —— —— — o —— —— —— — o —— —— —
' Variables

Y e e e e e e e e e e o e e e e e e e e e e e e e e e e e e e e
idx VAR Byte ' loop counter

Main:
DO
FOR idx = 0 TO 5 ' loop 7 times
LEDs = 1 << idx ' LEDs = 1, 2, 4, 8,

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 62



SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 63



FREQOUT e

FREQOUT PAin, Duration, Freq

Function
Generate square wave for a specified duration.

e  Pin is any SX IO pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e Duration is a byte variable/constant (1 - 255) specifying the amount of time to generate the tone. The
unit of time for Duration is 1 millisecond.

e  Freq is a constant (1 - 65535) specifying the frequency of the square wave.

Quick Facts

Low Limit High" Limit
Frequency FREQ + 500,000 FREQ + 32

" Note: For the greatest possible accuracy, limit high frequency value to FREQ + 512.

Explanation
FREQOUT generates a square wave on an I/O pin. The output pin may be connected as shown in the circuits
below for audio use. Other applications include IR LED modulation.

Note that the Duration can be affected by Freg parameter. For example, a frequency of 100 Hz has a period of 10
milliseconds, hence the shortest possible Duration value is 10. Even at this minimum, only one cycle would be
produced and this may not be practical or useful.

When driving a Hi-Z speaker (> 40 Q) or piezo element:

It
FIN s

When connecting to an audio amplifier:

1K
FIN Sty

2
TO AMP

[

1K
My
@

a.1 .81

T
T

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 64



Related instruction: SOUND

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 65



FREQOUT Example Syntax

pi=]
FIEZO PHA4EE2H

0 7

If
RE.2 [ |y
RE.1 <
RE.8 d b

228 IR £ L

' Uses FREQOUT to modulate an IR LED for object detection. When object
' is detected, a tone is generated from the piezo element.

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 4 000_000

ID "FREQOUT"

b e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o o e o o e o o e e o o o o o o o o o o o
' IO Pins

b e e e e e e e e e e e o o e — —— — —— — —— — —— — —— — —— —— — — —— —— — o —— —— ——— o —— —— —— — o —— —— —
IrLED PIN RB.0 OUTPUT ' output to IR LED

Detect PIN RB.1 INPUT ' input from IR detector

Spkr PIN RB.2 OUTPUT ' output to piezo

b e e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o e o o e e o o e o o e o o o o e o o o
' Constants

Y e e e e e e e e e e o e e e e e e e e e e e e e e e e e e e e
IrMod CON 38000 ' modulation freq = 38 kHz
Yes CON 0 ' for active-low output

No CON 1

PROGRAM Start

Start:
DO
FREQOUT IrLED, 1, IrMod ' modulate IR diode
IF Detect = Yes THEN ' check detector
SOUND Spkr, 100, 2 ' buzz if object detected
ENDIF

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 66



SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 67



GET

GET Location, Variable {, Variable, ... }

Function
Copy value(s) from RAM into Variables(s), starting at Location.

e Location is the starting address to be copied.

. Variable is byte variable, byte array element, or word variable.
Explanation

The GET instruction provides a convenient method for copying multiple consecutive values from RAM into
individual byte variables. For example,

hrs = clock(0)
mins = clock (1)
secs = clock (2)

.. can be simplified to a single line of code:

GET clock(0), hrs, mins, secs

Note that this works because array elements are stored as addresses.

When Variable is a word, its LSB is read from Location and its MSB from Location + 1. For example:

loval VAR Byte
hival VAR Byte
result VAR Word
Start:

loval = $33
hival = $CC
GET @loVal, result ' result = S$CC33

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 68



Using GET with Subroutine Parameters
When a simple variable is passed to a subroutine by address (using @), as in:

GOSUB Some Routine, @aValue ' pass address of 'aValue'
... GET can be used to retrieve the value from that address within the subroutine:

Some Routine:

rtnAddr =  PARAMI ' save return address

GET rtnAddr, theValue ' get value from address

... ' do something with the value
PUT rtnAddr, newValue ' update value at passed address
RETURN

This technique allows the subroutine to accept (and potentially modify) any defined variable. Note that for single-
parameter instances, the _ RAM() system array may be used in place of GET and PUT:

Some Routine:

rtnAddr = _ PARAMI ' save return address

theValue =  RAM(rtnAddr) ' get value from address

ce ' do something with the wvalue
__RAM(rtnAddr) = newValue ' update value at passed address
RETURN

Note: As of SX/B 1.2, Subroutines (and now Functions in SX/B 1.5) can return a value directly so passing the
address of a variable (with @) is not required unless multiple variable addresses are to be passed to the
Subroutine/Function.

Related instruction: PUT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 69



GOSUB ... RETURN Examples

GOSUB Label/ ... RETURN { Value }

Function
Store the address of the next instruction after GOSUB, then go to the point in the program specified by Labef:
with the intention of returning to the stored address.

e Label specifies the name of the subroutine to run.

. Value is an optional value/variable to return

Quick Facts

SX18, SX20, SX28, SX48, SX52
Maximum Nested GOSUBs 8
Explanation

GOSUB is a close relative of GOTO, in fact, its name means, "GO to a SUBroutine". When a program reaches a
GOSUB, the program executes the code beginning at the specified Label. Unlike GOTO, GOSUB also stores the
address of the instruction immediately following itself. When the program encounters the RETURN instruction, it
interprets it to mean, "go to the instruction that follows the most recent GOSUB." In other words, a GOSUB
makes the program do a similar operation as you do when you see a table or figure reference in this manual; 1)
you remember where you are, 2) you go to the table or figure and read the information there, and 3) when
you've reached the end of it, you "return" to the place you were reading originally.

GOSUB is mainly used to execute the same piece of code from multiple locations. If you have, for example, a
block of three lines of code that need to be run from 10 different locations in your entire program you could
simple copy and paste those three lines to each of those 10 locations. This would amount to a total of 30 lines of
repetitive code (and extra space wasted in the program memory). A better solution is to place those three lines in
a separate routine, complete with it's own label and followed by a RETURN instruction, then just use a GOSUB
instruction at each of the 10 locations to access it. Since SX/B compiles instructions inline (no optimization) this
technique can save a lot of program space.

SX/B simplifies subroutine use and error trapping with the declaration of subroutines (SUB directive) and
required/possible parameters. When a subroutine is declared, the GOSUB keyword is no longer required and any
parameters passed with be checked against the user declaration. The following examples demonstrate the
differences in code style.

Version 1.1 (This style is still valid but not recommended)

Get Char:
SERIN Sio, Baud, char ' wait for character
RETURN

Start:
TRIS B = %00000000 ' make RB pins outputs

Main:

GOSUB Get Char
IF char <> "!" THEN Main ' wait for "!"

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 70



Version 1.2+ (applies to SUB and FUNC)

GET CHAR SUB ' subroutine (no parameters)
Ve e e e e e e e e e e e
Start:
TRIS B = %00000000 ' make RB pins outputs
Main:
char = GET CHAR ' no "GOSUB" required
IF char <> "!" THEN Main ' wait for "!"
END

SUB GET CHAR

SERIN Sio, Baud, templ ' wait for character
RETURN templ ' return character to caller
ENDSUB

Declared subroutines simplify SX/B programming by removing the necessity of the GOSUB keyword (which, in
effect, allows the programmer to extend the language by creating new commands), it allows the compiler to
validate the number of parameters being passed, and -- most valuable to the programmer -- it allows subroutine
code to be placed anywhere in memory without concern of code page boundaries (now handled automatically).

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 71



Passing Parameters To/From a Subroutine

SX/B allows the programmer to pass up to four parameters to subroutines. The parameter may hold a value (bit
or byte) or the address of a byte-variable (when prefaced with '@'). When used in subroutines, passed
parameters must be saved before any SX/B instructions are called.

For example:
TX BYTE SUB ' subroutine with no parameters
SEND CHAR SUB 2 ' subroutine with 2 parameters
Y e e e e e e e e
Main:

' less convenient

theChar = "*" ' byte to send

idx = 10 ' times to send

TXBYTE

theChar = 13

idx = 1

TXBYTE

' much more convenient

SENDCHAR "*", 10 Vokok ok ok ok ok ok ok ok ok
SENDCHAR 13, 1 ' <CR>

PAUSE 1000

GOTO Main

SUB SEND_CHAR

theChar =  PARAMI ' save character to send
idx =  PARAM2 ' times to send character
TX BYTE

ENDSUB

SUB TX BYTE
DO WHILE idx > 0

SEROUT Sio, Baud, theChar ' send the character
DEC idx ' update count, exit if O
LOOP
ENDSUB

This subroutine (SEND_CHAR) expects two parameters: the character to transmit (using SEROUT), and the
number of times to send the character.

A subroutine can be constructed to modify any variable that is passed to it (by address using '@"). For example:

INVERT BITS SUB 1 ' subroutine with 1 parameter
Ve e e e e — —— —— —— —— — — — — — — — — —— — — —
Start:
TRIS B = %00000000 ' make RB pins outputs
Main:

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 72



myBits = $A5

' myBits = $10100101

INVERT BITS @myBits ' pass address of variable

RB = myBits ' RB = %01011010 ($5A)

END

SUB INVERT BITS
regAddr =  PARAMI
GET rtnAddr, regVal
regVal = ~regVal
PUT rtnAddr, regVal

ENDSUB

' save address

' get value from address
' invert bits

' update passed variable

An easier method, however, is to allow the subroutine to pass a value directly back to the caller. This update to
the program above performs the same function, yet is easier to understand and prevents possible errors resulting

is missing '@' headers.

INVERT BITS SUB 1

Start:
TRIS B
Main:
myBits = S$A5

myBits = INVERT BITS myBits
RB = myBits

END

$00000000

SUB INVERT BITS

regVal =  PARAMI

regVal = ~regVal

RETURN regVal
ENDSUB

' subroutine with 1 parameter

' make RB pins outputs

' myBits = %$10100101
' pass value, get one back
' RB = %01011010 (s$5A)

' get value from caller
' invert bits
' return value to caller

Notice that this style eliminates the need for a variable that holds the address of the target variable and simplifies
the subroutine code. By using a defined function (with FUNC) the subroutine can return a word value.

Passing Strings

SX/B allows the programmer to pass a literal or stored (with DATA) string to a subroutine. String passing
requires at least two parameters to handle the base and offset address bytes to the string (these values are used
by READ). See READ for an example of string use in SX/B.

related instruction: GOTO

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 73



GOSUB...RETURN Example

478
RE.7 [

REE.& [
RE.S
EE.4
RE.Z
EE.2
RE.1
RE.8

' Demonstrates GOSUB with parameter passing across page boundaries.

Note

' that the GOSUB keyword is no longer required when using version 1.2

' syntax

DEVICE SX28,
FREQ 4 000_000
ID "GOSUB"

]

' IO Pins

]

LEDs PIN RB
1

' Constants

]

Speed CON
]

' Variables

]

zigzag VAR
tmpW1l VAR

(SUB definition) .
' an 8-bit value even when a 16-bit

Note, too,

(word)
OSC4MHZ, TURBO,
OUTPUT
100
Byte
Word

that the INVERT8 function returns

is passed as a parameter.

STACKX, OPTIONX

zigzag controller
subroutine work wvar

PROGRAM Start

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 74

Syntax



DELAY SUB 1, 2 ' delay in milliseconds
INVERTS FUNC 1, 1, 2 ' invert bits in byte
INVERT16 FUNC 2, 1, 2 ' invert bits in word

Start
Main:
zigzag = %00000011
DO
LEDs = INVERT8 zigzag ' invert LED pattern
DELAY Speed ' loop delay
zigzag = zigzag << 1 ' shift bit left

LOOP UNTIL zigzag = %10000000
zigzag = $10000000
DO
LEDs = INVERT8 zigzag
DELAY Speed

zigzag = zigzag >> 1 ' shift bit right
LOOP UNTIL zigzag = %00000001
GOTO Main

' Use: DELAY ms

' —— 'ms' is delay in milliseconds, 1 - 65535
DELAY:
IF  PARAMCNT = 1 THEN
tmpWl =  PARAMI ' save byte value
ELSE
tmpWl =  WPARAMI12 ' save word value
ENDIF
PAUSE tmpWl
RETURN

' Use: aVar = INVERT theByte
-- inverts the bits in 'theByte'
' —— returns 8-bit value, even if 'theByte' is a word (returns inverted LSB)

FUNC INVERTS

tmpWl LSB =  PARAMI ' get current value

tmpWl LSB = ~tmpWl LSB ' invert the bits

RETURN tmpWl LSB ' return byte to caller
ENDEFUNC



Use: aVar = INVERT theWord
-— inverts the bits in 'theWord'
-- returns 16-bit value, even if 'theWord' is a byte

FUNC INVERT16
IF  PARAMCNT = 1 THEN

tmpWl =  PARAMI ' convert byte to word
ELSE
tmpWl =  WPARAMI12 ' save word value
ENDIF
tmpWl = ~tmpW1l ' invert the bits
RETURN tmpWl ' return word to caller
ENDFUNC

The following example demonstrates the ability to return more than two bytes from a function:

Demonstrates the use of a function and a method for collecting all
returned bytes when simple (non-array) variables are used.

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 000

ID "FUNC"
L
' IO Pins
L
L
' Constants
L
L
' Variables
L
result VAR Word ' 32-bit result

resultHi VAR Word

bigval VAR Byte (4)

tmpWl VAR Word ' subroutine work vars

tmpW2 VAR Word

tmpW3 VAR Word

WATCH result, 32, UHEX ' display 32-bit result

WATCH bigVal, 32, UHEX

PROGRAM Start

MULT32 FUNC 4, 2, 4

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 76



BREAK NOW SUB 0

' Program Code

Start:
result = MULT32 SFFFF, $0100 ' get low word
resultHi =  PARAM3,  PARAM4 ' get high word
BREAK NOW
bigvVal = MULT32 $1234, $10 ' all return bytes assigned
BREAK NOW
END

' Use: MULT32 valuel, value?2

' —— multiplies two wvalues

-- when mixing a word and byte, the word must be declared first
FUNC MULT32

IF  PARAMCNT = 2 THEN ' byte * byte
tmpWl =  PARAMI
tmpW2 =  PARAM2
ENDIF
IF  PARAMCNT = 3 THEN ' word * byte
tmpWl =  WPARAMI12
tmpW2 =  PARAM3
ENDIF
IF  PARAMCNT = 4 THEN ' word * word
tmpWl = __WPARAMlZ
tmpW2 =  WPARAM34
ENDIF
tmpW3 = tmpWl ** tmpW2 ' calculate high word
tmpW2 = tmpWl * tmpW2 ' calculate low word
RETURN tmpW2, tmpW3 ' return 32 bits, LSW first
ENDEFUNC

Allows multiple breakpoints in program.
SUB BREAK NOW

BREAK
ENDSUB

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 77



GOTO

GOTO [Labe/

Function
Jump to the point in the program specified by Label.

e Label is a program label that is followed by operational code (do not use GOTO with a DATA or WDATA
table label).

Explanation
The GOTO instruction forces the SX to jump to the line of code that immediately follows Label. A common use
for GOTO is to create endless loops; programs that repeat a group of instructions over and over. For example:

Main:
INC LEDs ' update count
PAUSE 100 ' delay 0.1 seconds
GOTO Main ' keep going

Related instructions: IF ... THEN and GOSUB

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 78



HIGH Example

HIGH Pin

Function
Make the specified Pinan output and high (1).

e  Pin isany SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

Explanation
The HIGH instruction makes the specified Pinan output, and then sets its value to 1 (Vdd). For example:

HIGH RA.3

Does the same thing as:

OUTPUT RA.3

RA.3 = 1

Using the HIGH instruction is more convenient in this case

HIGH can also be used on a whole port. For example, HIGH RB will make all pins on port RB high.

Related instructions: LOW, OUTPUT, and TOGGLE

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 79



HIGH / LOW Example

478

RE.B g

T

' Program Description

' Simple LED blinker using HIGH and LOW.

' Device Settings

0SC4MHZ,

TURBO, STACKX, OPTIONX

DEVICE SX28,
FREQ 4 000 _000
ID "HIGH-LOW"
]

' IO Pins

]

LED PIN RB

]

' Constants

]

OnDelay CON 150
OffDelay CON 350

time LED is on
time LED is off

PROGRAM Start

Start:
DO
HIGH LED

PAUSE OnDelay

LOW LED

PAUSE OffDelay

LOOP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

' turn LED on

delay

turn LED off
delay

repeat forever

Page 80

T

r
=



I2CRECV s

I2CRECV Pin, ByteVar, AckVal

Function
Receives ByteVar from the I12C bus defined by Pin.

e Pin defines the SDA pin of the I12C bus. Pin may any I/O pin except RA.3 (RA.7 on the SX52), RB.7, RC.7,
RD.6, or RE.6 (see below).

e  ByteVar is a byte variable that will hold the value returned by the slave device.

e AckVal is a bit-value that will be sent to the slave after Bytelar has been received (Ack = 0, Nak = 1).

Quick Facts

SX18/20 SX28 SX48 SX52
SDA pin RA.0..RA.2 RA.0 .. RA.2 RA.0 .. RA.2 RA.0 .. RA.6
RB.0 .. RB.6 RB.0 .. RB.6 RB.0 .. RB.6 RB.0 .. RB.6
RC.0 .. RC.6 RC.0 .. RC.6 RC.0..RC.6
RD.O .. RD.6 RD.O .. RD.6
RE.O .. RE.6 RE.O .. RE.6
SCL pin Next pin in same group as SDA assignment.
Transmission rate| Approximately 50 kBits/sec.
Special Notes Both the SDA and SCL pins must have 4.7 kQ pull-up resisters.

Explanation

The I2C protocol is a form of synchronous serial communication developed by Philips Semiconductor. It only
requires two IO pins and both pins can be shared between multiple I2C devices. The I2CRECV instruction reads
an eight-bit value from a previously addressed device on the 12C bus (SDA and SCL pins).

Note that the SCL pin is automatically assigned to the next higher pin in the same group as the SDA pin, so the
SDA pin may not be assigned to RA.3 (RA.7 on the SX52), RB.7, RC.7, RD.7, or RE.7.

Related instructions: I2CSEND, I2CSTART, and I2CSTOP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 81



I2CSTART I2CSTOP I2CSEND I2CRECV

12C Example

+5
24LC16E
w
e uec |
4.7K
+—]a we
ez el
4 5
+Huss o
R
RA.1

' Writes a pseudo-random value to a 24LC16B EEPROM and then reads the
' value back. Run program in Debug/Poll mode to view address, output and
' input values.

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 4 000 000

ID "g2c"”
L
' IO Pins
L
SDA PIN RA.0 INPUT PULLUP

SCL PIN RA.1 INPUT PULLUP
L
' Constants
L
SlavelD CON SAQ ' for 24LC16B

Ack CON 0

Nak CON 1
L
' Variables
L
addr VAR Word ' address in 24LC16B

addrLo VAR addr_ LSB

addrHi VAR addr MSB

outVal VAR Byte ' to 24LC16B

invVal VAR Byte ' from 24LC16B

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 82



tmpWl VAR Word ' work vars

tmpB1 VAR Byte
tmpB2 VAR Byte
tmpB3 VAR Byte
tmpB4 VAR Byte
WATCH addr ' for Debug/Poll mode

WATCH outVal
WATCH inVal

PROGRAM Start

MEM OUT SUB 3 ' write value to memory
MEM IN FUNC 1,2 ' read byte from memory

Start
Main:
DO
FOR addr = 0 TO S$O03FF
RANDOM outVal ' recreate new value
MEM OUT addr, outVal ' send to 24LCl6
PAUSE 500 ' delay for Debug/Poll mode
inval = MEM IN addr ' get from 24LC16
BREAK ' allow WATCH window view
NEXT
LOOP

' Use: MEM OUT address, value
' —— writes 'value' to 24LC16B location at 'address'

SUB MEM OUT

tmpWl =  WPARAM12 ' copy address

tmpBl =  PARAM3 ' copy value

I2CSTART SDA

tmpWl MSB = tmpWl MSB & $03 ' get block value
tmpWl MSB = tmpWl MSB << 1

tmpWl MSB = tmpWl MSB | SlaveID ' create control byte
tmpWl MSB.0O = O ' set RW bit for write
I2CSEND SDA, tmpWl MSB ' send slave ID
I2CSEND SDA, tmpWl LSB ' send word address
I2CSEND SDA, tmpBl ' send data byte
I2CSTOP SDA ' finish

ENDSUB

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 83



' Use: value = MEM IN address
' —— reads 'value' from 24LC16B location at 'address'

FUNC MEM IN

tmpWl =  WPARAMI12 ' copy address
I2CSTART SDA

tmpWl MSB = tmpWl MSB & $S03 ' get block value
tmpWl MSB = tmpWl MSB << 1

tmpWl MSB = tmpWl MSB | SlavelID ' create control byte
tmpWl MSB.O = O ' set RW bit for write
I2CSEND SDA, tmpWl MSB ' send slave ID
I2CSEND SDA, tmpWl LSB ' send word address
I2CSTART SDA ' restart for read
tmpWl MSB.O = 1 ' set RW bit for Read
I2CSEND SDA, tmpWl MSB ' resend slave ID
I2CRECV SDA, tmpBl, Nak ' get one byte

I2CSTOP SDA
RETURN tmpB1l
ENDEFUNC

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 84



I2CSEND s

I2CSEND Pin, ByteVal {, AckVar}

Function
Sends ByteVal on the I12C bus defined by Pin.

Pin defines the SDA pin of the I2C bus. Pin may any I/0 pin except RA.3 (RA.7 on the SX52), RB.7, RC.7,
RD.6, or RE.6 (see below).

e  ByteVal is a variable or constant (0 - 255) that will be transmitted on the I2C bus.

e AckVar is an optional bit-variable that will hold the Ack/Nak status bit returned by the slave device.

Quick Facts

S$X18/20 SX28 SX48 SX52
SDA pin RA.0 .. RA.2 RA.0..RA.2 RA.0 .. RA.2 RA.0 .. RA6
RB.0 .. RB.6 RB.0 .. RB.6 RB.0 .. RB.6 RB.0 .. RB.6
RC.0 .. RC.6 RC.0 .. RC.6 RC.0..RC.6
RD.O .. RD.6 RD.O .. RD.6
RE.O .. RE.6 RE.O .. RE.6
SCL pin Next pin in same group as SDA assignment.
Transmission rate| Approximately 50 kBits/sec.
Special Notes Both the SDA and SCL pins must have 4.7 kQ pull-up resisters.

Explanation

The I2C protocol is a form of synchronous serial communication developed by Philips Semiconductor. It only
requires two I/0 pins and both pins can be shared between multiple 12C devices. The I2CSEND instruction
transmits an eight-bit value to a previously addressed device on the I2C bus (SDA and SCL pins).

Note that the SCL pin is automatically assigned to the next higher pin in the same group as the SDA pin, so the
SDA pin may not be assigned to RA.3 (RA.7 on the SX52), RB.7, RC.7, RD.7, or RE.7.

Related instructions: I2CRECV, I2CSTART, and I2CSTOP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 85



I2CSTART =

I2CSTART Pin

Function
Generates an I2C Start condition.

e Pin defines the SDA pin of the I12C bus. Pin may any I/O pin except RA.3 (RA.7 on the SX52), RB.7, RC.7,
RD.6, or RE.6 (see below).

Quick Facts
S$X18/20 SX28 SX48 SX52
SDA pin RA.0 .. RA.2 RA.0 .. RA.2 RA.0 .. RA.2 RA.0 .. RA.6
RB.0 .. RB.6 RB.0 .. RB.6 RB.0 .. RB.6 RB.0 .. RB.6
RC.0 .. RC.6 RC.0..RC.6 RC.0 .. RC.6
RD.0 .. RD.6 RD.0 .. RD.6
RE.O .. RE.6 RE.O .. RE.6
SCL pin Next pin in same group as SDA assignment.
Transmission rate| Approximately 50 kBits/sec.
Special Notes Both the SDA and SCL pins must have 4.7 kQ pull-up resisters.

Explanation

The I2C protocol is a form of synchronous serial communication developed by Philips Semiconductor. It only
requires two I/O pins and both pins can be shared between multiple I2C devices. The I2CSTART instruction

generates an I2C Start condition on the I2C bus (SDA and SCL pins); this condition is used to start (or restart) a
transmission sequence.

Note that the SCL pin is automatically assigned to the next higher pin in the same group as the SDA pin, so the
SDA pin may not be assigned to RA.3 (RA.6 on the SX52), RB.7, RC.7, RD.7, or RE.7.

Special Note

The I2CSTART instruction monitors the state of the SCL line and will wait for SCL to be high before returning;
this could cause some systems to hang if the SCL line is shorted to Vss. To prevent this hang, the programmer
can make the SCL line an input then test its state before calling I2CSTART.

Related instructions: 12CSTOP, I2CSEND, and I2CRECV

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 86



12CSTOP e

I2CSTOP Pin

Function
Generates an 12C Stop condition.

e Pin defines the SDA pin of the I12C bus. Pin may any I/O pin except RA.3 (RA.7 on the SX52), RB.7, RC.7,
RD.6, or RE.6 (see below).

Quick Facts
S$X18/20 SX28 SX48 SX52
SDA pin RA.0 .. RA.2 RA.0 .. RA.2 RA.0 .. RA.2 RA.0 .. RA.6
RB.0 .. RB.6 RB.0 .. RB.6 RB.0 .. RB.6 RB.0 .. RB.6
RC.0 .. RC.6 RC.0..RC.6 RC.0 .. RC.6
RD.0 .. RD.6 RD.0 .. RD.6
RE.O .. RE.6 RE.Q .. RE.6
SCL pin Next pin in same group as SDA assignment.
Transmission rate| Approximately 50 kBits/sec.
Special Notes Both the SDA and SCL pins must have 4.7 kQ pull-up resisters.

Explanation

The I2C protocol is a form of synchronous serial communication developed by Philips Semiconductor. It only
requires two I/O pins and both pins can be shared between multiple I2C devices. The I2CSTOP instruction

generates an I2C Stop condition on the I2C bus (SDA and SCL pins); this condition is used to terminate a
transmission sequence.

Note that the SCL pin is automatically assigned to the next higher pin in the same group as the SDA pin, so the
SDA pin may not be assigned to RA.3 (RA.6 on the SX52), RB.7, RC.7, RD.7, or RE.7.

Related instructions: I2CSTART, I2CSEND, and I2CRECV

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 87



IF ... THEN ... ELSE ... ENDIF

IF ConditionTHEN
statement(s)
{ ELSE | ELSEIF

statement(s) }
ENDIF

Function
Evaluate Condition and, if it is true, run the code block that follows THEN, otherwise jump to the (optional) code
block that follows ELSE. If no ELSE block is provided, the program will continue at the line that follows ENDIF.

e  Condition is a simple statement, such as "x = 7" that can be evaluated as True or False.
e  Statement is any valid SX/B program statement.

Explanation

IF...THEN...ELSE is a primary decision maker that allows one block of code or [optionally] another to run based
on the result (True or False) of a condition. The available comparison operators are:

Comparison Operator Definition
= Equal
<> Not Equal
> Greater Than
< Less Than
>= Greater Than or Equal To
<= Less Than or Equal To

Comparisons are always written in the form: Variable Op Value.

. Variable is a bit, byte or word variable.
e  (Op is the comparison operator.

e lalue is a variable or constant for comparison.

This simple example shows how IF...THEN...ELSE is used with a subroutine that can accept a byte or word
parameter.

' Use: DELAY ms

' —— 'ms' is delay in milliseconds, 1 - 65535
SUB DELAY
IF  PARAMCNT = 1 THEN
tmpWl =  PARAMI ' save byte value
ELSE
tmpWl =  WPARAMI12 ' save word value
ENDIF
PAUSE tmpW1
ENDSUB

Related instruction: IF ... THEN

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 88



IF ... THEN

IF Condition [THEN | GOTO] [Llabe/ | EXIT)

Function
Evaluate Condition and, if it is true, jump to the point in the program designated by Label.

e  Condition is a simple statement, such as "x = 7" that can be evaluated as True or False.
o Label specifies where to go in the event that Condition statement evaluates as True.
Explanation

IF...THEN is decision maker that affects program flow. It tests a Condiition statement and, if that statement is
True, goes to a point in the program specified by Label. The available comparison operators are:

Comparison Operator| Definition
= Equal
<> Not Equal
> Greater Than
< Less Than
>= Greater Than or Equal To
<= Less Than or Equal To

Comparisons are always written in the form: Variable Op Value.

. Variable is a bit, byte or word variable.
e  (Op is the comparison operator.

e  lalue is a variable or constant for comparison.

Main:
IF StartBtn = 1 THEN Main ' wait for input to go low
Check Mode:
IF ModePin = 0 GOTO Show AMPM ' use HH:MM xM format if mode = 0

Some programmers may prefer a more verbose style; the following syntax is also supported:

Check Mode:
IF ModePin = 0 THEN GOTO Show AMPM ' use HH:MM xM format if mode = 0

Related instructions: IF ... THEN ... ELSE, BRANCH, GOTO, and EXIT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 89



INC

INC Vlariable

Function
Increment value of Variable by one.

. Variable is byte variable, byte array element, or word variable.

Explanation
The INC instruction adds one from the specified variable. If the variable holds its maximum value (255 for bytes,
65535 for words), it will roll over to zero after INC.

flags VAR Byte (2)
result VAR Word

Main:
flags(0) = 0
INC flags(0) ' flags(0) = flags(0) + 1
result = S$SFFFF
INC result ' result is now $0000

Related Instruction: DEC

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 90



INPUT

INPUT Pin

Function
Make the specified Pinan input by writing a one (1) to the corresponding bit of the associated port TRIS register.

e  Pin is any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

Explanation

There are several ways to make a pin an input. When an SX/B program is reset, all of the IO pins are made
inputs. Instructions that rely on input pins, like PULSIN and SERIN, automatically change the specified pin to
input mode. Writing 1s to particular bits of the port TRIS register makes the corresponding pins inputs. And then
there's the INPUT instruction.

Start:
INPUT RA.3
Hold:

IF RA.3 = 1 THEN Hold ' stay until RA.3 = 0

What happens if your program writes to a port bit of a pin that is set up as an input? The value is stored in the
port register, but has no effect on the outside world. If the pin is changed to output, the last value written to the
corresponding port bit will appear on the pin

INPUT can also be used on a whole port; for example INPUT RB will make all pins on port RB inputs.

Related instructions: OUTPUT and REVERSE

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 91



INTERRUPT ... RETURNINT Examples

INTERRUPT {NOPRESERVE | NOCODE} {Rate} Instruction(s) ... RETURNINT {Cycles}

Function
INTERRUPT allows the insertion of a code block to handle an interrupt in an SX/B program. The interrupt code
block is terminated with RETURNINT.

e NOPRESERVE is an optional command the eliminates the automatic save/restore of the _ PARAMx and
M registers.

e NOCODE is an optional command that, when used, forces the ISR to set the FSR to zero to access
variables in location $10 to $1F reliably.

e  Rate is an optional constant that allows the ISR to automatically be set to a specific rate, specified in calls
per second. Rate must be specified after the NOPRESERVE or NOCODE parameter if used.

e  Cycles is an optional byte-variable or constant (0 - 255) that sets the number of RTCC instructions for a
periodic interrupt. It is not necessary to specify Cycles if the Rateparameter is used.

Explanation

An interrupt handler allows the SX to perform "background" task, at regular intervals (using the internal RTCC
rollover) or asynchronously (using the external RTCC input pin, or Port B inputs). The interrupt code must be
located in Page 0 of your program, and before any other code -- this is a requirement of the SX microcontroller.

SX/B automatically saves internal program variables (__PARAMX) at the start of the ISR and restores them on exit
of the ISR. This consumes ISR cycles (14 cycles on entry, 13 cycles on exit) and must be accounted for in time-
critical ISR applications. If high-level instructions will not be used in the ISR, the NOPRESERVE option may be
specified, eliminating the code that preserves and restores internal SX/B program variables. If the
NOPRESERVEoption is used, you must make sure that none of the __PARAMXx variables are modified by the ISR
(i.e., use high-level SX/B instructions). If the NOCODE option is specified then the interrupt routine must set FSR
to zero to access variables in location $10 to $1F reliably.

When the interrupt Rateis specified, in calls per second, the SX/B compiler will automatically generate the proper
IOPTION register and RETURNINT values in the initialization code. If a rate is specified that is not possible within
specified FREQ setting, the Rate parameter will flag an "Invalid Parameter" error.

Periodic Interrupts

The SX chip can be set to cause an interrupt upon rollover of the Real Time Clock Counter (RTCC). By configuring
an interrupt on RTCC rollover, the SX chip can perform an operation at a predefined time interval in a
deterministic fashion. This can be configured by setting the STACKX or OPTIONX fuse (in the DEVICE directive,
and required by SX/B) and writing to the RTI, RTS and RTE bits of the Option register (OPTION). The RTCC
rollover interrupt is disabled by default.

To configure the RTCC rollover interrupt:

1. Set the STACKX or OPTIONX fuse in the DEVICE directive.

2. Write to the RTI, RTS and RTE bits of the OPTION register to enable RTCC interrupts. For RTI, a high bit
(1) disables RTCC rollover interrupts and a low bit (0) enables RTCC rollover interrupts. For RTS, a high bit
(1) selects incrementing RTCC on internal clock cycle and a low bit (0) increments RTCC on the RTCC pin
transitions. For RTE, a high bit (1) selects incrementing on low-to-high transition and a low bit (0)
increments on a high-to-low transition.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 92



An interrupt handler that uses the RTCC rollover to create a periodic interrupt might look as follows:

ISR Start:
INC tix ' update tix counter
IF tix = 200 THEN ' check for 1 second
tix = 0
INC secs
IF secs = 60 THEN
secs = 0
INC mins
IF mins = 60 THEN
mins = 0
INC hrs
IF hrs = MaxHr THEN
hrs = 0
ENDIF
ENDIF
ENDIF
ENDIF

ISR _Exit:

RETURNINT 156

This routine (ISR) maintains a real-time clock. The variable called fix is updated each time through the ISR and
when it reaches 200 the seconds counter is updated. This indicates that the ISR is designed to run 200 times per
second.

Even when using a 4 MHz oscillator, each instruction takes only 0.25 microseconds. By using the RTCC prescaler

we can slow the RTCC timing to a more manageable value and simplify the code. For the timer above, the RTCC
prescaler ratio is set to 1:128 via the OPTION register (and clearing OPTION.6 enables the ISR):

OPTION = $86 ' prescaler = 1:128
Note that the Cycles count is set to 156 -- this means that the ISR will run after 156 cycles of the internal RTCC.
The final math for the ISR timing works out like this:

4 MHz (FREQ) + 128 (prescaler) = 200 (ISR rate) = 156.25 (Cycles)

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 93



Option Register
The OPTION register is a run-time writable register used to configure the RTCC and the Watchdog Timer. The
size of this register is affected by the OPTIONX device setting.

OPTION
7 6 5 4 3 2 1 0
RTW | RTI | RTS | RTE | PSA | PS2 | PS1 | PSO

When OPTION Extend = 0, bits 7 and 6 are implemented.
When OPTION Extend = 1, bits 7 and 6 read as '1's.

RTW If = 0, register $01 is W
If = 1, register $01 is RTCC

RTI If = 0, RTCC roll-over interrupt is enabled
If = 1, RTCC roll-over interrupt is disabled

RTS If = 0, RTCC increments on internal instruction cycle
If = 1, RTCC increments on transition of RTCC pin

RTE If = 0, RTCC increments on low-to-high transition
If = 1, RTCC increments on high-to-low transition

PSA If = 0, prescaler is assigned to RTCC, divide rate determined by PS2..PS0 bits
If = 1, prescaler is assigned to WDT, and divide rate on RTCC is 1:1

Prescaler Division Ratios

PS2, PS1, PSO| RTCC |Watchdog Timer|
Divide Rate| Divide Rate
000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1:32 1:16
101 1:64 1:32
110 1:128 1:64
111 1:256 1:128

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 94



Using the Rate Parameter

With SX/B version 1.5 the programming of interrupts is simplified with the Rate parameter. When used, the Rate
parameter designates the interrupt frequency in calls per second. For example, to automate the timer code
shown above at a rate of 200 calls per second, the INTERRUPT code could be modified as follows:

ISR Start:
INC tix ' update tix counter
IF tix = 200 THEN ' check for 1 second
tix = 0
INC secs
IF secs = 60 THEN
secs = 0
INC mins
IF mins = 60 THEN
mins = 0
INC hrs
IF hrs = MaxHr THEN
hrs = 0
ENDIF
ENDIF
ENDIF
ENDIF

ISR _Exit:
RETURNINT

By using this style the programmer does not need to set the OPTION register manually.

Asynchronous Interrupts

Every I/O pin in port B can be set to cause an interrupt upon logic level transitions (rising edge or falling edge).
By configuring interrupts on input pins, the SX chip can respond to signal changes in a quick and deterministic
fashion. In addition, an interrupt of this sort will wake up the SX chip from a SLEEP state. This can be configured
by writing to the Edge Selection register (WKED_B) and the Wake-Up Enable register (WKEN_B) and detected by
monitoring the Pending register (WKPND_B) in the interrupt routine. The I/O pins have interrupts disabled and
are set to detect falling edge transitions by default.

As with edge selection, the Pending register bits will never be cleared by the SX alone; the running program is
responsible for doing so. This means if a desired edge is detected, the interrupt will occur and the flag indicating
this will remain set until the program clears it. Additional transitions on that pin will not cause interrupts until the
associated bit in the Pending register is cleared.

To configure the I/O pins for wake-up (interrupt) edge detection:

1. Set I/O pin edge detection with WKED_B as desired.

2. Use WKEN_B to enable the individual pins for wake-up interrupts. A high bit (1) disables interrupts and a
low bit (0) enables interrupts.

3. Set I/O pin directions as necessary.

4. Clear the Pending register to enable new interrupts.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 95



5. Special Notes
Interrupts that are not precisely timed should be avoided -- or at the very least disabled -- when using
time-sensitive instructions such as SERIN, SEROUT, PULSIN, PULSOUT, etc. If an interrupt with
variable timing is triggered while a time-sensitive instruction is active the instruction is likely to fail, or
return bad results. If, however, the interrupt code is constructed such that is always runs a given number
of cycles, the EffectiveHz parameter of FREQ may be used to allow time-sensitive SX/B instructions to
operate while the interrupt is enabled.

Related projects: Clock / Timer and Quadrature Encoder Input

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 96



Syntax

INTERRUPT Examples

This example shows how to create an RTCC rollover interrupt to create the modulation frequency for an infrared
LED.

+3
PHA4EEZH
478
RE.Z Ay M
RE.1 <3
RE.B ad .
226 1R e

' This program modules an IR LED
' IR LED state at a rate of 38.5
' changes of state at this rate,

' When an object reflects the IR

using the interrupt handler to toggle the
kHz. Since the program requires two
the ISR rate is doubled to 77,000.

from an the LED to the detector the Alarm

' LED will illuminate.

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 4 000_000

ID "ISR LED"

b e e e e e e e e e e e e e e — — — —— — —— — —— — —— — —— ——— —— —— —— — o —— —— —— — o —— —— —— — o —— —— —
' IO Pins

b e e e e e e e e e e e e e e e e e o e e  — —— —— — —— — —— — —— —  —  —  —  —  —  —  — — — — — —  — —  —  —  — —  —  —
IrLed PIN RB.0 OUTPUT ' IR LED control

Detect PIN RB.1 INPUT ' detector input

Alarm PIN RB.2 OUTPUT ' alarm LED output

ISR Start:
IrLed = ~IrLed !
RETURNINT

toggle IR LED

PROGRAM Start

' Program Code

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 97



Start:

LOW IrLed ' make output, off

LOW Alarm ' make output, off
Main:

Alarm = ~Detect ' check detector

PAUSE 50

GOTO Main

This example shows how to create an RTCC rollover interrupt to create a "background" serial receiver that runs
up to 19.2 kBaud (with a 4 MHz clock), N81, true mode. A blinking LED indicates "foreground" activity while serial
data is being received.

+5 478 .
RE.7 Ay M

RE.6 e |
RE.S
RE.4
RE.Z
RE.Z
RE.1
RE.8 ]

4.7K

SERIAL IM RA.&

' This program demonstrates the construction of an ISR to receive serial
' data "in the background" using a 1l6-byte circular buffer.

' Note: Requires SX/B 1.2 or later

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "ISR UART"
L
' IO Pins
L
Sin PIN RA.0 INPUT ' serial in

Blinker PIN RB.0 OUTPUT ' blinking LED

LEDs PIN RC OUTPUT ' eight LEDs (7-segs)

TRIS LEDs VAR TRIS C



B1200 CON 64 ' 1200 Baud

B2400 CON 32 ' 2400 Baud

B4800 CON 16 ' 4800 Baud

B9600 CON 8 ' 9600 Baud

B19K2 CON 4 ' 19.2 kBaud (max @ 4 MHz)

BitTm CON B19K2 ' samples per bit

BitTml5 CON 3*BitTm/2 ' 1.5 bits

b e e e e e e e e e e o e e o e o e e e o e e e e e e o e  —— — — — —— ——— ——— ——— ——— —— —— — . —— —— —— —
' Variables

b e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
rxHead VAR Byte ' available slot

rxTail VAR Byte ' next byte to read

rxByte VAR Byte ' serial byte

rxCount VAR Byte ' bits to receive

rxTimer VAR Byte ' bit timer for ISR

rxBuf VAR Byte (16) ' circular buffer

tmpB1 VAR Byte ' parameter

ISR is setup to receive N81, true mode.

ISR Start:
ASM
MOVB C, Sin ' sample serial input
TEST rxCount ' receiving now?
JNZ RX Bit ' yes 1if rxCount > O
MOV W, #9 ' start + 8 bits
SC ' skip if no start bit
MOV rxCount, W ' got start, load bit count
MOV rxTimer, #BitTmlb5 ' delay 1.5 bits

RX Bit:
DJINZ rxTimer, ISR Exit ' update bit timer
MOV rxTimer, #BitTm ' reload bit timer
DEC rxCount ' mark bit done
SZ ' if last bit, we're done
RR rxByte ' move bit into rxByte
SVA ' if not 0, get more bits

JMP ISR Exit

RX Buffer:
MOV FSR, #rxBuf ' get buffer address
ADD FSR, rxHead ' point to head
MOV IND, rxByte ' move rxByte to head
INC rxHead ' update head
CLRB rxHead.4 ' keep 0 - 15
ENDASM
ISR Exit:
RETURNINT 52 ' 13 uS @ 4 MHz

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 99



PROGRAM Start

GET BYTE FUNC 1 ' returns byte from buffer

Start:

TRIS LEDs = 300000000 ' make LED pins outputs

OPTION = $88 ' interrupt, no prescaler
Main:

IF rxHead <> rxTail THEN ' if buffer has data

LEDs = GET BYTE ' get byte from buffer

ENDIF

TOGGLE Blinker ' blink LED

PAUSE 50 ' small pause

GOTO Main

' Use: aVar = GET BYTE
' —— if data is in buffer, the next byte is move to 'aVar'
-- if called when buffer empty, code waits for character to arrive

FUNC GET BYTE
DO WHILE rxHead = rxTail
' wait while empty

LOOP
tmpBl = rxBuf (rxTail) ' get first available
INC rxTail ' update tail position
\ CLRB rxTail.4 ' keep 0 - 15
RETURN tmpB1l

ENDFUNC

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 100



This example shows how to use a port B edge detection interrupt to determine which button was pressed first.

S +3 +3 45 RE.7

RC.&

lak § g RC.S

RC.4

RE.Z <3 e RC.S

RE.Z <3 Aty RC.2

RE.1 <1 Aty RC.1

RE.B T F—"—a RC.G
b5}

' On reset the 7-segment LED is cleared to a dash and the program waits
' for a button press (RB.0O - RB.3) -- the "winner" (first pressed) will
' be displayed on the display until reset.

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "ISRPORTB"

' I0 Pins

b e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o e o o o o o o o o o e o o o o o e o o
Buttons PIN RB INPUT ' button inputs

Display VAR RC OUTPUT ' 7-segment LED

b o e e e e e e e e e e o e e e e e e e e e e e e e e e e e e e e e e
' Constants

Dash CON %01000000 To=

Digl CON %00000110 'l

Dig2 CON $01011011 ' 2

Dig3 CON $01001111 '3

Dig4 CON $01100110 ' 4

LtrE CON $01111001 ' E(rror)

b o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o o e
' Variables

winner VAR Byte ' button pressed first

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 101



ISR Start:
WKPND B = winner

Chl: ' check channel
IF winner <> %0001 THEN Ch2
Display = Digl
GOTO ISR Exit

Ch2:
IF winner <> %0010 THEN Ch3
Display = Dig2
GOTO ISR Exit

Ch3:
IF winner <> %0100 THEN Ch4
Display = Dig3
GOTO ISR Exit

Ch4:
IF winner <> %1000 THEN Uh Oh
Display = Dig4
GOTO ISR_EXit

Uh Oh:
Display = LtrE

ISR Exit:
WKEN B = $11111111
RETURNINT

get winner

' 1if not, try next
' otherwise display

' something went wrong

' no ISR until reset

PROGRAM Start

Start
Display = Dash
WKPND B = $00000000

WKED B = %11111111
WKEN B = %11110000
END

' indicate ready with dash
' clear pending
' falling edge detect
' use bits 0..3 for inputs

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 102



LET

{LET} Variable = {Value} {Op} Value

Function
Assign a Value or result of an expression to Variable.

o  Variable is the target variable for the assignment.
e  Op is a unary (one value) or binary (two values) operator.

. Value is a variable or constant value which affects Variable

Explanation
LET is an optional keyword an not typcially used. For example,

LET idx = 25
... produces the same compiled output as:
idx = 25

so using LET is of no advantage. Note that when assigning a bit variable the value of a byte variable, the bit
variable will be set to zero if the byte variable is zero, otherwise it will be set to one.

myByte = 0
myBit = myByte ' myBit = 0
myByte = 4
myBit = myByte ' myBit = 1

Using Operators in Assignments
Note that SX/B supports only simple expressions, that is, just one operator per line of code. The following line will
produce an error:

idx = count / 2 + 1 ' illegal in SX/B!
The error is corrected by splitting the operators across separate lines:

idx = count / 2 ' okay now idx = idx + 1

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 103



The tables below show available operators for SX/B assignments:

Unary Operator|  Definition

Negate

~

Bitwise inversion

NOT Bitwise inversion
Binary Operator| Definition

+ Addition

= Subtraction

b Multiplication

/ Division

// Modulus

R/ Multiply, return middle 16 bits
RS Multiply, return upper 16 bits
MAX Set Maximum
MIN Set Minimum

& Bitwise AND
AND Bitwise AND

| Bitwise OR

OR Bitwise OR

A Bitwise Exclusive OR
XOR Bitwise Exclusive OR
<< Shift Left

SHL Shift Left

>> Shift Right
SHR Shift Right

See the Operaters section for details.

Configuration Registers

When assigning values to SX configuration registers, the format is limited to:

{LET} Register = Value

When assigning values to the special registers WKPND B and CMP_B a variable must be used and that variable

will be exchanged with the SX register.

{LET} Register = ByteVar

WKPND B = wakeUp ' WKPND B exchanged with wakeUp
analog ' CMP_B exchanged with analog

CMP_B

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 104



LOOKDOWN

LOOKDOWN T7arget, Valuel, {Valuel, ValueZ, ...} Variable

Function
Compare 7arget value to a list of values and store the index number of the first value that matches into Bytelar.
If no value in the list matches, Variableis left unaffected.

e Target is a byte variable or constant (0 - 255) to be compared to the values in the list.

e  Values are byte variables or constants (0 - 255) to be compared to 7arget.

e  Variable is a byte or word variable that will be set to the index (0 - n) of the matching value in the
Values list. If no matching value is found, Variable is left unaffected.

Explanation
LOOKDOWN works like the index in a book. In an index, you search for a topic and get the page number.
LOOKDOWN searches for a target value in a list, and stores the index number of the first match in a variable.

For example:
Do Cmd:
DO
SERIN Sio, Baud, cmd ' wait for command input
LOOKDOWN cmd, "F", "B", "S", cmd ' compare against valid commands
LOOP UNTIL cmd < 3 ' wait until valid
BRANCH cmd, Forward, Backward, Stop Bot ' execute valid command

Related instruction: LOOKUP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 105



LOOKUP ks

LOOKUP Index, Valuel, {Valuel, Value2, ...} Variable

Function
Find the value at location /ndex and store it in ByteVar. If Index exceeds the highest index value of the items in
the list Bytelaris left unaffected.

e Index is a byte variable indicating the list item to retrieve. The first Valueis at Index 0.
o Values are variables or constants.

e  Variable is a byte or word variable that will be set to the value at the /ndex location.

Explanation
LOOKUP retrieves an item from a list based on the item's position, /ndex;, in the list. For example:

idx = 3
LOOKUP idx, $00, $01, s$02, $04, $08, $10, $20, $40, $80, LEDs

In this example, the variable called LEDs will be set to $04 as this value appears at index position three in the
values list.

Related instructions: LOOKDOWN and READ

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 106



LOOKUP Example

RE.
RE.
RE.
EE.
RE.
RE.
RE.
RE.

L e L I =

' Program Description

' Uses LOOKUP to transfer a single digit value to a 7-segment LED.

' Device Settings

TURBO, STACKX, OPTIONX

7-segment display

DEVICE SX28, OSC4MHZ,
FREQ 4 000 000

ID LOOKUP"

\l

' IO Pins

A\l

LEDs PIN RB OUTPUT
]

' Variables

A\l

value VAR Byte
tmpB1 VAR Byte

' digit to display
' subroutine parameter

PROGRAM Start

PUT DIGIT FUNC 1,1

' Program Code

Syntax



Start:

Main:
DO
FOR value = 0 TO 16 ' demo values (last invalid)
LEDs = PUT DIGIT value ' update the display
PAUSE 1000 ' pause one second
NEXT
LOOP

Use: destination = PUT DIGIT value
-- converts number in 'value' to 7-segment digit pattern
and places it in 'destination'

FUNC PUT DIGIT
tmpBl =  PARAMI ' copy value
IF tmpBl < S$A THEN
' decimal
LOOKUP tmpBl, $3F,$06,$5B,$4F,$66,56D,$7D,507,87F,$67, tmpBl
ELSE
IF tmpBl < $10 THEN

' hex
tmpBl = tmpBl - 10 ' adjust for LOOKUP
LOOKUP tmpBl, $77,$7C,$39,$5E,579,571, tmpBl
ELSE
tmpBl = $01000000 ' display dash
ENDIF
ENDIF
RETURN tmpB1l
ENDFUNC

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 108



LOW Example

LOW Pin

Function
Make the specified Pinan output and low (0).

e  Pin isany SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

Explanation
The LOW instruction makes the specified Pinan output, and then sets its value to 0 (Vss). For example:

LOW RA.3
Does the same thing as:

OUTPUT RA.3
RA.3 =0
Using the LOW instruction is more convenient in this case.
LOW can be used on a whole port; for example LOW RB will make all pins on port RB low.

Related instructions: HIGH, OUTPUT, and TOGGLE

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 109



HIGH / LOW Example

478 .
RE.B Sy M J_

' Program Description

' Simple LED blinker using HIGH and LOW.

' Device Settings

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "HIGH-LOW"

b e e e e e e e e e e e o e o e — — — —— — —— — —— — —— — —— — —— — . —— —— —— — o —— —— —— — o —— —— —— — o —— —— —
' IO Pins

b o e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o e o o e o o o o o o e o o o e o o o o
LED PIN RB.0 OUTPUT ' LED pin

b e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o e o o e o e o o o o o o o o o o o o e
' Constants

b e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o o e o o o o o o o o o e o o o o e o o e
OnDelay CON 150 ' time LED is on

OffDelay CON 350 ' time LED is off

PROGRAM Start

Start:
DO
HIGH LED ' turn LED on
PAUSE OnDelay ' delay
LOW LED ' turn LED off
PAUSE OffDelay ' delay
LOOP ' repeat forever

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 110

T
T
—
=



ON ...

ON /ndex [GOTO | GOSUB] LabelO{, Labell, Label2, ...}
ON Index = ValueO {, Valuel, Valuez, ...} [GOTO | GOSUB] Label0 {, Labell, LabelZ, ...}

Function
Jump to the address specified by Index (if in range).

e Index is a byte variable that specifies the index of the address, in the list, to jump to (0 - N), or is value
to be compared against a list to create the jump offset.

e Label specifies the location to jump to.

Quick Facts

All SX Models
Limit of Label entries 256

Explanation
The ON... instruction is useful when you want to write something like this:

IF idx = 0 THEN Case 0 ' idx = 0: jump to label "Case 0"
IF idx THEN Case 1 'oidx 1: jump to label "Case 1"
IF idx = 2 THEN Case 2 ' idx = 2: jump to label "Case 2"

Il
i

You can use ON... with GOTO to organize this into a single statement:

ON idx GOTO Case 0, Case 1, Case 2

This works exactly the same as the previous IF...THEN example. If the value isn't in range (in this case if value
is greater than 2), ON...GOTO does nothing and the program continues with the next instruction after
ON...GOTO. ON...GOSUB is identical, however, the program should be designed such that a RETURN is placed
at the end of the code at Label.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 111



A variant of the ON... instruction essentially combines LOOKDOWN into the syntax. For example:

Main:
cmd = RX BYTE
LOOKDOWN c¢md, "L", R", "S", cmd
ON cmd GOSUB Robot Left, Robot Right, Robot Stop
GOTO Main

.. can be combined to:

Main:
cmd = RX BYTE
ON cmd = "L", R", "S" GOSUB Robot Left, Robot Right, Robot Stop
GOTO Main

Related instructions: IF ... THEN and BRANCH

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 112



OUTPUT

OUTPUT Pin

Function
Make the specified Pinan output by writing a zero (0) to the corresponding bit of the associated port tris register.

e  Pin is any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

Explanation

There are several ways to make a pin an output. When an SX/B program is reset, all of the I/O pins are made
inputs. Instructions that rely on output pins, like PULSOUT and SEROUT, automatically change the specified pin
to output mode. Writing 0's to particular bits of the port TRIS register makes the corresponding pins outputs. And
then there's the OUTPUT instruction:

OUTPUT RA.3
RA.3 =0

When your program changes a pin from input to output, whatever state happens to be in the corresponding bit of
port TRIS register sets the initial state of the pin. To simultaneously make a pin an output and set its state use
the HIGH and LOW instructions.

OUTPUT can also be used on a whole port; for example OUTPUT RB will make all pins on port RB outputs.

Related instructions: INPUT and REVERSE

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 113



OWRDBIT

OWRDBIT Pin, Bit Var

Function
Reads one bit from a 1-Wire bus.

e  Pin isany SXI/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).
e  BitVaris a bit variable that will hold the 1-Wire Read Slot value.

Quick Facts
All SX Models
Special Notes The DQ pin (specified by Pin) must have a 4.7 kQ pull-up resister.
1-Wire commands require a FREQ setting of 4 MHz or higher.

Explanation

Some 1-Wire transactions require reading data from the device. While this is typically handled with OWRDBYTE,
SX/B supports bit access with the OWRDBIT instruction. A 1-Wire read is accomplished by generating a brief (5
MS) low-pulse and sampling the DQ pin within 15 S of the falling edge of the pulse. This is called a "Read Slot."
The diagram and table below details the Read Slot sequence generated by the SX with OWRDBIT.

1-MIRE BUS PULL-UP
—5H
—1-HIRE DEVICE

L

A—

f—

Note Timing | Description
A 5pS Initiate Read Slot (SX master)
B 10 uS | Delay before sampling DQ
C ~ 60 uS | Read Slot recovery

Related instructions: OWRESET, OWRDBYTE, OWWRBIT, and OWWRBYTE

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 114



OWRESET OWRDBIT OWRDBYTE OWWRBIT OWWRBYTE

1-Wire Example

SO o SEETROH

EFI-Z1&

' This program scans the 1-Wire bus and when a device is detected it will
' read and display its serial number.

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "1-WIRE"
L
' IO Pins

DO PIN RA.O ' 1-Wire bus (4.7k pull-up)
SOout PIN RA.1 OUTPUT ' output to SEETRON 2x16

' Constants
L
Baud CON "N960OO"

LcdI CON SFE ' instruction

LcdCls CON S01 ' clear the LCD
LcdHome CON 502 ' move cursor home
LcdCrsrL CON $10 ' move cursor left
LcdCrsrR CON $14 ' move cursor right
LcdDispL CON 518 ' shift chars left
LcdDispR CON S1cC ' shift chars right
LcdDDRam CON $80 ' Display Data RAM control
LcdCGRam CON $40 ' Character Generator RAM
LcdLinel CON $80 ' DDRAM address of line 1
LcdLine?2 CON $CO ' DDRAM address of line 2

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 115



SearchROM CON SFO

read ID, serial num, CRC

ReadROM CON $33
|l

' Variables

A\l

idx VAR Byte
char VAR Byte
owByte VAR Byte
owSerial VAR Byte (8)
tmpB1 VAR Byte
tmpB2 VAR Byte
tmpB3 VAR Byte
tmpWl VAR Word

loop counter

char for LCD

byte for OW work

OW serial number
subroutine work wvars

PROGRAM Start

DELAY SUB 1, 2
TX_BYTE SUB 1, 2
TX_STR SUB 2
TX_ HEX2 SUB 1

delay in milliseconds
transmit byte
transmit string
transmit byte as HEX2

' Program Code

Start:
PLP A %0011
PLP B = 300000000
PLP C = 300000000
DELAY 750

Main:
TX_BYTE LcdI
TX_BYTE LcdCls
DELAY 1

TX STR "SX/B 1-Wire Demo"

Scan DQ:
TX BYTE LcdI
TX BYTE LcdLine2
OWRESET DQ, owByte

ON owByte GOTO Bus_ Short,

GOTO Main

Bus_ Short:

TX STR "1-Wire bus short"

DELAY 1000
GOTO Scan DOQ

Bad Bus:

TX STR "Bad connection "

DELAY 1000

enable pull-ups
except RA.0 and RA.1
let LCD initialize

clear screen, home cursor

write banner in LCD

reset and sample presence

Found, No Device

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 116



GOTO Scan_ DQ

Found:
TX STR "Found device "
DELAY 500

TX BYTE LcdI

TX BYTE LcdLine2

OWRESET DQ, owByte

OWWRBYTE DQ, ReadROM

FOR idx = 0 TO 7
OWRDBYTE DQ, owByte

owSerial (idx) = owByte

NEXT

FOR idx = 7 TO 0 STEP -1
owByte = owSerial (idx)
TX HEX2 owByte

NEXT

DELAY 2000

GOTO Scan_DQ
No Device:

TX STR "No device "
GOTO Scan_DQ

' Use: DELAY ms

' —— 'ms' is delay in milliseconds,

SUB DELAY
IF  PARAMCNT = 1 THEN
tmpWl =  PARAMI
ELSE
tmpWl =  WPARAMI12
ENDIF
PAUSE tmpWl
ENDSUB

' Use: TX BYTE theByte {,

move back to L2/CO
reset device

send read ROM command
read serial number

display on LCD

-—- hex mode

- 65535

save byte value

save word value

' —— transmit "theByte" at "Baud" on "SOut"
' —— optional "count" may be specified (must be > 0)

SUB TX BYTE

tmpBl =  PARAMI1
IF  PARAMCNT = 1 THEN
tmpB2 = 1
ELSE
tmpB2 =  PARAM2
IF tmpB2 = 0 THEN
tmpB2 = 1
ENDIF
ENDIF

DO WHILE tmpB2 > 0

SEROUT SOut, Baud, tmpBl

DEC tmpB2
LOOP
ENDSUB

save byte

if no count
set to 1
otherwise

get count

do not allow O

loop through count
send the byte
decrement count

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 117



' Use: TX STR [string | label]
' —— "string" is an embedded string constant
-— "label" is DATA statement label for stored z-String

SUB TX_ STR
tmpWl =  WPARAMI2 ' get offset/base
DO
READ tmpWl, char ' read a character
IF char = 0 THEN EXIT ' if 0, string complete
TX BYTE char ' send character
INC tmpWl ' point to next character
LOOP
ENDSUB
' Use: TX HEX2 theByte
' —— transmit 'theByte' in HEX2 format

SUB TX HEX2

tmpB3 =  PARAMIL ' save byte
char = tmpB3 & %$11110000 ' mask high nib
SWAP char ' swap nibs
READ HexDigits + char, char ' high nib to hex char
TX BYTE char ' send it
char = tmpB3 & %$00001111 ' get low nib
READ HexDigits + char, char ' low nib to hex char
TX BYTE char ' send it
ENDSUB

User Data
]

HexDigits:
DATA "0123456789ABCDEF"

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 118



Example

OWRDBYTE

OWRDBYTE PAPin, ByteVar

Function
Reads one byte (eight bits) from a 1-Wire device.

Pin is any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e  ByteVaris any byte variable that will hold the 1-Wire read value.

Quick Facts

All SX Models
The DQ pin (specified by Pin) must have a 4.7 kQ pull-up resister.
1-Wire commands require a FREQ setting of 4 MHz or higher.
Receive Rate ~12 kBits/Sec (not including Reset)

Special Notes

Explanation
Some 1-Wire transactions require reading data from the device. A bit is read from the 1-Wire device byte

generating a brief pulse on the DQ line, then reading the line within 15 uS of the falling edge (see OWRDBIT for
details). This is called a "Read Slot." The OWRDBYTE instruction generates eight 1-Wire Read Slot sequences

and returns the value in Bytelar.

Related instructions: OWRESET, OWRDBIT, OWWRBIT, and OWWRBYTE

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 119



OWRESET =

OWRESET Pin {, Bytelar}

Function
Generates a 1-Wire reset sequence on Pin, returning (optional) status information in BytelVar.

e  Pin is any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e  ByteVar is an optional byte variable that will hold the status of the 1-Wire connections (see below).

Quick Facts

All SX Models
Special Notes The DQ pin (specified by Pin) must have a 4.7 kQ pull-up resister.
1-Wire commands require a FREQ setting of 4 MHz or higher.
Status value 0 = Bus shorted to Vss; 1 = Bad connection; 2 = Good connection; 3 = No device

Explanation

All transactions on the 1-Wire bus begin with an Initialization sequence that consists of a Reset pulse generated
by the master, followed by a Presence pulse generated by the 1-Wire slave. The OWRESET instruction generates
the 1-Wire Reset pulse on the specified DQ Pin and, if BytelVaris specified, will monitor the bus and return status
information to the program.

The diagram and table below details the Reset pulse generated by the SX with OWRESET and a typical Presence
pulse generated by a 1-Wire slave, in response.

1-WIRE BUS FPULL-UFP
—3SH
—1-HIRE DEVICE

RESET PRESEMCE
D
E—
Note Timing Description
A ~ 480 uS 1-Wire Reset pulse (SX master)
B ~ 15 S Delay before sampling for bus short
C ~ 70 uS Delay before sampling for Presence
D ~ 60 - 240 pS Presence pulse (1-Wire slave)
E ~ 480 puS Reset recovery

Related instructions: OWRDBIT, OWRDBYTE, OWWRBIT, and OWWRBYTE

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 120




OWWRSBIT

OWWRBIT Pin, BitVal

Function
Writes one bit to a 1-Wire bus.

e  Pin is any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e  BitVal is a variable or constant value (0 to 1) that will be written to the 1-Wire bus.

Quick Facts

All SX Models

Special Notes The DQ pin (specified by Pin) must have a 4.7 kQ pull-up resister.

1-Wire commands require a FREQ setting of 4 MHz or higher.

Explanation

After reset, 1-Wire transactions require writing values to the bus. While this is typically handled with
OWWRBYTE, SX/B supports bit access with the OWWRBIT instruction. A bit is written by generating a timed
low pulse on the DQ line; this is called a "Write Slot." The diagrams and tables below details the Write Slot
sequences generated by the SX with OWWRBIT.

WRITE 0
1-WIRE BUS PULL-UFP
—5H
—DEVICE SAMPLES BUS

L ¢

A

B

Note Timing | Description
A 60 uS | Write Slot 0 (SX master)
B ~ 10 uS | Write Slot recovery

WRITE 1
1-WIRE BUS PULL-UP
—5H
—DEUICE SAMPLES BUS

Note Timing | Description
A 5 uS Write Slot 1 (SX master)
B ~ 65 uS | Write Slot recovery

Related instructions: OWRESET, OWRDBIT, OWRDBYTE, and OWWRBYTE

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 121



Example

OWWRBYTE

OWWRBYTE Pin, ByteVal
Function
Writes one byte (eight bits) to the 1-Wire bus.
Pin is any SX 10 pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

ByteVal is a variable or constant value (0 - 255) that will be written to the 1-Wire bus.

Quick Facts

All SX Models
Special Notes The DQ pin (specified by Pin) must have a 4.7 kQ pull-up resister.
1-Wire commands require a FREQ setting of 4 MHz or higher.
Transmission rate ~12 kBits/Sec (not including Reset)

Explanation
After reset, 1-Wire transactions require writing values to the bus. A bit is written by generating a timed low pulse
on the DQ line; this is called a "Write Slot" (see OWWRBIT for details). The OWWRBYTE instruction generates

eight Write Slot sequences to put Byfela/on the 1-Wire bus.
Related instructions: OWRESET, OWRDBIT, OWRDBYTE, and OWWRBIT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 122



PAUSE Example

PAUSE Value
PAUSE Bytelall {, | *] ByteVal2}

Function
Pause the program (do nothing) for a number of milliseconds.

e Value is a byte or word variable/constant (1 to 65535), or fractional constant value'.
e  ByteVal is a variable (1 - 255) or constant (1 to 255).

" Note: Fractional values (0.01 to 65535.99) are allowed when a single constant parameter is used. SX clock
speed will affect the accuracy of fractional timing.

Explanation
PAUSE delays the execution of the next program instruction for a number of milliseconds based on Value, or
ByteVall and ByteValZ2. For example:

Flash:
DO
LOW RC.O
PAUSE 1000
HIGH RC.O
PAUSE 1000
LOOP

This code causes pin RC.0 to go low for 1000 milliseconds, then high for 1000 milliseconds. Note that a PAUSE
duration of up to 65535 milliseconds is possible with a 16-bit variable or constant.

Some projects may require sub- or fractional-millisecond delays, and in some cases PAUSEUS may not be
practical or desired. When using a single parameter, a fractional PAUSE value may be specified:

Flash:
DO
LOW RC.O
PAUSE 12.5
HIGH RC.O
PAUSE 12.5
LOOP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 123



PAUSE can take a single byte or word parameter, or two byte parameters. When using two byte parameters, two
forms are allowed. Here's an example of the first form:

PAUSE 238, 2

Using this form, the PAUSE duration is BytelVall + (BytelValz* 256). In the example above the program will
pause for 750 milliseconds. Note that this form is typically used with variables, but will also work with constants
up to 255. Note that as of SX/B version 1.5 using a single word variable or constant is easier to code and
understand.

The third form of PAUSE is demonstrated below:
idx = 3 PAUSE idx * 250

Using this form, the PAUSE duration is Bytelall * BytelVal2. In the example above the program will pause for
750 milliseconds. Note that this form is typically used with variables, but will also work with constants up to 255.

Related instruction: PAUSEUS

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 124



PAUSE Example

478 .
RE.B Sy M J_

' Variable-rate LED blinker. Puts PAUSE into a subroutine for greatest
flexibility and program space conservation.

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "PAUSE"

b e e e e e e e e e e e e e e e e e e e e e e e e e e e e o o e o o e o o o o o o o o o o o o e o o
' IO Pins

b e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o o o o o e e o o o o o e o o o o o e o e
Led PIN RB.0 OUTPUT

b e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o e o o e o o o o o e o o o o o o o e o
' Variables

b e e e e e e e e e e e e e — — — — — —— — —— — —— — —— — . — " —— —— — o —— —— ———— —— —— —— — o — o —— —
idx VAR Byte ' loop counter

timing VAR Word

tmpWl VAR Word ' for subroutines

PROGRAM Start

Start:
DO
FOR idx = 1 TO 10 ' loop 1 to 10
HIGH Led ' LED on
timing = 50 * idx ' calculate on timing
DELAY timing ' pause 50 to 500 ms

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 125

Syntax



SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 126



PAUSEUS

PAUSEUS lalue
PAUSEUS Bytelall {, | *] ByteVal2}

Function
Pause the program (do nothing) for a number of microseconds.

e Value is a byte or word variable/constant (1 to 65535), or fractional constant value'.
e  ByteVal is a variable (1 - 255) or constant (1 to 255).

" Note: Fractional values (0.01 to 65535.99) are allowed when a single constant parameter is used. SX clock
speed will affect the accuracy of fractional timing.

Explanation
PAUSE delays the execution of the next program instruction for a number of microseconds based on Value, or
BytelVall and Bytelal2. For example:

Tone:
RC.0 = ~RC.O
PAUSEUS 500
IF RB.0O = 1 THEN Tone

This code toggles the state of RC.0 every 500 microseconds, creating a 1 kHz tone until pin RB.0 goes low. Note
that a PAUSEUS duration of up to 65535 microseconds is possible when a single constant parameter is used.

Some projects may require sub- or fractional-microsecond delays. When using a single parameter, a fractional
PAUSEUS value may be specified:

Tone440:
DO
RC.0 = ~RC.O
PAUSEUS 1136.36
LOOP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 127



PAUSEUS can take a single byte or word parameter, or two byte parameters. When using two byte parameters,
two forms are allowed. Here's an example of the first form:

PAUSEUS 238, 2
Using this form, the PAUSEUS duration is ByteVall + (ByteValz2* 256). In the example above the program will
pause for 750 microseconds. Note that this form is typically used with variables, but will also work with constants
up to 255. Note that as of SX/B version 1.5 using a single word variable or constant is easier to code and
understand.
The third form of PAUSEUS is demonstrated below:

idx = 3
PAUSEUS idx * 250

Using this form, the PAUSEUS duration is Bytelall * ByteVal2. In the example above the program will pause for
750 microseconds. Note that this form is typically used with variables, but will also work with constants up to
255.

Related instruction: PAUSE

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 128



PU LLU P (5X48/52 Only)

PULLUP Pin {, Enable}

Function
Enables the internal pull-up resistor for Pin on the SX48 or SX52. This command does not apply to the SX18,
SX20, or SX28 (use the PLP_A, PLP_B, and PLP_C registers).

e Pin is any SX48/52 1/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e  Enableis a constant, 0 or 1, that enables (1) or disables (0) the internal pull-up resistor for Pin. When not
specified, Enable defaults to 1.

Explanation

Every I/O pin has an optional internal pull-up resister that can be configured by writing to the appropriate pull-up
register (PLP_A, PLP_B, PLP_C, PLP_D and PLP_E). By configuring pull-up resisters on input pins, the SX chip can
be connected directly to open/drain circuitry without the need for external pull-up resisters. The internal pull-up
resisters are disabled by default. Pull-up resisters can be activated for all pins, regardless of pin direction but
really matter only when the associated pin is set to input mode.

Start:
PULLUP RA.0, 1 ' enable pull-up
PULLUP RA.1 ' enable pull-up
PULLUP RA.2, O ' disable pull-up

Related instructions: CMOS, TTL, and SCHMITT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 129



PULSIN

PULSIN Pin, State, Variable {, Resolution}

Function
Measure the width of a pulse on Pin described by State in units of Resolution and store the result in Variable.

e  Pin isany SXI/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7). This pin will be
set to input mode.

e  State is a constant (0 - 1) that specifies whether the pulse to be measured is low (0) or high (1). A low
pulse begins with a 1-to-0 transition, and a high pulse begins with a 0-to-1 transition.

e Variable is a byte or word variable in which the measured pulse duration will be stored. The unit of time
for Variable is described in Resolution.

e Resolution is an optional constant (1 - 255) that specifies the units for Variable, in increments of 10
microseconds (default value is 1 when not specified).

Quick Facts
Range of Variable 0 (no pulse) to 255 (byte) or 65,535 (word)
Units in Resolution 10 ps (0.01 ms)
Minimum pulse width 10 ps
Maximum pulse width 650.25 ms (byte), 167.11 s (word)

Explanation
PULSIN is like a fast stopwatch that is triggered by a change in state (0 or 1) on the specified pin. The entire
width of the specified pulse (high or low) is measured, in units shown above and stored in ByteVar.

Many analog properties (voltage, resistance, capacitance, frequency, duty cycle) can be measured in terms of
pulse duration. This makes PULSIN a valuable form of analog-to-digital conversion.

PULSIN will wait for the desired pulse, for up to the maximum pulse width it can measure, shown in the table
above. If it sees the desired pulse it measures the time until the end of the pulse and stores the result in
Variable. If it never sees the start of the pulse, or the pulse is too long (greater than the Maximum Pulse Width
shown above), PULSIN "times out" and store 0 in Variable. This operation keeps your program from locking-up
should the desired pulse never occur.

PULSIN RA.0, 1, pWidth ' measure 10 - 2550 us pulse

In the example above, pin RA.0 will be set to input mode, wait for a low-to-high transition, then measure the
period that the pin stays high. Using the default Resolution of 10 microseconds, a pulse from 10 microseconds to
2.55 milliseconds in width can be measured (assuming pWidth is a byte).

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 130



Since PULSIN uses a byte variable for storage, the Resolution parameter can be used to allow the measurement
of wider pulse widths. For the best accuracy, set Resolution to the smallest value that will allow the measurement
of the greatest expected pulse width.

SUB Get Button

PULSIN RA.1, 0, btnIn, 100 ' wait for (low) button press
IF btnIn < 50 THEN Get Button ' at least 50 ms?
ENDSUB

The subroutine above will monitor the state of RA.1, waiting for it to go low and stay low for at least 50
milliseconds. This is a useful method of debouncing a button input.

Related instruction: PULSOUT
Related project: SIRCS Decoder

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 131



PULSOUT

PULSOUT Pin, Duration {, Resolution}

Function
Generate a pulse on Pin with a width of Duration * Resolution.

e Pin is any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7). This pin will be
set to output mode.
e  Duration is a variable or constant that specifies the pulse width in Resolution units.

e  Resolution is an optional constant (1 - 255) that specifies the units for Duration, in increments of 10
microseconds (default value is 1 when not specified).

Quick Facts
Units in Resolution 10 ps (0.01 ms)
Minimum pulse width 10 ps
Maximum pulse width 650.25 ms (byte), 167.11 s (word)

Explanation
PULSOUT sets Pin to output mode, inverts the state of that pin; waits for the specified Duration x Resolution x
10 microseconds; then inverts the state of the pin again returning the bit to its original state.

The pulse width is the product of Duration and Resolution. In the following example, a pulse of 50 microseconds
will be generated on RA.O

PULSOUT RA.0, 5 ' 50 Ms pulse

The Resolution parameter gives the programmer a great deal of flexibility with PULSOUT. In the follow example,
a stream of pulses will be created, each with a different pulse width:

Main:
FOR idx = 1 TO 10
PULSOUT RA.0, idx, 10 ' pulses from 100 to 1000 Hs
PAUSE 1 ' delay 1 millisecond
NEXT
GOTO Main

By combining Duration and Resolution, pulses from 10 microseconds to 167.11 seconds can be generated.

Related instruction: PULSIN

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 132



PUT

PUT Location, Value {, Value, ... }

Function
Copy Value(s) into RAM, beginning at Location.

e Location is the starting address in RAM for the PUT.
. Value is a variable, constant value, or string constant.
Explanation

The PUT instruction provides a convenient method of moving multiple values into consecutive locations in RAM.
For example,

clock (0) = hrs ' copy hrs to clock(0)
clock(l) = mins ' copy mins to clock (1)
clock (2) = secs ' copy mins to clock(2)

Can be simplified to a single line of code:

PUT clock(0), hrs, mins, secs

Note that array elements are internally represented by RAM addresses. To use PUT with consecutive bytes that
are not part of an array, you must explicitly declare the address of the first variable using the @ symbol:

PUT @hrs, 12, 34, 56 ' hrs = 12, mins = 34, secs = 56
When Valueis a word, its LSB is written from Location and its MSB to Location + 1. For example:
loval VAR Byte
hival VAR Byte
Start:
PUT @loVal, SF00A ' loval = $0A, hival = S$SFO

PUT can be used to load string characters into a byte array:

PUT msg, "Hello", O

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 133



Using PUT With Address Parameters

When a variable is passed to a subroutine (declared with SUB) by address (using @), as in:

Some Routine @aValue ' pass address of 'aValue'

... PUT can be used to place a value into the address that was passed to the subroutine:

Some Routine:

rtnAddr =  PARAMI ' save return address

GET rtnAddr, theValue ' get value from address

... ' do something with the value
PUT rtnAddr, newValue ' update value at passed address
RETURN

This technique is useful for allowing a subroutine to modify a variable. Note that for single-parameter instances,
the _ RAM() system array may be used in place of GET and PUT:

Some Routine:

rtnAddr = _ PARAMI ' save return address

theValue =  RAM(rtnAddr) ' get value from address

Ce. ' do something with the wvalue
__RAM(rtnAddr) = newValue ' update value at passed address
RETURN

Related instruction: GET

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 134



PWM Example

PWM Pin, Duty, Duration

Function
Convert a digital value to analog output via pulse-width modulation.

e  Pin is any SX IO pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).
e Duty is a variable or constant (0 - 255) that specifies the analog output level (0 to 5V).

e Duration is a variable or constant (0 - 255) that specifies the duration of the PWM output in milliseconds.

Quick Facts

Units in Duration 1 ms

Average voltage equation Average Voltage = (Duty + 255) x 5 volts

Duration 5 x R x C (suggested)

Notes Pin is output while PWM active, then switched to input mode

Explanation

Pulse-width modulation (PWM) allows the SX (a purely digital device) to generate an analog voltage. The basic
idea is this: If you make a pin output high, the voltage at that pin will be close to 5V. Output low is close to 0V.
What if you switched the pin rapidly between high and low so that it was high half the time and low half the
time? The average voltage over time would be halfway between 0 and 5V (2.5V). PWM emits a burst of 1s and
0s with a ratio that is proportional to the duty value you specify.

The proportion of 1s to 0s in PWM is called the duty cycle. The duty cycle controls the analog voltage in a very
direct way; the higher the duty cycle the higher the voltage. In the case of the SX, the duty cycle can range from
0 to 255. Dutyis literally the proportion of 1s to 0s output by the PWM instruction. To determine the proportional
PWM output voltage, use this formula: (Duty + 255) x 5V. For example, if Dutyis 100, (100 + 255) x 5V =
1.96V; PWM outputs a train of pulses to create (through an RC network) an average voltage of 1.96V.

In order to convert PWM into an analog voltage we have to filter out the pulses and store the average voltage.
The resistor/capacitor combination shown below will do the job. The capacitor will hold the voltage set by PWM
even after the instruction has finished. How long it will hold the voltage depends on how much current is drawn
from it by external circuitry, and the internal leakage of the capacitor. In order to hold the voltage relatively
steady, a program must periodically repeat the PWM instruction to give the capacitor a fresh charge.

Just as it takes time to discharge a capacitor, it also takes time to charge it in the first place. The PWM command
lets you specify the charging time in terms of PWM duration. The timing for the units in Duration is one
millisecond.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 135



How do you determine how long to charge a capacitor? Use this rule-of-thumb formula: Charge Time = 5 xR x C.
For instance, the circuit below uses a 10 kQ (10 x 10° ohm) resistor and a 1 pF (1 x 10 uF) capacitor:

T AMALOG

16K
RE.G [ Sty +
A

1L.|=I

Charge time = 5 x 10 x 10° x 1 x 10° = 50 x 10 seconds, or 50 milliseconds.

PWM RB.0O, 128, 50 ' charge to 2.5 volts, 50 ms

After outputting the PWM pulses, the SX leaves the pin in input mode (1 in the corresponding bit of the pin's
TRIS register). In input mode, the pin's output driver is effectively disconnected. If it were not, the steady output
state of the pin would change the voltage on the capacitor and undo the voltage setting established by PWM.
Keep in mind that leakage currents of up to 1 pA can flow into or out of this "disconnected" pin. Over time, these
small currents will cause the voltage on the capacitor to drift. The same applies for leakage current from an op-
amp's input, as well as the capacitor's own internal leakage. Executing PWM occasionally will reset the capacitor
voltage to the intended value.

PWM charges the capacitor; the load presented by your circuit discharges it. How long the charge lasts (and
therefore how often your program should repeat the PWM instruction to refresh the charge) depends on how
much current the circuit draws, and how stable the voltage must be. You may need to buffer PWM RC circuit
output with a simple op-amp follower if your load or stability requirements are more than the passive circuit can
handle.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 136



PWM Example

18K
RE.G Sty
a

DEVICE SX28, OSC4AMHZ,
FREQ 4 000_000

ID PWM"

1

' IO Pins

A\l

DAC PIN RB.0 OUTPUT
1

' Variables

A\l

angle VAR Byte
duty VAR Byte

tmpB1 VAR Byte
tmpB2 VAR Byte

——— STIFF UOLTAGE

TURBO, STACKX, OPTIONX

returns sine of angle
returns cosine of angle

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 137

Syntax



Start:
DO
FOR angle = 0 TO 255 ' sweep through angles
duty = SIN angle ' get sine of angle
duty = duty + 127 ' bias to 2.5 v
PWM DAC, duty, 1 ' charge RC network
NEXT
LOOP

' Use: value = SIN angle
' —— "value" returned as signed byte (=127 to 127)
' —- angle is expressed in Brads (0 - 255)
FUNC SIN
tmpBl =  PARAMI ' get angle
tmpB2 = tmpBl ' make copy
IF tmpB2.6 = 1 THEN ' in 2nd or 4th quadrant?
tmpBl = 0 - tmpBl ' yes, move to 1lst/3rd
ENDIF
tmpBl.7 = 0 ' reduce to 1lst quadrant
READ SineTable + tmpBl, tmpBl ' read sine
IF tmpB2.7 = 1 THEN ' was angle in 3rd/4th?
tmpBl = 0 - tmpBl ' yes, adjust
ENDIF
RETURN tmpB1l
ENDFUNC

' Use: value = COS angle
' —— "value" returned as signed byte (=127 to 127)

' —- angle is expressed in Brads (0 - 255)

FUNC COS
tmpBl =  PARAM1 + $40 ' get angle (adjust phase)
tmpBl = SIN tmpBl ' call sine table
RETURN tmpB1l

ENDFUNC

' User Data

SineTable:
DATA 000, 003, 006, 009, 012, 0le6, 019, 022
DATA 025, 028, 031, 034, 037, 040, 043, 046
DATA 049, 051, 054, 057, 060, 063, 065, 068
DATA 071, 073, 076, 078, 081, 083, 085, 088
DATA 090, 092, 094, 096, 098, 100, 102, 104
DATA 106, 107, 109, 111, 112, 113, 115, 116

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 138



DATA 117, 118, 120, 121, 122, 122, 123, 124
DATA 125, 125, 126, 126, 126, 127, 127, 127
DATA 127

TD=8 us TB =50 mS

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 139



RANDOM

RANDOM Seed {, Duplicate}

Function
Generate a pseudo-random number.

e Seed is a variable whose bits will be scrambled to produce a random number. Seed acts as RANDOM's
input value and its result output. Each pass through RANDOM stores the next number, in the pseudo-
random sequence, in Seed.

e  Duplicate is an optional variable that, if provided, will receive a copy of Seed after RANDOM. This
variable may be modified without affecting the value of Seed for the RANDOM instruction. Note:
Duplicate must be the same size (byte or word) as Seed.

Explanation

RANDOM generates pseudo-random numbers ranging from 0 to 255 (if Seedis a byte) or 0 to 65535 (if Seed'is a
word). The value is called "pseudo-random" because it appears random, but are generated by a logic operation
that uses the initial value in Seed'to "tap" into a sequence of essentially random numbers. If the same initial
value, called the "seed", is always used, then the same sequence of humbers will be generated. The following
example demonstrates this:

Start:
OUTPUT RB ' make RB outputs (LEDs)
Main:
DO
result = 123 ' set initial "seed" value
RANDOM result ' generate random number
RB = result ' show the result on RB
PAUSE 100
LOOP

In this example, the same number would appear on RB over and over again. This is because the same seed value
was used each time; specifically, the first line of the loop sets result to 123. The RANDOM command really
needs a different seed value each time. Moving the "result =" line out of the loop will solve this problem, as in:

Start:
OUTPUT RB ' make RB outputs (LEDs)
Main:
result = 123 ' set initial "seed" value
DO
RANDOM result ' generate random number
RB = result ' show the result on RB
PAUSE 100
LOOP

Here, result is only initialized once, before the loop. Each time through the loop, the previous value of result,
generated by RANDOM, is used as the next seed value. This generates a more desirable set of pseudo-random
numbers.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 140



In applications requiring more apparent randomness, it's necessary to "seed" RANDOM with a more random
value every time. For instance, in the digital dice example program, RANDOM is executed continuously (using
the previous resulting number as the next seed value) while the program waits for the user to press a button.
Since the user can't control the timing of button presses very accurately, the results approach true randomness.

Related project: Digital Dice

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 141



RCTIME s

RCTIME Pin, State, Variable {, Resolution}

Function
Measure time while Pin remains in State; usually to measure the charge/discharge time of resistor/capacitor (RC)
circuit.

e  Pin is any SX IO pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e State is a constant (0 - 1) that specifies the desired state to measure. Once Pinis not in State, the
command ends and stores the result in Variable.

e  Variable is a byte or word variable in which the time measurement will be stored. The unit of time for
Variable is 2 microseconds multiplied by Resolution (if specified).

e  Resolution is an optional variable or constant (1 - 255) that specifies the units for Variable, in
increments of 2 microseconds (default is 1 when not specified).

Explanation

RCTIME can be used to measure the charge or discharge time of a resistor/capacitor circuit. This allows you to
measure resistance or capacitance; use R or C sensors such as thermistors or capacitive humidity sensors or
respond to user input through a potentiometer. In a broader sense, RCTIME can also serve as a fast, precise
stopwatch for events of very short duration.

When RCTIME executes, it starts a counter. It stops this counter as soon as the specified pin is no longer in
State (0 or 1). If pin is not in State when the instruction executes, RCTIME will return 0 in Variable. If pin
remains in State longer than 255 timing cycles RCTIME returns 0.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 142



The figure below shows suitable RC circuits for use with RCTIME. Circuit A is preferred, because the SX TTL logic
threshold is approximately 1.4 volts. This means that the voltage seen by the pin will start at 5V then fall to 1.4V
(a span of 3.6V) before RCTIME stops. With Circuit B, the voltage will start at OV and rise to 1.4V (spanning only
1.4V) before RCTIME stops (this could be changed by setting the Pin threshold to CMOS). For the same
combination of R and C, Circuit A will yield a higher count, and therefore more resolution than Circuit B.

220 +5

C [
228
I0 PIH
E :I:

(A) Use with State = 1 (B) Use with State = 0

IO FPIM

Here's a typical sequence of instructions for Circuit A, using a 0.1 pF capacitor and a 10 kQ pot.

Start:
OUTPUT RB ' make LED pins outputs

Main:
HIGH RA.O ' charge the capacitor
PAUSEUS 250 ' for 250 us
RCTIME RA.0, 1, analog, 5 ' measure in 10 us (2 x 5) units
RB = analog
PAUSE 100
GOTO Main

Using RCTIME is very straightforward, except for one detail: For a given R and C, what value will RCTIME
return? It's easy to figure, based on a value called the RC time constant, or tau (1) for short. Tau represents the
time required for a given RC combination to charge or discharge by 63 percent of the total change in voltage that
they will undergo. More importantly, the value t is used in the generalized RC timing calculation. Tau's formula is
just R multiplied by C:

T=RxC

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 143



The general RC timing formula uses T to tell us the time required for an RC circuit to change from one voltage to
another:

time = -7 X ( IN(Vfinal / Vinitial) )

In this formula In is the natural logarithm; it's a key on most scientific calculators. Let's do some math. Assume
we're interested in a 10 kQ resistor and 0.1 pF capacitor. Calculate T:

T=(10x10% x (0.1 x10%) =1x10°?

The RC time constant is 1 x 10 or 1 millisecond. Now calculate the time required for this RC circuit to go from 5V
to 1.4V (as in Circuit A):

Time = -1 x 10% x (In(5.0v + 1.4v) ) = 1.273 x 103

Using SX/B the unit of time is 2 s, that time (1.273 x 107®) works out to about 635 units -- which exceeds the
default resolution of RCTIME. What we can do is divide by 635 by 255 (byte value limit) to determine the
smallest Resolution required to support the RC combination. In this case it works out to 2.49, so setting
Resolution to 3 will allow us to measure the RC network with the greatest accuracy; in this case our
measurement units will now be six microseconds (2 x 3). Note that setting Resolution too low will result in
RCTIME returning zero.

Another handy rule of thumb can help you calculate how long to charge/discharge the capacitor before RCTIME.
In the example above that's the purpose of the HIGH and PAUSE commands. A given RC charges or discharges
98 percent of the way in five time constants (5 x R x C). In Circuits A and B, the charge/discharge current passes
through the 220 Q series resistor and the capacitor. So if the capacitor were 0.1 uF, the minimum
charge/discharge time should be:

Charge time = 5 x 220 x (0.1 x 10°) = 110 x 10°®

So it takes only 110 ps for the capacitor to charge/discharge, meaning that the 250 microsecond
charge/discharge time of the example is plenty.

A final note about the circuits above: You may be wondering why the 220 Q resistor is necessary at all. Consider
what would happen if resistor R was a potentiometer, and were adjusted to 0 Q. When the I/O pin went high to
discharge the capacitor, it would see a short direct to ground. The 220 Q series resistor would limit the short
circuit current to 5V + 220 Q = 23 mA and protect the SX IO pin from damage. (Actual current would be quite a
bit less due to internal resistance of the pin's output driver, but you get the idea).

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 144



RCTIME Example

228
RA.8

RE.
RE.
RE.
RE.
RE.
RE.
RE.
RE.

L B S T R O I |

0SC4MHZ,

STACKX, OPTIONX

RA.O
RB OUTPUT

IO pin for RCTIME
7-segment LED

DEVICE SX28,
FREQ 4 000 000
ID "RCTIME"
\l

' IO Pins

\l

PotPin PIN
Display PIN
|l

' Variables

A\l

analog VAR

WATCH analog

pot value

PROGRAM Start

Start:
Display = %00000000

Main:
HIGH PotPin

clear display

charge capacitor

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 145

Syntax



PAUSEUS 250 ' for 250 usecs

RCTIME PotPin, 1, analog ' read pot (2 us units)
analog = analog / 50 ' convert to 0 - 9

READ SegMap + analog LSB, Display ' put digit into display
PAUSE 100 ' wait 0.1 secs

GOTO Main

' User Data

SegMap: ' segments maps

! .gfedcba
DATA 00111111 ' 0
DATA %00000110 "1
DATA %$01011011 "2
DATA %$01001111 '3
DATA %$01100110 ' 4
DATA 01101101 ''5
DATA $01111101 ''6
DATA %00000111 '
DATA 01111111 '8
DATA 01100111 "9

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 146



READ | READINC Examples

READ | READINC Base {+ Offset}, Variable {, Variable, ...}

Function
Read one or more bytes from a table.

e Base is the base address of data to be read which may be specified as a DATA or WDATA statement
label, or as a string-pointer variable created by the compiler (see below).

e  Offset is an optional variable indicating the relative position (to Base) for the READ operation. This may
be specified when Base s a label, or can be created by the compiler when strings are used (see below).

e  Variable is a byte or word variable.

Explanation

The DATA directive can be used to create [read-only] tables for SX/B programs. The READ instruction is used to
move one or more table values into the specified byte variable(s)

If READINC is used, the Offset wil be automatically incremented to to point to the next DATA item. If Offsetis
not used the Base will be incremented.

Start:
OUTPUT RB

Main:

FOR idx = 0 TO
READ Pattern
PAUSE 100

NEXT idx

FOR idx = 4 TO
READ Pattern
PAUSE 100
NEXT idx

GOTO Main ' do it again

+ W

idx, RB ' move pattern to LEDs

=

STEP -1
idx, RB

+

Pattern: ' LED patterns
DATA %00000000
DATA 300011000
DATA %00111100
DATA %01111110
DATA %11111111

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 147



As of version 1.4, SX/B can handle inline strings (of two or more characters) and z-strings (of any length) stored
in DATA statements. Using READ, the following subroutine will send a string to a defined serial port:

' Use: TX STR [ string | label ]
' —— "string" is an embedded literal string
' —— "label" is DATA statement label for stored z-String

SUB TX_ STR
tmpWl =  WPARAMI2 ' get offset/base
DO
READ tmpWl, tmpW3 ' read a character
IF tmpW3 = 0 THEN EXIT ' if 0, string complete
SEROUT SOut, Baud, tmpW3 ' send the byte
INC tmpWl ' point to next character
LOOP
ENDSUB

This subroutine expects two parameters: the base address and the character offset of the string. The subroutine
uses a word variable to accept the base+offset string pointer that is passed as a parameter. When a literal string
or DATA label is specified as the TX_STR parameter, the compiler inserts the appropriate values that form a
pointer to the string. Using the subroutine above strings can be transmitted like this:

TX STR SUB 2 ' strings use two parameters

Main:
TX STR "Version " ' inline string (compiles to z-string)
TX STR VerNum
END

VerNum:
DATA "1.0", O ' defined z-string

Note that when using a label as a subroutine parameter it must be defined before use, and the SX/B compiler
adds the terminating zero to inline strings when there are two are more characters. If the following syntax is
used:

TX STR "X" ' character passed by value

an error will be raised as single characters are passed by value (one parameter), not by string pointer reference
(two parameters). The solution is to create a subroutine for sending a single character that is also used by the
TX_STR subroutine. See the examples page for details.

Related instructions: DATA/WDATA and LOOKUP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 148



READ Examples

RE.
RE.
RE.
EE.
RE.
RE.
RE.
RE.

L e L I =

' Uses READ to move values from a DATA table to a variable.
the table data holds segment patterns for a 7-segment LED.

program,

In this

TURBO, STACKX, OPTIONX

7-segment display

DEVICE SX28, OSCAMHZ,
FREQ 4 000_000

ID "READ"

]

' IO Pins

]

LEDs PIN RB OUTPUT !
]

' Constants

Dash CON $01000000

' Variables

!

value VAR Byte
tmpB1 VAR Byte

' value to display
subroutine work var

PROGRAM Start

' Subroutine Declarations

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Syntax



PUT DIGIT FUNC 1,1

' Program Code

Start:
TRIS LEDs = 300000000 ' make LEDs outputs

Main:
DO
FOR value = 0 TO 16 ' demo values (last invalid)
LEDs = PUT DIGIT value ' update the display
PAUSE 500 ' pause 1/2 second
NEXT
LOOP

' Use: destination = PUT DIGIT value
' ——- converts number in 'value' to 7-segment digit pattern
' and places it in 'destination'

FUNC PUT DIGIT

tmpBl =  PARAMI ' copy value
IF tmpBl <= $F THEN ' check range
READ SegMap + tmpBl, tmpBl ' read table value
ELSE
tmpBl = Dash ' display dash
ENDIF
RETURN tmpB1l
ENDFUNC

' User Data

SegMap: ' segments maps

! .gfedcba
DATA 300111111 !
DATA 300000110 !
DATA %01011011 !
DATA %01001111 !
DATA 301100110 !
DATA 301101101 !
DATA %01111101 !
DATA %00000111 !
DATA %01111111 !
DATA 301100111 !
DATA 301110111 !
DATA %01111100 !
DATA %00111001 !
DATA %01011110 !
DATA 301111001 !
DATA 301110001 !

MEQO QD X Wow-Jo U d WN P O

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 150



MAK232

SERIAL IW <3

SERIAL OUT > {>c

' This program demonstrates the use of strings in an SX/B program. As of
' version 1.4, the SX/B READ instruction can accept a variable base and
' offset. These values may be created by the compiler by specifying the
' label of a stored z-string, or by using an inline string constant.

' The subroutine TX STR accepts the base and offset values of a stored or
' inline string and will transmit them to a connected terminal -- the

' construction of the subroutine allows the string to cross SX page

' boundaries.

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 4 000_000

ID "READ STR"

b e e e e e e e e e e e e e e e e e e e e e e e e e e e o o e o o o o o o e o o o o o o o o
' I0 Pins

b e e e e e e e e e e e e e e — — — —— — —— — —— — —— — —— ——— —— —— —— — o —— —— —— — o —— —— —— — o —— —— —
Sout PIN RA.Q0 OUTPUT ' serial output

b e e e e e e e e e e e e e e e o e o e o e o e o — —— —— — —— — —— — — — — —  —  —  —  —  —  — —  — — — —  — o — o — o — o — o —
' Constants

b o e e e e e e e e e e o e e e e e e e e e e e e e e e e e e e o o o o o o o o o o o o o o o o o o e
Baud CON "T9600" ' use with MAX232/USB2SER

CR CON 13 ' carriage return

LF CON 10 ' line feed

b e e e e e e e e e e o e e e e e e e e e e e e e e
' Variables

b e e e e e e e e e e e e e e o e o e — — —— —— — —— — —— — — —  — — — — —  —  —  —  — — o — o — o — o — o — o — o — o — o —
tmpBl VAR Byte ' subroutine work vars

tmpB2 VAR Byte

tmpB3 VAR Byte

tmpB4 VAR Byte

tmpW1l VAR Word

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 151



PROGRAM Start

TX BYTE SUB 15,2 ' transmit byte
TX STR SUB 2, 4 ' transmit string
b e e e e e e e e e e o e o  — — —— — —— ——— ——— ——— ——— —— —— —— —— —— —— —
' Program Code
b o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o o o o o o e
Start:

PLP A = %0001 ' pull-up unused pins

PLP B = 300000000

PLP C = %00000000
Main:

TX STR "SX/B makes string output easy!" ' send inline string

TX STR CrLf ' send stored z-string

TX STR TestStr, 14 ' sub-string

TX STR CrLf

TX STR TestStr, 13, 16 ' sub-string at offset

TX STR CrLf

TX STR TestStr, 8, 31

TX STR Version

TX STR CrLf

TX BYTE LF, 2

PAUSE 1000

GOTO Main
b e e e e e e e e e e e o e o e — —— — — — —— — —— — —— — —— ——— —— —— —— — o —— —— —— — o —— —— —— — o —— —— —
' Subroutine Code
b e e e e e e e e e e e e e e — — — —— — —— — —— — —— — —— ——— —— —— —— — o —— —— —— —— —— —— —— — o — o —— —
' Use: TX BYTE theByte {, count}
' —— transmit "theByte" at "Baud" on "SOut"
' —— optional "count" may be specified (must be > 0)

SUB TX BYTE

IF  PARAMCNT = 1 THEN !

tmpBl =  PARAMI
tmpB2 = 1

ELSE
tmpB2 =  PARAM2

IF tmpB2 = 0 THEN
tmpB2 = 1

ENDIF

ENDIF

DO WHILE tmpB2 > 0

SEROUT SOut, Baud,
DEC tmpB2
LOOP
ENDSUB
Ve e e e e e e
' Use: TX STR [string

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

' save byte

if no count

' set to 1

' otherwise

' get count

' do not allow O

' loop through count

tmpB1 ' send the byte
' decrement count
| label] {, count {, offset }}

Page 152



-- "string" is an embedded string constant

' —— "label" is DATA statement label for stored z-String
' —— "count" is number of characters to send (0 is entire string)

SUB TX_STR
tmpWl = _ WPARAMI2

tmpB3 = 0 ' do whole string

IF  PARAMCNT >= 3 THEN
tmpB3 =  PARAM3

ENDIF

IF  PARAMCNT = 4 THEN
tmpWl = tmpWl +  PARAMA4

ENDIF

DO
READ tmpWl, tmpB4
IF tmpB4 = 0 THEN EXIT
TX BYTE tmpB4
DEC tmpB3
IF tmpB3 = 0 THEN EXIT
INC tmpWl

LOOP

ENDSUB

-—- "offset" is offset from head of string

(0 is head)

get offset+base

count specified?
-—- yes, get count

offset specified?
-- yes, update it

read a character

if 0, string complete
send character

update count

terminate if done

point to next character

' User Data

TestStr:

DATA "Parallax, Inc. SX/B Compiler Version 1.50", 0

Version:
DATA "1.50", O

CrLf:
DATA CR, LF, O

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 153



RESETWDT Examl

RESETWDT

Function
Resets the SX Watchdog Timer.

Explanation

When the watchdog timer is enabled (through the DEVICE directive), the RESETWDT instruction must be used
periodically to clear the timer in order prevent a device reset. If the program becomes stuck and RESETWDT
instruction does not get called in time the watchdog timer will reset the SX.

An internal timer controls the watchdog timeout. By setting bit 3 (PSA) of the OPTION register, bits 2..0
(PS2..PS0) can be used to set the watchdog timeout period.

PS2 | PS1 | PSO | Scale | Period
0 0 0 1:1 18 ms
0 0 1 1:2 37 ms
0 1 0 1:4 73 ms
0 1 1 1:8 146 ms
1 0 0 1:16 | 293 ms
1 0 1 1:32 | 585 ms
1 1 0 1:64 1.2s
1 1 1 |1:128 | 2.3s

Reated instructions: END and SLEEP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 154



RESETWDT Example

478 .
RE.B Sy M J_

' Demonstrates the use of the RESETWDT instruction in SX/B. When the
' RESETWDT instruction is removed (with comment), the LED will flash due
' to the SX being reset after the watchdog timer timeout.

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX, WATCHDOG

FREQ 4 000_000

ID "RESETWDT"
L
' IO Pins
L
Led PIN RB.0 OUTPUT

Start:
OPTION = %11111110 ' timeout = ~1.2 seconds
LOW Led ' LED off
PAUSE 500 ' wait for LED on
Main:
DO
' RESETWDT ' prevent timeout
HIGH Led ' LED on
LOOP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 155

Syntax



REVERSE e

REVERSE Pin

Function
Reverse the data direction register (TRIS) bit of the specified pin.

e  Pin is any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

Explanation
REVERSE is convenient way to switch the I/O direction of a pin. If the pin is an input, REVERSE makes it an
output; if it's an output, REVERSEmakes it an input.

Remember that "input" really has two meanings: (1) Setting a pin to input makes it possible to check the state (1
or 0) of external circuitry connected to that pin. The current state is in the corresponding bit of the associated
port register. (2) Setting a pin to input also disconnects the output driver, possibly affecting circuitry being
controlled by the pin.

HIGH RA.3 ' RA.3 1is output and high (1)
PAUSE 100
REVERSE RA.3 ' RA.3 is now an input

Related instructions: INPUT and OUTPUT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 156



REVERSE Example

+5

228

EE.&

4.7k

' Allows an LED to have one of two brighness levels by controlling port
' pin with REVERSE. When the LED pin is an input (Hi-Z), the current

' passes through both resistors,

causing the LED to be dim.

When the

' LED pin is an output low, the current only has to pass through one
' resistor, hence the LED is brighter.

TURBO, STACKX, OPTIONX

DEVICE SX28, OSC4MHZ,
FREQ 4 000_000

ID "REVERSE"

]

' IO Pins

]

Led PIN RB.0 OUTPUT

Start:
Led = 0

Main:
DO
PAUSE 250
REVERSE Led
LOOP

' put low in output bit

' wait 1/4 second
' change brightness

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 157

Syntax



SCHMITT (sx4s/52 oniy)

SCHMITT Pin {, Enable}

Function

Configures the internal Schmitt trigger for Pin on the SX48 or SX52. This command does not apply to the SX18,
SX20, or SX28 (use the ST_B and ST_C registers).

e  Pin is any SX48/52 I/O pin (RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e Enableis a constant, 0 or 1, that enables (1) or disables (0) the Schmitt trigger of Pin. When not
specified, Enable defaults to 1.

Explanation

Every I/O pin in port B through port E can be set to normal or Schmitt-Trigger input. This can be configured by
writing to the appropriate Schmitt-Trigger register (ST_B, ST_C, ST_D and ST_E). The I/O pins are set to normal
input mode by default. Schmitt-Trigger mode can be activated for all pins, regardless of pin direction but really
matter only when the associated pin is set to input mode. By configuring Schmitt-Trigger mode on input pins, the
SX chip can be less sensitive to minor noise on the input pins. The figure below details the characteristics of
Schmitt-Trigger inputs.

+5Y fvdd) ————
Cogic 1
~ o Y] e

o
Transition

~15% dd
0% (Wes)

Schmitt Trigger Characteristics

Lo |;|_'i_|:: 5]

Schmitt-Trigger inputs are conditioned with a large area of hysteresis. The threshold for a logic 0 is 15% of Vdd
and the threshold for a logic 1 is 85% of Vdd. The input pin defaults to an unknown state until the initial voltage
crosses a logic 0 or logic 1 boundary. A voltage must cross above 85% of Vdd to be interpreted as a logic 1 and
must cross below 15% of Vdd to be interpreted as a logic 0. If the voltage transitions somewhere between the
two thresholds, the interpreted logic state remains the same as the previous state.

Start:
SCHMITT RB.O, 1 ' enable Schmitt trigger
SCHMITT RB.1 ' enable Schmitt trigger
SCHMITT RB.2, O ' disable Schmitt trigger

Related instructions: CMOS, TTL, and PULLUP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 158



SERIN Example

SERIN Pin, BaudMode, ByteVar {, Timeout, ToLabel}

Function
Receive asynchronous serial byte (e.g., RS-232).
e  Pin is any SX IO pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e  BaudMode is a string constant that specifies serial timing and configuration. SX/B will raise an error if
the baud rate specified exceeds the ability of the target FREQ.

e  ByteVar is a variable in which the serial data byte is stored.

e Timeout is an optional byte or word variable/constant that tells SERIN how long to wait (in milliseconds)
for incoming data. If data does not arrive in time, the program will jump to the address specified by
ToLabel.

e Tolabel is an optional label that must be provided along with 7imeout, indicating where the program
should go in the event that data does not arrive within the period specified by 7imeout.

Quick Facts

FREQ = 4 MHz FREQ = 20 MHz FREQ = 50 MHz
Maximum Baud Rate t 38400 115200 > 230400
Baud Modes T (true), N (inverted), OT (open, true), ON (open, inverted)
Units in 7imeout 1 millisecond

t When used without Timeout parameter. Explanation
Receive asynchronous serial byte at the selected baud rate and mode using no-parity, 8-data bits, and 1-stop
bit. If 7imeout is specified, jump to 7oLabelif serial byte does not arrive within 7imeout milliseconds.

One of the most popular forms of communication between electronic devices is serial communication. There are
two major types of serial communication: asynchronous and synchronous. The SERIN and SEROUT commands
are used to receive and send asynchronous serial data. See the SHIFTIN and SHIFTOUTcommand for information
on the synchronous method.

The term asynchronous means "no clock." More specifically, "asynchronous serial communication" means data is
transmitted and received without the use of a separate "clock" wire. Data can be sent using as little as two wires:
one for data and one for ground.

This simple demo shows how to receive a single byte through RA.0 at 2400 baud, 8N1, inverted:

Main:
DO
SERIN RA.Q0, N2400, sData ' wait for byte
LEDs = sData ' put byte value on LEDs
LOOP

Here, SERIN will wait for and receive a single byte of data through pin RA.0 and store it in the variable sData. If
the SX were connected to a PC running a terminal program (set to the same baud rate) and the user pressed the
"A" key on the keyboard, after the SERIN command executed, the variable sData would contain 65, the ASCII
code for the letter "A".

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 159



When used without a 7imeout parameter, SERIN block program operation until a byte arrives. Where this
condition will have an adverse affect on program operation a 7imeout parameter and label can be specified. In
this update to the example above, the program will wait for two seconds (2000 milliseconds) for an incoming
byte; if no byte arrives the program will be redirected to No_Char and the LEDs will be blanked.

Main:
DO
SERIN RA.0, N2400, sData, 2000, No Char ' wait for byte
LEDs = sData ' put byte value on LEDs
LOOP
No_ Char:
LEDs = %$00000000 ' clear LEDs
GOTO Main

Note: Interrupts will interfere with the proper operation of SERIN and, in most cases, should be disabled before
the SERIN instruction is used. If the interrupt is short and designed to run the same number of cycles under any
condition, the EffectiveHz parameter of FREQ may be used.

Related instruction: SEROUT
Related projects: Serial LCD and RFID Reader Interface

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 160



SERIN Example

5

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "SERIN"

b e e e e e e e e e e e e e e e e e e e e e e e e e e e
' IO Pins

b e e e e e e e e e e e e e e e o e o e o e o e o  — — — —— — —— — —— —  — — — — — — — — — o — o — o — o — o — o — o —
Sio PIN RA.Q0 INPUT ' pull-up via 4.7K

LEDs PIN RB OUTPUT ' 7-segment display

b e e e e e e e e e e o e e e e e e e e e e e e e e e o
' Constants

b e e e e e e e e e e e e e e o e o e e o — — —— — —— — —— — —— — —— —  —  — — — o — o — o — o — o — o — o o
Baud CON "OT9600"

+5
FE.T
RE.&
4.7k RE.S
FE.4
ERIAL IM RA.A RE.Z2
RE.Z
RE.1
FE.d
File...... SERIN.SXB
Purpose... Create simple 7-segment display controller (one digit)
Author.... (c) Parallax, Inc. -- All Rights Reserved
E-mail.... support@parallax.com
Started...
Updated... 05 JUL 2006

Waits for a command from a host controller and displays hex value or

individual segments on a 7-segment LED display.

Commands :
"!LEDH", value -- display hex digit value (0 .. F)
"ILEDS", value -- display individual segments

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 161

Syntax



Dash CON %01000000

' Variables

b e e e e e e e e e e e e e e e o e o e e e e e e e o e  — — — — — — — — —— — — —— —— —— —
serByte VAR Byte ' serial I/O byte

tmpB1l VAR Byte ' parameter

PROGRAM Start

RX BYTE FUNC 1 ' receive serial byte
MAKE DIGIT FUNC 1 ' make 7-segs digit

' Program Code

Start:
PLP A = %0001 ' pull up unused pins
PLP C = 300000000
LEDs = %00000000 ' clear display
Main: ' wait for header
serByte = RX BYTE
IF serByte <> "!" THEN Main

serByte = RX BYTE
IF serByte <> "L" THEN Main
serByte = RX BYTE
IF serByte <> "E" THEN Main
serByte = RX BYTE
IF serByte <> "D" THEN Main

Check Hex:
serByte = RX BYTE
IF serByte = "H" THEN ' hex display?
serByte = RX BYTE ' get value
LEDs = MAKE DIGIT serByte
GOTO Main
ENDIF

Check Segments:

IF serByte = "S" THEN ' segments display?
LEDs = RX BYTE ' get segments
GOTO Main
ENDIF
Check X: ' add features here
' for future use
GOTO Main

' Subroutine Code

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 162



' Use: rxInput = RX BYTE
' —- reads byte from serial input and places it in 'rxInput'

FUNC RX BYTE

SERIN Sio, Baud, tmpBl ' receive a byte
RETURN tmpB1l
ENDFUNC

' Use: destination = MAKE DIGIT value
' —- converts number in 'value' to 7-segment digit pattern
' and places it in 'destination'

FUNC MAKE DIGIT

tmpBl =  PARAMI ' copy value
IF tmpBl <= $F THEN ' check range
READ SegMap + tmpBl, tmpBl ' read table value
ELSE
tmpBl = Dash ' display dash
ENDIF
RETURN tmpB1l
ENDFUNC

' User Data
S —

SegMap: ' segments maps

! .gfedcba
DATA %$00111111 !
DATA %00000110 !
DATA %01011011 !
DATA %01001111 !
DATA %01100110 !
DATA %01101101 !
DATA %01111101 !
DATA %00000111 !
DATA %01111111 !
DATA %01100111 !
DATA %01110111 !
DATA %01111100 !
DATA %00111001 !
DATA %01011110 !
DATA %01111001 !
DATA %01110001 !

M E O QO X Woo-Jo U WN - O

The following BASIC Stamp 2 program can be used to to demonstrate the LED display.

' {$STAMP BS2}
' {SPBASIC 2.5}

I oos== [ Progream Degeriptilion |=—==—=s==sscs=sssoss=ssossssoss=soos=sooss=oo====

' Test program for SERIN.SXB

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 163



SX/B Help File Version 1.51.03, ©2007 Parallax Inc




SEROUT =T

SEROUT Pin, BaudMode, Value

Function
Transmit asynchronous serial byte (e.g., RS-232).
e  Pin is any SX IO pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e  BaudMode is a string constant that specifies serial timing and configuration. SX/B will raise an error if
the baud rate specified exceeds the ability of the target FREQ.

e Value is a byte variable or constant (0 - 255) to be transmitted.

Quick Facts

FREQ = 4 MHz FREQ = 20 MHz FREQ = 50 MHz
Maximum Baud Rate 57600 460800 > 921600
Baud Modes T (true), N (inverted), OT (open, true), ON (open, inverted)

Explanation
Transmit asynchronous serial byte at the selected baud rate and mode using no-parity, 8-data bits, and 1-stop
bit.

SEROUT RA.0, T9600, "A"

In the example above, the SX will transmit the letter "A" (decimal 65) to an external device at 9600 baud, in true
mode on pin RA.0. Since SEROUT requires a substantial amount of assembly code a good way to save program
space is by placing SEROUT in a subroutine.

For example:
TX CHAR:
templ =  PARAMI ' save byte to send
temp2 =  PARAMZ ' save number of repeats
DO WHILE temp2 > 0
SEROUT Sio, Baud, templ ' send the byte
DEC temp?2 ' update count
LOOP
RETURN

This subroutine takes two parameters: the first is the byte to transmit and the second is the number of times to
transmit that byte. By using the second parameter sending "******x*x*x! 5 a5 easy as (when the subroutine is
declared with SUB):

K CRAR "W, 1@ 7 gemel W

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 165



Note: Interrupts will interfere with the proper operation of SEROUT and, in most cases, should be disabled
before the SEROUT instruction is used. If the interrupt is short and designed to run the same number of cycles
under any condition, the EffectiveHz parameter of FREQ may be used.

Related instruction: SERIN
Related projects: Serial LCD and RFID Reader Interface

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 166



SEROUT Example SEROUT

228
RA.8 P

“I - SEETKOH
= = Rao— EFI-Z1&

' Program Description

' Reads a potentiometer with RCTIME and sends the value to a SEETRON
' (www.seetron.com) serial LCD.

' Device Settings

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "SEROUT"
L
' IO Pins
L
PotPin PIN RA.O ' I/0 pin for RCTIME

Sout PIN RA.1 OUTPUT ' output to SEETRON 2x16

U o e e e e e e e e e e e e e e e e e
' Constants
L
Baud CON "N960OO"

LcdI CON SFE ' instruction

LcdCls CON S01 ' clear the LCD

LcdHome CON 502 ' move cursor home

LcdCrsrL CON $10 ' move cursor left

LcdCrsrR CON $14 ' move cursor right

LcdDispL CON 518 ' shift chars left

LcdDispR CON S1cC ' shift chars right

LcdDDRam CON $80 ' Display Data RAM control

LcdCGRam CON $40 ' Character Generator RAM

LcdLinel CON $80 ' DDRAM address of line 1

LcdLine?2 CON $CO ' DDRAM address of line 2

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 167



analog VAR
char VAR Byte
idx VAR Byte
linel VAR
line?2 VAR
tmpB1 VAR
tmpB2 VAR
tmpWl VAR

Byte ' pot value
' character to send
' loop counter
Byte (16) ' line 1 buffer
Byte (16) ' line 2 buffer
Byte ' subroutine work vars
Byte
Word

PROGRAM Start

TX BYTE SUB 1, 2
DELAY US SUB 1, 2
DELAY SUB
UPDATE L1 SUB 0
UPDATE L2 SUB 0
UPDATE LCD SUB 0

' Program Code

Start:
DELAY 750
TX BYTE LcdI
TX BYTE LcdCls
DELAY 1
PUT linel, "POT: "
PUT line2, " "

Main:
HIGH PotPin
DELAY US 250
RCTIME PotPin, 1,

Show Pot:

tmpBl = analog / 100
tmpB2 = _ REMAINDER
tmpBl = tmpBl + "0O"
PUT linel (5), tmpBl
tmpBl = tmpB2 / 10
tmpB2 =  REMAINDER
tmpBl = tmpBl + "0O"
PUT linel (6), tmpBl
tmpBl = tmpB2 + "0O"
PUT linel(7), tmpBl
UPDATE L1

DELAY 100

SX/B Help File Version 1.51.03,

analog, 5

' transmit a byte
' delay in microseconds
1, 2 ' delay in milliseconds
' update line 1 of LCD
' update line 2 of LCD
' update both lines

' let LCD initialize
' clear screen,

' initialize LCD buffer

' charge capacitor
' for 250 usecs
' read pot

' get 100s wvalue

' save 10s and 1s

' convert 100s to ASCII
' move to LCD buffer

' get 10s value

' save 1ls
' convert
' move to

10s to ASCII
LCD buffer

' convert 1ls to ASCII
' move to LCD buffer

' update LCD

' wait 100 ms

©2007 Parallax Inc

home cursor

(10 us units)

Page 168



GOTO Main ' do it over

' Use: TX BYTE theByte {, repeats }
-- first parameter is byte to transmit
-- second (optional) parameter is number of times to send

SUB TX BYTE

tmpBl =  PARAMI ' char to send

IF  PARAMCNT = 1 THEN ' if no repeats specified
tmpB2 = 1 ' - set to 1

ELSE
tmpB2 =  PARAM2 ' - save repeats

ENDIF

DO WHILE tmpB2 > 0
SEROUT Sout, Baud, tmpBl ' send the character
DEC tmpB2

LOOP

ENDSUB

' Use: DELAY US us

' —— 'us' is delay in microseconds, 1 - 65535

SUB DELAY US
IF  PARAMCNT = 1 THEN

tmpWl =  PARAMI ' save byte value
ELSE
tmpWl =  WPARAMI12 ' save word value
ENDIF
PAUSEUS tmpW1l
ENDSUB

Use: DELAY ms

' —— 'ms' is delay in milliseconds, 1 - 65535
SUB DELAY:
IF  PARAMCNT = 1 THEN
tmpWl =  PARAMI ' save byte value
ELSE
tmpWl =  WPARAMI12 ' save word value
ENDIF
PAUSE tmpWl
ENDSUB

' Transfers line 1 buffer to LCD
' —— makes no change in LCD screen position

SUB UPDATE_Ll
TX BYTE LcdI ' cursor to line 1, col O
TX BYTE LcdLinel
DELAY 1
FOR idx = 0 TO 15

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 169



SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 170



SHIFTIN s

SHIFTIN DPin, CPin, ShiftMode, ByteVar {|Count} {, SpeedMult}

Function
Shift data out to a synchronous serial device.

e DPin is any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7). This pin will
be set to input mode.

e  CPin is any SXI/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7). This pin will
be set to output mode.

e  ShiftMode is one of four predefined symbols that tells SHIFTIN the order in which data bits are to be
arranged and the relationship of clock pulses to valid data. See the table below for value and symbol
definitions.

e  ByteVar is a variable which will hold the incoming data.

e  Count is an optional constant (1 - 8) specifying how many bits are to be input by SHIFTIN. If no Count
parameter is given SHIFTIN defaults to eight bits.

e  SpeedMult is an optional constant that may be used to multiply the clock speed of SHIFTIN (with the
limits of the current FREQ setting). When not specified the value of SpeedMults set to 1.

Explanation

SHIFTIN and SHIFTOUT provide an easy method of connecting to synchronous serial devices. Synchronous
serial differs from asynchronous serial (like SERIN and SEROUT) in that the timing of data bits (on a data line)
is specified in relationship to clock pulses (on a clock line). Data bits may be valid after the rising or falling edge
of the clock line. This kind of serial protocol is commonly used by controller peripherals like ADCs, DACs, clocks,
memory devices, etc.

At their heart, synchronous-serial devices are essentially shift-registers; trains of flip-flops that pass data bits
along in a bucket brigade fashion to a single data output pin. Another bit is output each time the appropriate
edge (rising or falling, depending on the device) appears on the clock line.

The SHIFTIN instruction first forces the clock pin (CPin) to output mode and the data pin (DPin) to input mode.
Then, SHIFTINeither reads the data pin and generates a clock pulse (PRE mode) or generates a clock pulse then
reads the data pin (POST mode). Clock pulses are generated by inverting the state of CPin, allowing the
programmer to determine CPin behavior by presetting the pin to the opposite state prior to the call. SHIFTIN
continues to generate clock pulses and read the data pin for as many data bits as are required.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 171



Making SHIFTIN work with a particular device is a matter of matching the mode and number of bits to that
device's protocol. Most manufacturers use a timing diagram to illustrate the relationship of clock and data. Items
to look for include: 1) which bit of the data arrives first; most significant bit (MSB) or least significant bit (LSB)
and 2) is the first data bit ready before the first clock pulse (PRE) or before the second clock pulse (POST). The
table below shows the values and symbols available for the ShiftMode parameter.

Symbol | Value Meaning

MSBPRE 0 Data is MSB-first; sample bits before clock pulse
LSBPRE 1 Data is Isb-first; sample bits before clock pulse
MSBPOST 2 Data is MSB-first; sample bits after clock pulse
LSBPOST 3 Data is LSB-first; sample bits after clock pulse

SHIFTIN Timing

FRE [FOST

Previous state of pin unknown

To'Tl, T1‘T2, ~ 6 MS
Transmission Rate ~ 83 kBits/Sec

Here is a simple example:

SHIFTIN RC.0, RC.1, MSBPRE, result

Here, the SHIFTIN instruction will read pin RC.0 (Dpin) and will generate a clock signal on RA.1 (Cpin). The data
that arrives on the Dpin depends on the device connected to it. Let's say, for example, that a shift register is
connected and has a value of $AF (%10101111) waiting to be sent. Additionally, let's assume that the shift
register sends out the most significant bit first, and the first bit is on the Dpin before the first clock pulse
(MSBPRE). The SHIFTIN instruction above will generate eight clock pulses and sample the Dpineight times.
Afterward, the resu/t variable will contain the value $AF.

Some devices return more than eight bits. For example, the LTC1298 is a 12-bit ADC. To retrieve data from the
LTC1298 would require two SHIFTINCcalls to retrieve the 12-bit result.

LOW CS

SHIFTOUT Dio, Clk, LSBFIRST, config\4 ' send config bits
SHIFTIN Dio, Clk, MSBPOST, resultHi\4 ' get data (upper nibble)
SHIFTIN Dio, Clk, MSBPOST, resultLo\8 ' get data (lower byte)
HIGH CS

Related instructions: SHIFTOUT
Related project: Thermometer

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 172



SHIFTIN Example

RFA.2 C—C5 ycc
+

AIH

Lo

[o e

ADCAZ21

|+
1cn

—_

CLE
- oo
GHD LIREF

|LI1 m ﬂlm

RA.6 3
RA.1

RE.
RE.
RE.
RE.
RE.
RE.
RE.
RE.

' Reads value from an ADC0831 and places that value on LEDs connected to

' port RB.

' Note that the SpeedMult feature is used with SHIFTIN to bump the clock
' speed up to ~332 kBits/sec

DEVICE
FREQ
ID

SX2
4 000 000
"SHIFTIN"
PIN RA.
PIN RA
PIN  RA.
PIN RB

VAR

8, OSC4MHZ,

INPUT

0
.1 OUTPUT
2

OUTPUT

OUTPUT

TURBO,

(ADC0831 max is 400) .

shift data
shift clock
chip select

parameter

STACKX, OPTIONX

Syntax



Subroutine Declarations

Start:

HIGH CS ' make CS output, no ADC
LOW Cpin ' make clock 0-1-0

Main:
LEDs = GET_ ADC ' move ADC value to LEDs
PAUSE 100 ' wait 0.1 second
GOTO Main

Use: aVar = GET ADC
-- reads ADC0831 and places value into 'aVar'

FUNC GET_ADC

Cs =0 ' activate ADC0831

SHIFTIN Dpin, Cpin, MSBPOST, tmpB1\1l, 4 ' start conversion
SHIFTIN Dpin, Cpin, MSBPOST, tmpBl, 4 ' shift in the data

CsS =1 ' deactivate ADC0831

RETURN tmpB1l

ENDFUNC

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 174



SHIFTOUT ik

SHIFTOUT DPin, CPin, ShiftMode, Value {|Count} {, SpeedMult}

Function
Shift data out to a synchronous serial device.

e DPin is any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7). This pin will
be set to output mode.

e  CPin is any SXI/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7). This pin will
be set to output mode.

e ShiftMode is one of two predefined symbols that tells SHIFTOUT the order in which data bits are to be
arranged. See the table below for value and symbol definitions.

e Value is a variable or constant containing the data to be sent.

e  Count is an optional constant (1 - 16) specifying how many bits are to be output by SHIFTOUT. If no
Count parameter is given SHIFTOUT defaults to eight bits. When the Count parameter is given, the SX
transmits the rightmost number of bits specified, regardless of the ShiftMode.

e  SpeedMult is an optional constant that may be used to multiply the clock speed of SHIFTOUT (with the
limits of the current FREQ setting). When not specified the value of SpeedMults set to 1.

Explanation

SHIFTIN and SHIFTOUT provide an easy method of connecting to synchronous serial devices. Synchronous
serial differs from asynchronous serial (like SERIN and SEROUT) in that the timing of data bits (on a data line)
is specified in relationship to clock pulses (on a clock line). Data bits may be valid after the rising or falling edge
of the clock line. This kind of serial protocol is commonly used by controller peripherals like ADCs, DACs, clocks,
memory devices, etc.

At their heart, synchronous-serial devices are essentially shift-registers; trains of flip-flops that pass data bits
along in a bucket brigade fashion to a single data output pin. Another bit is output each time the appropriate
edge (rising or falling, depending on the device) appears on the clock line.

The SHIFTOUT instruction first sets the clock and data pins to switch to output mode. Then, SHIFTOUT sets
the data pin to the next bit state to be output and generates a clock pulse by inverting the state of the clock pin;
this allows the programmer to set the desired clocking edge by presetting the clock pin to the opposite state prior
to the call. SHIFTOUT continues to generate clock pulses and places the next data bit on the data pin for as
many data bits as are required for transmission.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 175



Making SHIFTOUT work with a particular device is a matter of matching the mode and number of bits to that
device's protocol. Most manufacturers use a timing diagram to illustrate the relationship of clock and data. One of
the most important items to look for is which bit of the data should be transmitted first; most significant bit (MSB)
or least significant bit (LSB). The table below shows the values and symbols available for the ShiftMode
parameter.

Symbol Value Meaning
LSBFIRST 0 Data is shifted out LSB-first
MSBFIRST 1 Data is shifted out MSB-first

SHIFTOUT Timing
Tg Ty Tz

By Hp o Mg

Previous state of pin unknown

To-Ti ~ 6 us (allow pins to stabilize)

T,-T, ~ 6 Ys (allows receiver to capture bit)
Xi-X5, Xo- X5, ... ~ 12 US (blt'tO'blt tlmlng)
Transmission Rate ~ 83 kBits/Sec

Here is a simple example:

SHIFTOUT RC.0, RC.1, MSBFIRST, 250
Here, the SHIFTOUT instruction will write to RC.0 (the DPin) and will generate a clock signal on RC.1 (the CPin).
The SHIFTOUT instruction will generate eight clock pulses while writing each bit (of the 8-bit value 250) onto
the Dpin. In this case, it will start with the most significant bit first as indicated by the ShiftMode value of
MSBFIRST.

By default, SHIFTOUT transmits eight bits, but you can set it to shift any number of bits from 1 to 8 with the
Count parameter. For example:

LOW 0 SHIFTOUT 0, 1, MSBFIRST, 250\4
Will output only the lowest (rightmost) four bits (%1010 in this case).

Related instruction: SHIFTIN
Related project: Thermometer

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 176



SHIFTOUT Example

+5  +5
];5 ];@ TAHCSSS
ucc  RET
raso— Hpata aH—AAA—
RA.1 Weioek  osl2—ans, “‘H—«
R, 2 L2l atoH S—NN'\:—KH—«
EE—i——%%%———EN————m
El P uD—E———ﬁﬂﬂv————E)F————ﬂr
pefE—AA A —
QB—L—AMM%———Eﬂ————m
unli—JMM%———EH————m
GMD  OE 4ra
gl 1z L
DHTA
CLOCK » EXPANSION
LATCH

Transfers a counter value to eight LEDs using a 74HC595 shift register.

' A SpeedMult value of 10 is used to bump the SHIFTOUT clock speed to
' ~830 kBit/sec (well within 74x595 limits and 4 MHz SX clock).

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 000

ID "SHIFTOUT"
L
' IO Pins
L
Dpin PIN RA.0 OUTPUT ' shift data

Cpin PIN RA.1 OUTPUT ' shift clock

Latch PIN RA.2 OUTPUT ' latch outputs
L
' Variables
L
counter VAR Word ' counter to display

tmpB1 VAR Byte

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 177

Syntax



PROGRAM Start

PUT 595 SUB 1, 2
A\l
' Program Code
\l
Start:
DO
FOR counter = 0 TO 255

PUT 595 counter
PAUSE 100
NEXT

LOOP

' Use: PUT 595 value

' —— moves LSB of 'value' (can be byte
SUB PUT 595

tmpBl =  PARAM1

SHIFTOUT Dpin, Cpin, MSBFIRST, tmpBl

PULSOUT Latch, 1
ENDSUB

, 10

' loop through all values
' transfer counter to 595
' wait 1/10 second

word) to 74HC595
' save LSB of value
' send the bits

' transfer to outputs

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 178



SLEEP

SLEEP

Function
Ends program execution and puts the SX into power down (sleep) mode.

Explanation

SLEEP puts the SX into power down mode halting the execution any further instructions until it is reset, either
externally (via MCLR\ pin), by a watchdog timer timeout, or (if configured) a valid transition on any of the Multi-
Input Wakeup (MIWU) pins (RB pins).

Related instructions: END and RESETWDT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 179



SOUND Example

SOUND Pin, Note, Duration

Function
generate square-wave tone for a specified duration.

e  Pin is any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).
e Note is a byte variable/constant (0 - 127) specifying the frequency of the tone (see calculation below).

e  Duration is a byte variable/constant (1 - 255) specifying the amount of time to generate the tone. The
unit of time for Duratioris 10 milliseconds.

Explanation
SOUND generates one of 255 square-wave frequencies on an IO pin. The output pin should be connected as
shown in the circuits below for audio use.

The tones produced by SOUND can vary in frequency from 94.3 Hz (1) to 11,062 Hz (127). If you need to
determine the frequency corresponding to a given Note value, or need to find the note value that will give you
best approximation for a given frequency, use the equations below. Note values above 127 are handled as Note -
128, in other words, a Note value of 138 produces the same tone as 10.

Note INT(127 - (((1 + Frequency) - 0.0000812) + 0.0000805))
Frequency (Hz) 1+ (0.0000812 + ((127 - Note) x 0.0000805))

When driving a Hi-Z speaker (> 40 Q) or piezo element:

FIM

When connecting to an audio amplifier:

1K
FIN Sty

a.1

)
TO AMP

[

1K
My
@

.81

T
T

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 180



Related instruction: FREQOUT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 181



SOUND Example Syntax

40 ohm speaker or

RA.E ¢
+ )
peizo element

' This program generates a constant tone 25 followed by an ascending tones.
' Both the tones are played for about 100 milliseconds.

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "SOUND"

b e e e e e e e e e e e e o e — — — —— — —— — —— — —— — —— — —— ——— — . —— —— — o —— —— ——— o —— —— —— —— — o —— —
' IO Pins

b e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o e o o e o o o o o o e o o o o o o o o
Spkr PIN RA.0 OUTPUT ' piezo or 40-ohm speaker

b e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o e o o e o e e e o o e o o o o o e o o
' Variables

b e e e e e e e e e e e o e o e — —— — — — —— — —— — —— — —— ——— —— —— —— — o —— —— —— — o —— —— —— — o —— —— —
tone VAR Byte ' tone to play

templ VAR Byte ' for subroutine

temp?2 VAR Byte

PROGRAM Start

Start:
FOR tone = 1 TO 127
PLAY 25, 10 ' play tone 25
PLAY tone, 10 ' play ascending tone
NEXT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 182



SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 183



SWAP

SWAP Vlariable

Function
Exchanges the upper and lower elements of Variable.

e Variable is a byte (including an array element) or word variable.

Explanation
The SWAP instruction exchanges the upper and lower nibbles of a byte, or the upper and lower bytes of a word.

Main:
RB = S$S3F
SWAP RB ' RB now holds $F3
result = $0A55
SWAP result ' result now holds $550A

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 184



TI M E R (SX48/52 only)

TIMER[1 | 2] Command {Value {, Value}}

Function
Configures the SX48/52 Multi-Function timer T1 (TIMER1) or T2 (TIMER2).

e  Command is a timer configuration command (see below).

e  Valueis a byte or word constant/variable as required by Command.

Quick Facts

I/O Pin | Function

RB.4 Timer T1 Capture Input 1

RB.5 Timer T1 Capture Input 2

RB.6 Timer T1 PWM/Compare Output

RB.7 Timer T1 External Event Clock Source

RC.0 Timer T2 Capture Input 1

RC.1 Timer T2 Capture Input 2

RC.2 Timer T2 PWM/Compare Output

RC.3 Timer T2 External Event Clock Source

TIMER Commands
TIMER[1 | 2] CLEAR

Clears the hardware timer/counter.

TIMER[1 | 2] PRESCALE Value

Sets the hardware timer/counter prescaler. Valueis a constant as defined in the table below.

Value Prescaler
1:1
1:2
1:4
1:8
1:16
1:32
1:64
1:128

N|O|u|h~ | W|IN |~ O

TIMER[1 | 2] r1 Value

Sets the hardware timer/counter R1 register. Va/ueis a byte or word constant/variable.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 185

Example



TIMER[1 | 2] r2 Value

Sets the hardware timer/counter R2 register. Valueis a byte or word constant/variable.

TIMER[1 | 2] TIMER

Sets the hardware timer/counter to "Software Timer" mode.

TIMER[1 | 2] pwM OnCycles, PeriodCycles

Sets the hardware timer/counter to "PWM" mode. OnCycles is loaded into timer register R1, and PeriodCycles -
OnCycles is loaded into register R2. Note that you must make the PWM pin an output. OnCycles and PeriodCycles
are byte or word constants/variables.

The example below illustrates the use the of PWM option to modulate an IR LED at 38 kHz:

DEVICE SX48, OSCXT1
FREQ 4 000 000
IrLed PIN RB.6 OUTPUT

PROGRAM Start

Start:
TIMER1 PWM, 52, 105 ' modulate at 38 kHz, 50%
DO
' additional program statements
LOOP
END

TIMER[1 | 2] CAPTURE

Sets the hardware timer/counter to "Capture/Compare" mode.

TIMER[1 | 2] EXTERNAL

Sets the hardware timer/counter to "External Event" mode.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 186



TIMER Example (sxs/52 only)

|+
1cn

EBE.& [

O

SERVO

' Demonstates the SX48/52 TIMER1 in PWM mode to control a servo.

' Notes:
' —— 4 MHz / 32 =

' —— 20 ms / 8 uS = 2500

' — 1 ms / 8 uS = 125
' —— 2 ms / 8 uS = 250

125,000 Hz -> 8 uS per cycle
(0.020 / 0.000008 = 2500)

(0.001 / 0.000008
(0.002 / 0.000008

(0.000008 s)

= 125)
250)

OSCXT1

' Tl output pin

' 20 ms @ 4 MHz, 1:32

DEVICE SX48,
FREQ 4 000 000
ID "TIMER"

]

' IO Pins

]

Servo PIN

]

' Constants

]

ServoCycle CON 2 500
ServoMin CON 125
ServoMax CON 250

]

' Variables

]

position VAR Byte
tmpW1l VAR

' servo position

' for subroutines

PROGRAM Start

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 187

Syntax



DELAY SUB 1, 2 ' delay in milliseconds

Start:

TIMER1 PRESCALE, 5 ' set prescaler to 1:32

DO
FOR position = ServoMin TO ServoMax STEP 5
TIMER1 PWM, position, ServoCycle
DELAY 200 ' slow sweep
NEXT
FOR position = ServoMax TO ServoMin STEP -5
TIMER1 PWM, position, ServoCycle
DELAY 20 ' faster sweep
NEXT
LOOP

' Use: DELAY ms

' —— 'ms' is delay in milliseconds, 1 - 65535
SUB DELAY
IF  PARAMCNT = 1 THEN
tmpWl =  PARAMI ' save byte value
ELSE
tmpWl =  WPARAMI12 ' save word value
ENDIF
PAUSE tmpWl
ENDSUB

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 188



TOGGLE 0

TOGGLE BitVar

Function
Invert the state of the specified bit.

e  BitVar is a bit variable or any SX I/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O ..
RE.7).

Explanation
TOGGLE inverts the state of the specified bit, changing 0 to 1 and 1 to 0. If BitVaris an SX I/O pin, it sets a pin
to output mode and inverts the pin's state.

In some situations TOGGLE may appear to have no effect on a pin's state. For example, suppose RA.3 is in input
mode and pulled to +5V by a 10 kQ resistor. Then the following code executes:

Main:
INPUT RA.3 ' make RA.3 an input
RA.3 = 0 ' set output driver to 0
TOGGLE RA.3 ' toggle pin state

The state of RA.3 doesn't change; it's high (due to the pull-up resistor) before TOGGLE, and it's high (due to the
pin being output high) afterward. The point is that TOGGLE works on associated port register bit, which may not
match the pin's state when the pin is initially an input. To guarantee that the state actually changes, regardless of
the initial input or output mode, do this:

Main:
INPUT RA.3 ' make RA.3 an input
RA.3 = RA.3 ' get state at pin
TOGGLE RA.3 ' toggle pin state

Related instructions: HIGH, LOW, and OUTPUT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 189



TOGGLE Example

478

RE.B g

' Program Description

' Simple LED blinker using TOGGLE

' Device Settings

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 000

ID "TOGGLE"

b e e e e e e e e e e e o e o  — —— — —— — —— — —— — —— — —— — —— ——— —— —— —— — o —— —— ———— —— —— —— — o — o —— —
' IO Pins

b o e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o e o o e o o o o o o e o o o e o o o o
AlarmLed PIN RB.0 OUTPUT ' LED pin

b e e e e e e e e e e e e e e e e e e e e e e e e e e e o
' Constants

b e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o o e o o o o o o o o o e o o o o e o o e
BlinkDelay CON 250 ' blink rate

PROGRAM Start

Start:
DO

PAUSE BlinkDelay
TOGGLE AlarmLed

LOOP

SX/B Help File

Version 1.51.03,

delay
toggle LED state
loop forever

©2007 Parallax Inc

Page 190

Syntax



TTL (SX48/52 Only)

TTL Pin {, Enable}

Function

Configures Pin for TTL input threshold (1.4 volts) on the SX48 or SX52. This command does not apply to the
SX18, SX20, or SX28 (use the LVL_A, LVL_B, and LVL_C registers).

e Pin is any SX48/52 1/O pin (RA.0 .. RA.7, RB.0 .. RB.7, RC.0 .. RC.7, RD.0 .. RD.7, RE.O .. RE.7).

e  Enableis a constant, 0 or 1, that enables (1) or disables (0) the TTL input threshold. When not specified,
Enable defaults to 1. If Enableis 0, the pin will be configured for CMOS input threshold.

Explanation

Every I/O pin has selectable logic level control that determines the voltage threshold for a logic level 0 or 1. The
default logic level for all I/O pins is TTL but can be modified by writing to the appropriate logic-level register
(LVL_A, LVL_B, LVL_C, LVL_D and LVL_E). The logic level can be configured for all pins, regardless of pin
direction, but really matters only when the associated pin is set to input mode. By configuring logic levels on
input pins, the SX chip can be sensitive to both TTL and CMOS logic thresholds. The figure below demonstrates
the difference between TTL and CMOS logic levels.

+2 M) —m————— +53V (M) ———
Logic 1 el
S0%a Wdd
1.4v o
|_|:||§|j_|:: (6] LI_"::IlL. -
0% (vas) 0% (vas)
TTL Logic Level CMOS Logic Level

The logic threshold for TTL is 1.4 volts; a voltage below 1.4 is considered to be a logic 0, while a voltage above is
considered to be a logic 1. The logic threshold for CMOS is 50% of Vdd, a voltage below %2 Vdd is considered to
be a logic 0, while a voltage above "2 Vdd is considered to be a logic 1.

Start:
TTL RE 7, 1 ' set to TTL level
TTL RE 6 ' set to TTL level
TTL RE 5, 0 ' disable TTL level, set to CMOS level

Related instructions: CMOS, PULLUP, and SCHMITT

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 191



Using the Analog Comparator

1I/0 pins 0 through 2 in port B can be set for comparator operation. This can be configured by writing to the EN
and OE bits of the Comparator register (CMP_B) and monitored by reading the RES bit. The comparator mode is
disabled by default. Comparator mode can be activated for all three pins, regardless of pin direction, but really
matters only when pin 1 and 2 are set to input mode (pin 0 can optionally be set to output the comparative
result). By configuring Comparator mode, the SX chip can quickly determine logical differences between two
signals and even indicate those differences for external circuitry.

When comparator mode is activated, the RES bit in the Comparator register indicates the result of the compare. A
high bit (1) indicates the voltage on pin 2 is higher than that of pin 1, a low bit (0) indicates the voltage on pin 2
is lower than that of pin 1. If the OE bit (Output Enable) of the Comparator register is cleared, output pin 0 of
port B reflects the state of the RES bit.

To configure port B I/O pins 0 though 2 for Comparator mode:

1. Set CMP_B to enable the Comparator and, optionally, the result output on pin 0.
2. Set I/O pin directions appropriately.

+5
16K
+5
16K
RE.Z <3 - Ay
RE.1 <3 = 10K
K
RE.G ]
478 1

' Demonstrates the use of the SX comparator and controlling RB.0O for
' external circuitry.

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "CMP B"

v
' IO Pins
L
LED PIN RB.0 OUTPUT

v
' Variables
L
result VAR Byte

cmpValue VAR result.O

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 192



PROGRAM Start

Start:
CMP B = 0 ' enable comparator
Main:
CMP B = result ' exchange result with CMP
GOTO Main

See also: COMPARE instruction and ADC8 Example.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 193



The Elements of SX/B Style

INTRODUCTION

Like most versions of the BASIC programming language, SX/B is very forgiving and the compiler enforces no
particular formatting style. As long as the source code is syntactically correct, it will usually compile and can be
programmed into to the SX microcontroller without trouble.

Why, then, would one suggest a specific style for SX/B? Consider this: Millions of SX microcontrollers have been
sold, SX/B makes the SX accessible to a wider audience (i.e., less-experienced programmers), and there are over
4000 members that participate in Parallax online forums. This makes it highly likely that you'll be sharing your
SX/B code with someone, if not co-developing a SX-based project. Writing code in an organized, predictable
manner will save you — and your potential teammates — a lot of time; in analysis, in troubleshooting, and
especially when you return to a project after a long break.

The style guidelines presented here are just that: guidelines. They have been developed from style guidelines
used by professional programmers using other high-level languages such as Visual Basic®, C/C++, and Java™.
We suggest you use these guidelines as-is, or — especially if you're advanced and have been programming a
while — modify them to suit your individual needs. The key is selecting a style the works well for you or your
organization, and then sticking with it.

SX/B Style Guidelines
1. Do It Right The First Time

Many programmers, especially new ones, fall into the "I/ knock it out now and fix it later. "trap. Invariably, the
"fix it later" part never happens and sloppy code makes its way into production projects. If you don't have time to
do it right, when will you find time to do it again?

Start clean and you'll be less likely to introduce errors into your code. And if errors do pop up, clean and
organized formatting will make them easier to find and fix.

2. Be Organized and Consistent
Using a blank program template will help you organize your programs and establish a consistent presentation.
The SX-Key IDE allows you to specify a file template for the File | New (SX/B) menu option.

3. Use Meaningful Names

Be verbose when naming constants, variables and program labels. The compiler will allow names up to 32
characters long. Using meaningful names will reduce the number of comments and make your programs easier
to read, debug, and maintain.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 194



4. Naming I/O Pins

Begin I/O pin names with an uppercase letter and use mixed case, using uppercase letters at the beginning of
new words within the name.

HeaterCtrl PIN RA.0 OUTPUT

Since connections don't change during the program run, I/O pins are named like constants (#5) using mixed
case, beginning with an uppercase letter. Resist the temptation to use direct pin names (e.g., RB.7) in the body
of a program as this can lead to errors when making circuit changes.

5. Naming Constants

Begin constant names with an uppercase letter and use mixed case, using uppercase letters at the beginning of
new words within the name.

AlarmCode CON 25

6. Naming Variables
Begin variable names with a lowercase letter and use mixed case, using uppercase letters at the beginning of
new words within the name.

waterLevel VAR Byte tally VAR Word

7. Variable Type Declarations

SX/B supports word, byte, byte array, and bit variables. To define bit variables, the byte that holds them must
be defined first.

sysCount VAR Word
alarms VAR Byte
overTemp VAR alarms
underTemp VAR alarms.1
clock VAR Byte (3)

8. General Program Labels

Begin program labels with an uppercase letter, used mixed case, separate words within the label with an
underscore character, and begin new words with a number or uppercase letter. Labels should be preceded by at
least one blank line, begin in column 1, and must be terminated with a colon.

Get_Tag:
RfidEn = Active
DO
char = RX RFID
LOOP UNTIL char =
FOR idxl = 0 TO 9
tagBuf (idxl) = RX RFID
NEXT
RfidEn = Deactivated

$0A

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 195



9. SX/B Keywords
All SX/B language keywords, including CON, VAR, and SUBshould be uppercase. The SX-Key IDE does syntax
highlighting, but does not change case so this is the responsibility of the programmer.

Main:
DO HIGH AlarmLed
WAIT MS 100
LOW AlarmLed
WAIT MS 100
LOOP

10. Declare Subroutines and Functions

Declared subroutines were introduced in version 1.2, and as of version 1.5 SX/B now supports functions as well;
functions allow a routine to return a two-byte (word) value, while subroutines are limited to returning a single
byte.

Declared subroutines and functions benefits the programmer in two ways: 1) the compiler creates a jump table
that allows the subroutine code to be placed anywhere in the program space and, 2) the compiler does a syntax
check on the subroutine call to ensure that the proper number of parameters are being passed.

WAIT MS SUB 1, 2
GET TEMP FUNC 2

When using a declared subroutine, the use of GOSUB not required.

Main:
DO
HIGH AlarmLed
WAIT MS 100
LOW AlarmLed
WAIT MS 100
LOOP

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 196



11. Declared Subroutine and Function Labels
Declared subroutines and functions are, in effect, added language elements and should be treated like new

keywords: all uppercase. To distinguish subroutine labels from SX/B keywords use an underscore between new
words.

' Use: DELAY ms
' =—— 'ms' is delay in milliseconds, 1 - 65535

SUB DELAY IF  PARAMCNT = 1 THEN
tmpWl =  PARAMI ' save byte value
ELSE
tmpWl =  WPARAMI12 ' save word value
ENDIF
PAUSE tmpW1l
ENDSUB

As shown above, it is good practice to document the subroutine with usage requirements, especially when
optional an parameter is available.

12. Indent Nested Code

Nesting blocks of code improves readability and helps reduce the introduction of errors. Indenting each level
with two spaces is recommended to make the code readable without taking up too much space.

' Use: LCD OUT [ aByte | string | label ]

' —— "aByte" 1is single-byte constant or variable

-- "string" is an embedded literal string

' —— "label" is DATA statement label for stored z-String

SUB LCD_OUT

templ =  PARAMI

IF  PARAMCNT = 2 THEN
temp2 =  PARAMZ2
DO

READ temp2 + templ, temp3
IF temp3 = 0 THEN EXIT
SEROUT LcdTx, LcdBaud, temp3
INC templ
temp2 = temp2 + Z
LOOP
ELSE
SEROUT LcdTx, LcdBaud, templ
ENDIF
ENDSUB

Note: The dots are used to illustrate the level of nesting and are not a part of the code.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 197



13. DATA / WDATA Tables

DATA / WDATA tables should be placed after the main code loop to prevent the program from attempting to
execute these statements.

Main:
IF idx = 9 THEN
idx = 0
ELSE
INC idx
ENDIF
READ SegMap + idx, Leds
PAUSE 1000
GOTO Main
L
SegMap: ' segments maps

! .gfedcba
DATA %00111111 !
DATA %00000110 !
DATA %01011011 !
DATA %01001111 !
DATA %01100110 !
DATA %01101101 !
DATA %01111101 !
DATA %00000111 !
DATA %01111111 !
DATA %01100111 !

O o0 Jo Ul WDN P O

14. Be Generous With White Space

White space (spaces and blank lines) has no effect on compiler or SX performance, so be generous with it to
make listings easier to read. As suggested in #8 above, allow at least one blank line before program labels (two
blanks lines before a subroutine label is recommended). Separate items in a parameter list with a space after
the comma.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 198



SX/B Error Codes

The SX/B compiler can trap several programming errors before generating the assembly output that is passed to
the SASM assembler. The list below gives a description of the errors and guidance for correction.

Error 1 INVALID VARIABLE NAME
You have used a variable name that is an SX/B or SASM reserved word.

Error 2 DUPLICATE VARIABLE NAME
You have tried to allocate the same variable name more than once.

Error 3 VARIABLE EXCEEDS AVAILABLE RAM
You have declared too many variables or the array is too large.

Error 4 CONSTANT EXPECTED
The bit field value must be a constant.

Error 5 BYTE PARAMETER EXPECTED
Many commands work only with BYTE parameters.

Error 6 INVALID UNARY OPERATOR
You used a unary operator other than — (negate) or ~ (bitwise NOT).

Error 7 INVALID REGISTER OPERATION
Some SX registers are write-only, hence assignment is the only valid operation.

Error 8 INVALID PARAMETER
You have used a parameter that is not valid.

Error 9 SYNTAX ERROR
Command syntax not followed.

Error 10 INVALID NUMBER OF PARAMETERS
You have given too few or too many parameters for the command.

Error 11 BYTE VARIABLE EXPECTED
You have used a non-byte variable where a byte was expected.

Error 12 NOT A FOR CONTROL VARIABLE
You have used NEXT with a variable what was not used in a previous FOR instruction.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 199



Error 13 BIT VARIABLE EXPECTED
You have used a non-bit variable where a bit variable is required.

Error 14 BAUDRATE IS TOO LOW
Baudrates are limited by the FREQ setting. Use a higher baudrate or lower clock frequency.

Error 15 BAUDRATE IS TOO HIGH
Baudrates are limited by the FREQ setting. Use a lower baudrate or higher clock frequency.

Error 16 UNKNOWN COMMAND
Instruction used is not supported or is misspelled, or you have misspelled a variable nhame.

Error 17 COMMA EXPECTED
In most cases you must separate parameters with a comma.

Error 18 EXPECTED A VALUE BETWEEN 0 AND 7
Bit operations require a value from 0 to 7.

Error 19 BIT IS NOT A HARDWARE PIN
Some commands operate only on hardware pins.

Error 20 BIT CONSTANT EXPECTED
Expected 0 or 1.

Error 21 INTERRUPT MUST BE USED BEFORE PROGRAM
Interrupt routine must be placed before the PROGRAM directive.

Error 22 FOR WITHOUT NEXT
You have created a FOR loop without a corresponding NEXT, or you have misspelled the FOR
control variable name.

Error 23 NEXT WITHOUT FOR
You have used NEXT without a corresponding FOR, or you have misspelled the NEXT variable
name.

Error 24 UNKNOWN VARIABLE NAME

You have attempted to use an undeclared variable, or misspelled a variable name.

Error 25 TOO MANY SUBS DEFINED
A maximum of 127 subroutines may be defined in any one program.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 200



Error 26

Error 27

Error 28

Error 29

Error 30

Error 31

Error 32

Error 33

ELSE OR ENDIF WITHOUT IF
You have used ELSE or ENDIF without a corresponding IF.

VARIABLE NOT IN CURRENT BANK
The variable used is not accessible from the current bank.

MUST BE A GLOBAL VARIABLE
Some commands (BANK) require a variable that is located in the global RAM area. Place global
variables at the beginning of the declaration section.

LOOP WITHOUT DO
You have used LOOP without a corresponding DO.

EXIT NOT IN FOR...NEXT OR DO...LOOP
The EXIT command must be used within a FOR...NEXT or a DO...LOOP construct.

FREQUENCY DIFFERENT FROM DEVICE SETTING

The clock speed you have specified with FREQ does not match the clock speed specified on the
DEVICE> line. This only occurs when the device line specifies one of the internal clock speeds
(0SC4MHZ, OSC1MHZ, OSC128KHZ, or OSC32KHZ)

NOT ALLOWED ON THIS DEVICE
Some commands (like TIMER1) only apply to the SX48/52 devices. If you attempt to use these
commands on the SX28 you will receive this error.

NO PROGRAM DIRECTIVE USED
All SX/B programs must use the PROGRAM Label directive so that the SX knows where to start
program execution.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 201



SX/B Programming Template Examples Index

The following programming template, while somewhat verbose, will help programmers new to SX/B and the SX
microcontroller to keep things in order so that programs compile and assemble successfully. Parallax suggests
that you use this template as is, removing unused sections only after your program is tested and working as
desired.

' File...... TEMPLATE . SXB

' Purpose... SX/B Programming Template
' Author....

' E-mail....

' Started...

' Updated... 05 JUL 2006

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX
FREQ 4 000_000
ID "SXB 1.50"

ISR Start:
' ISR code here

ISR Exit:
RETURNINT ' {cycles}

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 202



SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 203



SX/B Commands

SX/B Example Projects

e  Programming Template

e 8-bit ADC
e Digital Dice

e  Clock / Timer

e  Thermometer

e Scanning a 4x4 Matrix Keypad
e Serial LCD

e  Quadrature Encoder Input
e RFID Reader Interface
e  SONY IRCS Decoding

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 204



SX/B Example: 4x4 Matrix Keypad Examples Index

RC.7 <3
FE.T
RC.6 <3
RE.&
RC.5 <3
EFE.S
RC.4 < RE.4
475 570* 9704 §5>“o« ;7:::-4 o
RC.2 [ oy 7 ¢ i by FE.2
H ZH iZH H )
287157157 e
RC.2 [ Ayl
Pot Pot ot got FEE
RC.1 [ iy 7 ? z 7
&ﬂ} ;ﬂ}-¢ﬁ} &ﬂ}
RC.8 [ Ay 7 7 bl ¢
S
]
' File...... KEYPAD.SXB
' Purpose... Scanning a 4x4 Matrix Keypad
' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com
' Started...
' Updated... 05 JUL 2006

' This program demonstrates the scanning of a 4x4 matrix keypad. If no
' key is pressed the GET KEY routine will return a value of 16.

' Key values (hex):

' Cl C2 C3 C4

'"RI [ O] [ 1] [21TL3]
'"R2 [ 4] [ 51 [61 [ 7]

'"R3I [ 81 [ 91 [ A] [ B

DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "KEYPAD"
L
' IO Pins



Keys PIN RC
TRIS Keys VAR TRIS C

' keyboard scan port

column inputs

active low input

' segment G only

PLP Keys VAR PLP C

Coll PIN Keys.7
Col2 PIN Keys.6
Col3 PIN Keys.5
Col4 PIN Keys.4
LEDs PIN RB OUTPUT
\l

' Constants

A\l

Yes CON 0

No CON 1

Dash CON %01000000
A\l

' Variables

\l

theKey VAR Byte
row VAR Byte

tmpB1l VAR Byte
tmpB2 VAR Byte
tmpW1l VAR Word

' from keypad, 0 - 16
' keyboard scan row

' subroutine work vars

PROGRAM Start

DELAY SUB 1, 2

' get key from pad
' delay in milliseconds

' Program Code

Start:
LEDs = Dash ' dash in display

Main:
theKey = GET KEY
IF theKey < 16 THEN
READ ReMap + theKey, theKey
READ Digits + theKey, LEDs

DELAY 100
ELSE

LEDs = Dash
ENDIF

' get a key

' was a key pressed?
yes, remap keypad
' output to display

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 206



GOTO Main

This routine works by activating each row, then scanning each column.

If a particular row/column junction is not active (pressed), the key
value is incremented and the scan continues. As soon as a key is found,
the routine exits. If no key is pressed the routine will exit with a key
value of 16.

Use: aByte = GET KEY
-- scans keyboard and places key value into 'aByte'

FUNC GET KEY

tmpBl = 0 ' reset keyboard value
Keys = %0000 0111 ' activate first row
TRIS Keys = %1111 0000 ' refresh IO state
PLP Keys = %0000 1111 ' pull-up input pins
FOR tmpB2 = 1 TO 4 ' scan four rows

IF Coll = Yes THEN EXIT ' check buttons on column

INC tmpBl ' update key value

IF Col2 = Yes THEN EXIT

INC tmpBl

IF Col3 = Yes THEN EXIT

INC tmpBl

IF Col4 = Yes THEN EXIT

INC tmpBl

Keys = Keys >> 1 ' select next row

Keys = Keys | %0000 _1000 ' clear previous row
NEXT
RETURN tmpB1l

ENDFUNC

Use: DELAY ms

' —— 'ms' is delay in milliseconds, 1 - 65535
SUB DELAY
IF  PARAMCNT = 1 THEN
tmpWl =  PARAMI ' save byte value
ELSE
tmpWl =  WPARAM12 ' save word value
ENDIF
PAUSE tmpW1
ENDSUB

User Data

Matrix to remap keypad values

ReMap:
DATA 1, 2, 3, SA
DATA 4, 5, 6, SB
DATA 7, 8, 9, SC
DATA S$E, 0, SF, $D

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 207



SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 208



SX/B Example: 8-bit ADC

Examples Index

1ok

FE.3 C—"h—— 2
RE.2 TF—"\—
RE.1 <3 * 16k

B.81 ==
A\l
|l
' File...... ADC8.SXB
' Purpose... Simple 8-bit ADC using the Comparator
' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com
' Started...
' Updated... 05 JUL 2006

' This program uses an RC circuit with PWM and the SX's comparator to
' create a simple 8-bit ADC.

' is found by applying a known voltage
' examining the analog comparator bit.

The unknown voltage present on pin RB.1

(using PWM) to pin RB.2 and

DEVICE
FREQ
ID

sx28,
4_000_000
"CMP_ADC8"

0SCXT2,

TURBO,

STACKX, OPTIONX

adcval
tmpB1l
tmpB2
tmpB3

WATCH adcVal

VAR
VAR
VAR
VAR

Byte
Byte
Byte
Byte

reading from ADC
work vars

use Debug/Poll to view

PROGRAM Start

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 209



Start:
CMP B = 0

Main:
DO
adcVal = GET ADC
BREAK ' display in Debug mode
LOOP

' Use: aVar = GET ADC
' —- returns 8-bit value of voltage

FUNC GET_ ADC

tmpBl = 0
tmpB2 = 128
DO

tmpBl = tmpBl + tmpB2
PWM AdcChrg, tmpBl, 1
CMP B = tmpB3
IF tmpB3.0 = 1 THEN
tmpBl = tmpBl - tmpB2

ENDIF
tmpB2 = tmpB2 >> 1

LOOP UNTIL tmpB2 = O

RETURN tmpB1l

ENDEFUNC

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

' enable comparator

get new value

on RB.1

' reset result
' bias to middle

' create test value
' charge RC

' compare inputs

if unknown lower
' reduce test value

' divide bias

' return ADC value

Page 210



SX/B Example: Digital Dice Examples Index

+5
16K
SHZEAC/DP 9
RTCC v ] B
v osc1fEC
Mo osczfER
uss RO
HC o Ay
Rag  RCS|EE Ayt g [ ] (1]
Rl ey Ay
Rz Roafl A — ¢ @ 0 O
raz  RozfER T |
REA  RC1PEE Y O ©
RE1 rea 2 T N
REz  REFPL 1K
rEZ  RESPE A ¢
RE4  RESP> Ay :H—« O (1]
,
AR, :H © 0 0
,
»— (@6 ©
.
1 e
'
' File...... DICE.SXB
' Purpose... A Pair of Digital Dice
' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com
' Started...
' Updated... 05 JUL 2006

' Simple digital dice program. Uses outputs from RB and RC to dice pattern
' on seven LEDs (for each port) as shown below:

' (0) (1)
" (5) (6) (2)
'(4) (3)

' A button input on RA.0 is used to "roll" the dice. When rolling is
' stopped, display will stay solid for at least one second, then the
' program will wait for the Roll button to be pressed again.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 211



DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

FREQ 4 000_000

ID "DICE"

Vo e e e e e e e e e e e e e
' IO Pins

L
Roll PIN RA.3 INPUT ' roll button

Die0 PIN RB OUTPUT ' LEDs out for die #1

Diel PIN RC OUTPUT ' LEDs out for die #2

Vo e e e e e e e e e e e e e
' Constants

L
No CON 1 ' button not pressed

Yes CON 0

Vo e e e e e e e e e e e e e e e e e e e e
' Variables

Vo e e e e e e e e e e e e e e e e e e
dlval VAR Byte ' value of die #1

d2val VAR Byte ' value of die #2

pattern VAR Byte ' dice pattern

tmpB1l VAR Byte ' work variables

tmpB2 VAR Byte

tmpB3 VAR Byte

tmpWl VAR Word

PROGRAM Start

GET DIE FUNC 1,1 ' pass seed and index addr
DELAYS SUB 1,2 ' delay in milliseconds

' Program Code

SX/B Help File Version 1.51.03, ©2007 Parallax Inc



Start:

TRIS B = %$10000000 ' make LED ports outputs
TRIS C = %$10000000
PLP A = %1000 ' pull-up unused pins
PLP B = %01111111
PLP C = %01111111
dlval = $12 ' initialize seeds
d2val = $34
Main:
DO
Die0 = GET DIE @dlval ' randomize die values
Diel = GET DIE @d2val
DELAY 75 ' delay between rolls
LOOP WHILE Roll = No ' wait for button
DELAY 1000 ' show dice (1 sec min)

Wait For Press:
DO
DELAY 10
LOOP UNTIL Roll = Yes

Wait For Release:
DO WHILE Roll = Yes
DELAY 10
LOOP
DELAY 100
GOTO Main

' Use: pattern = GETDIE (@seed

' —- randomizes 'seed' (must pass address as 'seed' is updated)

' —— returns die display in 'pattern'

FUNC GET_ DIE

tmpBl =  PARAMI ' get seed address
tmpB2 =  RAM(tmpBl) ' get seed value
RANDOM tmpB2 ' randomize seed
___RAM(tmpBl) = tmpB2 ' update seed
tmpB2 = tmpB2 / 43 ' make = 0 to 5

READ Pips + tmpB2, tmpBl ' get LED pattern
RETURN tmpBl ' return pattern
ENDFUNC

' Use: DELAY ms
' =—— 'ms' is delay in milliseconds, 1 - 65535

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 213



SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 214



SX/B Example: Quadrature Encoder Input =~ Bemeesine

+5
pa 10K
SHZBACDP
Urree v ]
oo osciEL
Bl == —2NE necz e
P LSS ReT 22 iy
L S e iy
~ Slpas RoslEE iy
Aret roaf22 Sy
] rozfel Sy
=l e rozf22 A
—9pEn ro1 2 Sy
— ey reafis iy
— 12 ey L 47a
Hees rEs L2
EL] v resp=
+5  +5
4.7K
- B
B BRAYHILL
2SLE18-1
I C
'
]
' File...... ENCODER.SXB
' Purpose... Grayhill 25LB10-Q Encoder Demo
' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com
' Started...

' Updated... 05 JUL 2006

' Reads a Grayhill 25LB10-Q quadrature encode and displays a value on
' three 7-segment LEDs. When the value is zero, the display reads "OFF."

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 215



' Reading the encoder and multiplexing the displays is handled in the
' "background" with an ISR.

DEVICE SX28, OSC4MHZ, TURBO,

FREQ 4 000 000

ID "ENCODER"

' IO Pins

EncPort PIN RA

TRIS Enc VAR  TRIS A

Cathodes PIN RB

TRIS Cath VAR TRIS B

Anodes PIN RC

TRIS Ano VAR TRIS C

' Constants

Blank CON %00000000

Ltr O CON 00111111

Ltr F CON  %01110001

Yes CON 1

No CON 0

MaxVal CON 100

' Variables

display VAR Byte (3)

digPntr VAR Byte

digLimit VAR Byte

flags VAR Byte

newVal VAR flags.O

encCheck VAR Byte

encOld VAR Byte

encNew VAR Byte

encValue VAR Byte

tmpB1l VAR Byte

tmpB2 VAR Byte

tmpB3 VAR Byte
INTERRUPT

SX/B Help File Version 1.51.03,

STACKX, OPTIONX

' encoder port
' LED cathodes

' LED anodes

' all segs off
' pattern for "O"
' pattern for "EF"

' multiplexed segments
' digit pointer
"0 - 2

' previous encoder bits
' new encoder bits
' encoder value

©2007 Parallax Inc



' Runs every 64 uS @ 4 MHz (no prescaler)

ISR Start:
encNew = EncPort & %$00000011
tmpB3 = encOld XOR encNew
IF tmpB3 > 0 THEN
encOld encOld << 1
encOld = encOld XOR encNew
IF encOld.l = 1 THEN
IF encValue < MaxVal THEN
INC encValue
newVal = 1
ENDIF
ELSE
IF encValue > 0 THEN
DEC encValue

newVal = 1
ENDIF
ENDIF
encOld = encNew

ENDIF

Update Display:
INC digPntr
IF digPntr = digLimit THEN
digPntr = 0
ENDIF
Anodes = Blank

READ DigCtrl + digPntr, Cathodes

Anodes = display(digPntr)

ISR _Exit:
RETURNINT

' get econder bits
' test for change
' change?

' adjust old bits
' test direction

' if max, no change
increase value
' alert "foreground"

' if 0, no change
' decrease value
' alert "foreground"

' save last input

' point to next digit
' update digit
' wrap if needed

' blank display
' select display element
' output new digit segs

PROGRAM Start

UPDATE ABUF SUB 0 ' update anode buffer

' Program Code

Start:
Anodes = Blank
TRIS Ano = %00000000
Cathodes %111
TRIS Cath = %11111000
encNew = EncPort & %00000011
encOld = encNew
encValue = 0
UPDATE ABUF
OPTION = $88

' clear LEDs

' make anode ctrl outputs
' all digits off

' make cath ctrl outputs
' read encoder pos

copy

' clear value

' update display char buf
' interrupt, no prescaler

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 217



Main:

DO
IF newVal = Yes THEN
UPDATE ABUF
ENDIF
LOOP

SUB UPDATE ABUF
IF encValue = 0 THEN
PUT display(0), Ltr F,
digLimit = 3
ELSE
digLimit = 1
IF encValue > 9 THEN
INC digLimit
ENDIF
IF encValue > 99 THEN
INC digLimit
ENDIF
tmpB1l

Ltr F, Ltr O

encValue
tmpB2 = tmpBl / 100
tmpBl =  REMAINDER
READ SegMaps + tmpB2,
tmpB2 = tmpBl / 10
tmpBl =  REMAINDER
READ SegMaps + tmpB2,
READ SegMaps + tmpBl,
ENDIF
newVal =
ENDSUB

display(2)
display (1)
display(0)

No

' check flag
' refresh display buffer

' if O,

show "OFE"

' at least one digit
' into 10s?
-- yes, show another digit

' into 100s?
-- yes, show another digit

' convert value to segments

' clear flag

' User Data

SegMaps: ' segments maps

! .gfedcba
DATA %00111111 "'
DATA %00000110 '
DATA %01011011 '
DATA %01001111 "'
DATA %01100110 "'
DATA %01101101 "'
DATA %01111101 "'
DATA %00000111 "'
DATA %01111111 "'
DATA %01100111 "'
DATA %01110111 "'
DATA %01111100 '
DATA %00111001 "
DATA %01011110 "'
DATA %01111001 '
DATA %01110001 "'

HEHQOQOOD M WU o bd wh - o

DigCtrl:
DATA %11111110 !

SX/B Help File Version 1.51.03,

column 0O on

©2007 Parallax Inc Page 218



SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 219



SX/B Example: RFID Reader Interface SRR

T FRFEALLAX

277G

' File...... RFID SECURITY.SXB.SXB

' Purpose... Parallax RFID Reader Demo

' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com

' Started...

' Updated... 05 JUL 2006

' Simple security application using the Parallax RFID reader and the
' Parallax Serial LCD. As designed, the application will support 16
' RFID tags.

' Components:
' Parallax RFID Reader... #28140
' Parallax Serial LCD.... #27976 or #27977



DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "REID"

Vo e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
' IO Pins

b o e e e e e e e e e e o e e e e e e e e e e e e e e e e e e e e e o e
LcdTx PIN RA.0 OUTPUT ' LCD serial connection

RfidEn PIN RA.1 OUTPUT ' RFID enable control

RfidRx PIN RA.2 INPUT ' RFID serial input

Lock PIN RA.3 OUTPUT ' lock control

U e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
' Constants
L
TagMax CON 2 ' three tags, (0 - 2)

LcdBaud CON "T19200" ' or T2400, or T9600

RfidBaud CON "T2400"

LcdBkSpc CON $08 ' move cursor left

LcdRt CON $09 ' move cursor right

LcdLF CON SOA ' move cursor down 1 line

LcdCls CON S0C ' clear LCD (need 5 ms delay)
LcdCR CON $0D ' move pos 0 of next line

LcdBLon CON $11 ' backlight on

LcdBLoff CON $12 ' backlight off

LcdOff CON $15 ' LCD off

LcdOnl CON S16 ' LCD on; no crsr, no blink
LcdOn2 CON $17 ' LCD on; no crsr, blink on
LcdOn3 CON $18 ' LCD on; crsr on, no blink
LcdOn4 CON $19 ' LCD on; crsr on, blink on
LcdLinel CON $80 ' move to line 1, column O

LcdLine?2 CON $94 ' move to line 2, column O

Active CON 0 ' for RFID reader

Deactivated CON 1

Open CON 1 ' for lock

Closed CON 0
L
' Variables
L
idx1 VAR Byte ' loop control

idx2 VAR Byte

char VAR Byte

tagBuf VAR Byte (10) ' tag bytes from reader

tagNum VAR Byte ' tag number

offset VAR Byte

tmpBl VAR Byte ' subroutine work vars

tmpB2 VAR Byte

tmpB3 VAR Byte

tmpW1l VAR Word

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 221



PROGRAM Start

DELAY SUB 1, 2 ' delay in milliseconds
LCD_OUT SUB 1, 2 ' byte or string to LCD
CLEAR_LCD SUB 0 ' clear LCD, BL is on

RX RFID FUNC 1 ' get char from RFID

' Program Code

Start:
PLP B = 300000000 ' pull up unused pins
PLP_C = %$00000000
RA = %0011 ' disable reader, lock it up
TRIS A = %0100
DELAY 100 ' let LCD initialize
Main:
CLEAR LCD

LCD OUT "Present ID."
LCD OUT LcdLine?2

LCD_OUT LcdOn2 ' flash block cursor
Get Tag:
RfidEn = Active
DO
char = RX RFID ' get a character
LOOP UNTIL char = $0A ' wait for header
FOR idxl = 0 TO 9 ' get RFID bytes
tagBuf (idxl) = RX RFID
NEXT

RfidEn = Deactivated

Search Tags:

FOR tagNum = 0 TO TagMax ' loop through known tags
offset = tagNum * 10 ' point to tag string
FOR idxl = 0 TO 9 ' loop through characters
READ Tags + offset, char ' read tag character
INC offset ' point to next
IF char <> tagBuf (idxl) THEN Next Tag ' if bad, skip rest
NEXT
GOTO Found Tag ' if all valid, tag found
Next Tag:
NEXT
No Tag:
CLEAR LCD

LCD_OUT "Unauthorized"
GOTO Loop_ Pad

Found Tag:

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 222



CLEAR LCD
LCD_OUT "Authorized"

Show Name :
LCD_OUT LcdLine2

offset = tagNum << 4 ' point to start of name
FOR idxl = 0 TO 15

READ TagNames + offset, char ' get name character

INC offset ' point to next

LCD OUT char ' send char to LCD
NEXT

Lock = Open
Loop Pad:
DELAY 3000 ' pause 3 seconds

Lock = Closed
GOTO Main

Use: DELAY ms

' =—— 'ms' is delay in milliseconds, 1 - 65535
SUB DELAY
IF  PARAMCNT = 1 THEN
tmpWl =  PARAMI ' save byte value
ELSE
tmpWl =  WPARAMI12 ' save word value
ENDIF
PAUSE tmpW1
ENDSUB

' Use: LCD OUT [ aByte | string | label ]

-- "aByte" is single-byte constant or variable

-- "string" is an embedded literal string

' —— "label" is DATA statement label for stored z-String

SUB LCD OUT

tmpBl =  PARAMIL ' byte or string offset
IF  PARAMCNT = 2 THEN ' string specified?
tmpB2 =  PARAMZ2 ' yes, save base
DO
READ tmpB2 + tmpBl, tmpB3 ' read a character

IF tmpB3 = 0 THEN EXIT ' if 0, string complete
SEROUT LcdTx, LcdBaud, tmpB3 ' send the byte
INC tmpBl ' point to next character

tmpB2 = tmpB2 + Z ' update base on overflow
LOOP
ELSE
SEROUT LcdTx, LcdBaud, tmpBl ' send the byte
ENDIF
ENDSUB

' Use: CLEAR LCD

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 223



' —- clears the LCD and activates the backlight
' —- removes cursor and blinking block

SUB CLEAR LCD

LCD_OUT LcdBLon ' backlight on
LCD_OUT LcdOnl ' no cursor or blink
LCD OUT LcdCls ' clear the LCD
DELAY 5

ENDSUB

' Use: aByte = RX RFID
' —- receives one serial byte from RFID reader

FUNC RX_RFID
SERIN RfidRx, RfidBaud, tmpBl
RETURN tmpB1l

ENDFUNC

' User Data
]

Tags:
DATA "0415148AF1" ' valid tags
DATA "041514A4EQ0"
DATA "04151496D8"

Keep tag names 1l6-chars in length
-—- name order must match tag order

TagNames:
DATA "Luke Skyjogger "
DATA "Princess Leggo "
DATA "Derth Wader "

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 224



SX/B Example: Serial LCD Examples Index

+5
s 18K
SHZEAC/DP
1 RTI:I:. LR S
3 upe  osci|E—| 4 ™2
B == —fuc nscz 2 }_ 278
47K P LSS erd £ oy
-] roe 2 ity
SERIAL 1.0 —A A — ] ros |22 oy
rat e oy
Blraz reafil oy 10 FORT
- —1; RAiZ RiZ TZ oy
—RE& RC1 oy
ee1 reais oy
L —12lpes REF D 1
' L 1—
—1¥eee ResPE '
+3
+5
1@k r—
N SERIAL LCD
LIITH Sx-B
]
]
' File...... SERIAL LCD.SXB
' Purpose... Serial LCD Controller with 8 I/O bits
' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com

' Started...
' Updated... 05 JUL 2006

Implements a simple serial LCD controller using the SX28.

' This controller is designed to be command-compatible with SEETRON 2x16

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 225



' LCD displays, but is fixed at 9600 baud and uses open-true serial mode.
' It also offers extended functions with RC of the SX28

' By sending the instruction prefix ($FE) twice, this LCD controller
' enters "extended" function mode. The following extended functions are
' currently available:

' SF0, ddr : Set IO port DDR (1 = input, 0 = output; default is %$11111111)
' SF1 : Read IO port

' SF2, bits : Write bits to IO port

' SFF : Read LCD RAM (from current cursor position)

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 4 000 000

ID "SLCD"

b e e e e e e e e e e e e o e o e o e o e e e e e e e  — —— — — — —— ——— — —— ——— ——— —— —— — . — . —— —— —
' IO Pins

b o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o o o o o o o o o o o o o o o o o o o e e
Sio PIN RA.0 INPUT ' pull-up via 4.7K

LcdE PIN RA.1 ' pull-down via 4.7K

LcdRW PIN RA.2

LcdRS PIN RA.3

TRIS Ctrl VAR TRIS A

LcdBus PIN RB ' RB.0 --> DBO,

TRIS Lcd VAR TRIS B

IoPort PIN RC

TRIS IO VAR TRIS C

b e e e e e e e e e e e e e e —  — — — —— — —— — —— — —— — —— ——— —— —— —— — o —— —— —— —— —— —— —— — o —— —— —
' Constants

b o e e e e e e e e e e e e e e e e e e e e e e e e e o e o o o o o e o o
Baud CON "OT9600" ' open for single wire

Cmd CON SFE ' LCD command prefix

b e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
' Variables
L
serByte VAR Byte ' serial IO byte

tmpB1 VAR Byte ' work vars

tmpB2 VAR Byte

tmpW1l VAR Word




' delay in milliseconds
delay in microseconds
' move bus to/from LCD
' initialize LCD
' command byte --> LCD
' bytevVar --> LCD
' bytevVar --> LCD
' byteVar <-- LCD
rx from serial I/O
' tx to serial I/O

DELAY SUB 1, 2
DELAY US SUB 1, 2
BLIP SUB 0
LCDINIT SUB 0
LCDCMD SUB 1
LCDOUT SUB 1
LCD_ PUT SUB 1
LCDIN FUNC 1
RX BYTE FUNC 1
TX BYTE SUB 1
]
' Program Code
]
Start:
TRIS_Ctrl = %0001
LCDINIT
Main:
serByte = RX BYTE

IF serByte =

Do Write:
LCDOUT serByte
GOTO Main

Do Command:
serByte
IF serByte
LCDCMD serByte
GOTO Main

RX_BYTE

Extended Cmd:
serByte RX BYTE

Set IO:
IF serByte <> $FO0 THEN Read IO
serByte = RX BYTE
TRIS IO serByte
GOTO Main

Read IO:
IF serByte <> $F1 THEN Write IO
DELAY 2
TX BYTE IoPort
GOTO Main

Write IO:
IF serByte <> $SF2 THEN Read Byte
IoPort = RX BYTE
GOTO Main
Read Byte:
IF serByte <> SFF THEN Cmd X
serByte LCDIN
DELAY 2
TX BYTE serByte
GOTO Main

SX/B Help File Version 1.

Cmd THEN Do Command

Cmd THEN Extended Cmd !

' RA.O input (serial)

' wait for byte
' command?

no, write char byte

' get command byte
extended command?

cmd byte

no, write

' get extended command

' check command
' get port configuration
' setup IO port

delay for host setup
' send port bits to host

' put bits on the port

' read LCD (cursor pos)
' delay for host setup
' send byte to to host
51.03, ©2007 Parallax Inc

Page 227



Cmd_ X: ' for future expansion

GOTO Main

' Use: DELAY ms

' —— 'ms' is delay in milliseconds, 1 - 65535
SUB DELAY
IF  PARAMCNT = 1 THEN
tmpWl =  PARAMI ' save byte value
ELSE
tmpWl =  WPARAMI12 ' save word value
ENDIF
PAUSE tmpWl
ENDSUB

' Use: DELAY us
' == 'us' is delay in microseconds, 1 - 65535

SUB DELAY US
IF  PARAMCNT = 1 THEN

tmpWl =  PARAMI ' save byte value
ELSE
tmpWl =  WPARAMI12 ' save word value
ENDIF
PAUSEUS tmpW1l
ENDSUB

' Use: LCDCMD cmdByte
' —— send 'cmdByte' to LCD with RS line low

SUB LCDCMD ' write command byte
LcdRS = 0
Lcd Put  PARAMI

ENDSUB

' Use: LCDOUT char
' —- send 'char' to LCD with RS line high

SUB LCDOUT ' write character byte
LcdRS = 1
Lcd Put  PARAMI

ENDSUB _ PARAM1

SUB Lcd Put ' byte --> LCD bus
LcdBus =  PARAMI
BLIP

ENDSUB

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 228



SUB BLIP ' move bus into LCD
LecdE = 1
DELAY US 2
LcdE = 0

DELAY US 40 ' instruction delay
ENDSUB

' Use: char = LCDIN
' —-- puts value at LCD cursor position in 'char'

FUNC LCDIN

TRIS Lcd = %$11111111 ' make LCD bus inputs

LcdRS = 1 ' character mode

LcdRW = 1 ' read mode

LcdE = 1 ' move byte to bus

tmpBl = LcdBus ' grab the byte

LcdE = 0 ' complete the read

LcdRW = 0 ' return to write mode

TRIS Lcd = %00000000 ' make LCD bus outputs

RETURN tmpBl ' return byte to caller
ENDFUNC

' Use: LCDINIT
' —— initialize LCD for 8-bit, 2-line interface

SUB LCDINIT:

DELAY 15 ' power-up delay, 15 ms

TRIS Lcd = 500000000 ' all outputs

LcdBus = %$00110000 ' 8-bit interface

BLIP

DELAY 5 ' delay 4.5 ms (min)

BLIP

DELAY US 100

BLIP

LCDCMD %00111000 ' multi-line, 5x7 font

LCDCMD %00001100 ' display on, no cursor

LCDCMD %00000110 ' auto-increment cursor

LCDCMD %00000001 ' clear and home LCD
ENDSUB

' Use: char = RX BYTE
' —- reads byte from serial input and places in 'char'

FUNC RX BYTE

SERIN Sio, Baud, tmpBl ' receive a byte
RETURN tmpB1l ' return to caller
ENDFUNC

' Use: TX BYTE char
' —— transmits 'char' over serial connnection

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 229



SUB TX BYTE

tmpBl =  PARAMI ' save byte to send
SEROUT Sio, Baud, tmpBl ' send the byte
ENDSUB

The following program demonstrates the features of this serial LCD using a BASIC Stamp 2 microcontroller.

' File...... SERIAL LCD TEST.BS2

' Purpose... Test the SX/B Serial LCD controller

' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com

' Started...

' Updated... 05 JUL 2006

' {$STAMP BS2}
' {SPBASIC 2.5}

I om=== [ Program DeSCripLion |———mscomomsssomoosssoeoes s s e s == eSS == ===
' This program demostrates the SX/B serial LCD controller code. The SX/B
' LCD controller is code-compatible with SEETRON LCD displays, but adds

' extended features.

' To access extended features, the intruction commnad (254) is sent twice,
' then followed with the extended command and possible data byte.

' Extended commands:

' <SFE><SFE><SF0> - Set SX/B IO port DDR (1 = input, 0 = output)
' <SFE><SFE><SF1> - Read SX/B IO port

' <SFE><SFE><S$F2><bits> - Write bits to SX/B IO port

' <SFE><SFE><SFE> - Read LCD RAM (current cursor position)

v ————— [ I/O0 Definitions ]--————————"""—"—"—"—"—"——"—"—(—(—(——————

Sio PIN 15

' [ Constants |]--——7-----7-""—"""-""""—""—"—"—"—"—"—"—"——\———————————————————————

#SELECT S$STAMP
#CASE BS2, BS2E, BS2PE
T1200 CON 813
T2400 CON 396
T4800 CON 188
T9600 CON 84
T19K2 CON 32
TMidi CON 12
T38K4 CON [

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 230



SX/B Help File Version 1.51.03, ©2007 Parallax Inc




SX/B Help File Version 1.51.03, ©2007 Parallax Inc




SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 233



SX/B Example: Sony IRCS Decoding

Examples Index

+5 478 47
T RE. Ay RC.7 Ay
PHA4EE2M . x, i - *, |
FE. x. y RC.5 = y
RE. = b RC.4 = '
RA.H RE. i RC.2 g
RE. k. | RC.Z2 ad y
= RE. x b ROt = y
RE. x y RC.H x. y
|l — P ——
A\l
' File...... SIRCS.SXB
' Purpose... Sony IRCS decoder
' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com
' Started...
' Updated... 05 JUL 2006

' Receilves and decodes Sony IR Control System stream from IR demodulator.
' Decodes 12 bits, displays lower seven on LEDs.

' References (free downloads from www.parallax.com) :

' —— "The Nuts & Volts of BASIC Stamps" column 76
' —— "IR Remote for the Boe-Bot" (#28139)

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

FREQ 4 000 _000

ID "SIRCS"
L
' IO Pins
L
IR PIN RA.0 INPUT ' IR input

Leds PIN RBC OUTPUT ' LEDs on RB/RC
L
' Constants
L,
StartBit CON 216 ' 90% of 2400 us

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 234



OneBit CON 108 ' 90% of 1200 us

ZeroBit CON 54 ' 90% of 600 us

b e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o e e e o e o o o o o o e o o o e e
' Variables

b e e e e e e e e e e e e o  — — — — — — —— — — —— —— —— —
irCode VAR Word ' entire code

cmdCode VAR irCode LSB ' IR command code (7 bits)

devCode VAR irCode MSB ' IR device code (5 bits)

tmpB1 VAR Byte ' subroutine work vars

tmpB2 VAR Byte

tmpB3 VAR Byte

tmpWl VAR Word

PROGRAM Start

GET IR PULSE FUNC 1 ' get pulse from IR pin
GET SIRCS FUNC 2 ' get code from SIRCS

' Program Code

Start:
PLP A = %0001 ' pull-up unused pins
TRIS B = 300000000 ' make LED pins outputs
TRIS C = $00000000

Main:
DO

Leds = GET SIRCS ' get and show IR code

LOOP
END

' pulseWidth = GET IR PULSE
-- waits for and measures 1-0-1 pulse on IR pin
' —— return value (0 to 255) is in 10 uS units

FUNC GET IR PULSE

PULSIN IR, 0, tmpBl ' wait for pulse

RETURN tmpBl ' return to caller
ENDFUNC
b e e e e e e e e e e e o e e e o e e o e o  — — —— —— — —— — —— — — — —— — — —  —  —  —  — — —  —  —  — — —  — —  — o — o —
' GET_SIRCS

' —— waits for Sony IRCS input stream

-- puts 7-bit command into LSB of return value

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 235



-- puts 5-bit device code into MSB of return value

FUNC GET SIRCS

tmpWl = 0
DO
tmpB2 = GET IR PULSE
LOOP UNTIL tmpB2 >= StartBit
FOR tmpB3 = 0 TO 6
tmpWl LSB = tmpWl LSB >> 1
tmpB2 = GET IR PULSE
IF tmpB2 >= OneBit THEN
tmpWl LSB.6 = 1
ENDIF
NEXT
FOR tmpB3 = 0 TO 4
tmpWl MSB = tmpWl MSB >> 1
tmpB2 = GET IR PULSE
IF tmpB2 >= OneBit THEN
tmpWl MSB.4 = 1
ENDIF
NEXT
RETURN tmpW1

ENDFUNC

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

clear working output

get bit from IR

loop until valid start bit

get 7-bit code
prep for LSB
measure data bit
valid "1" bit
yes, set the bit

get 5-bit code
prep for LSB
measure data bit
valid "1" bit
yes, set the bit

Page 236



SX/B Example: Thermometer Examples Index

+5  +5
= 18K
SHIBAC/DF
! RTI:I:' ]
HApp  osct 2L pa
8.1 == —uc nscz |25 1K Lsleza
PUSS Ro7 |22 My 1 v uan
o= =] roe 22 = THIE- @.1
~ Sleee RogfER El [ B ]
— pe roa |22 Huss  ToowfE
— Slpas rozfed cC|F
— pas rezf22 mooe L L
—9pen Re12 '
— ey rom L2 L
—12lpes Rerfil :
] Res |12
1HrEa res
'
'
' File...... THERMOMETER . SXB
' Purpose... Dual-mode digital thermometer
' Author.... (c) Parallax, Inc. -- All Rights Reserved
' E-mail.... support@parallax.com
' Started...
' Updated... 05 JUL 2006

' Displays the temperature from a DS1620 thermo chip on a multiplexed 7-
' segment display. The display is multiplexed by interrupt code so that
' no additional components are required. A mode input allows the temper-
' ature to be displayed in Celsius or Fahrenheit.

' When the temperature falls below 0C (32F) "-Lo-" is displayed. When the
' temp is above 49C (120 F) "-Hi-" is displayed.



DEVICE
FREQ
ID

SX28, OSC4MHZ,

TURBO, STACKX

, OPTIONX

Rst
DispMode
Segs
DigCtrl

' DS1620.1
' DS1620.2
' DS1620.3

' display mode,
' display segments
(cathode)

C or F

' Constan

Blank
Dash

Ltr C
Ltr F
Ltr L
Ltr o
Ltr H
Ltr i

TC
TF

4 000 000
"THERMO"
PIN RC.7
PIN RC.6
PIN RC.5
PIN RC.4
PIN RB
PIN RA

ts
CON %$00000000
CON %$01000000
CON %$00111001
CON %$01110001
CON %$00111000
CON %$01011100
CON %$01110110
CON %$00010000
CON 0
CON 1

' *** DS1620 Commands ***

RdATmp
WrHi
WrLo
RdAHi
RdLo
StartC
StopC
WrCfg
RdCfg

CON
CON
CON
CON
CON
CON
CON
CON
CON

SAA
$01
$02
$Al
$A2
SEE
$22
$0C
SAC

' digit control

' blank display

' pattern for "-"
' pattern for "C"
' pattern for "EF"
' pattern for "L"
' pattern for "o"
' pattern for "H"
' pattern for "i"
' mode = Celsius
' mode = Fahrenheit

' read temperature
(high temp)
(low temp)

' write TH
' write TL
' read TH
' read TL

' start conversion

stop conversion

' write config register
' read config register

' Variabl

display
digPntr
digLimit
theTemp
tSign
work

tmpB1
tmpB2
tmpWl

VAR
VAR
VAR
VAR
VAR
VAR

VAR
VAR
VAR

Byte (4)
Byte
Byte
Byte
Byte
Byte

Byte
Byte
Word

' multiplexed segments

' digit pointer

'0 - 3

' temperature
' sign in bit 0

subroutine work wvars

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 238



INTERRUPT 200

' Points to next digit of display every 5 milliseconds

ISR Start:
INC digPntr
IF digPntr < digLimit THEN Update Segs
digPntr = 0

Update Segs:
Segs = Blank
READ DigMap + digPntr,
Segs = display(digPntr)

DigCtrl

ISR Exit:
RETURNINT

(200 times/sec) .

' point to next digit
' update digit
' wrap if needed

' blank segs
' select display element
' output new digit segs

PROGRAM Start

' Subroutines
INIT 1620 SUB O
RD 1620 FUNC 1

NEW DISPLAY SUB 2

' Program Code

Start:
DigCtrl = %1111
TRIS A = %0000
Segs = Blank
TRIS B = %00000000
TRIS C = $10011111
INIT 1620
PUT display(0),
digLimit = 4
digPntr = 3

Main:
DO
theTemp = RD 1620
NEW DISPLAY theTemp, tSign
PAUSE 500
LOOP

Blank, Blank, Blank, Blank !

' initialize DS1620
' get temp from DS1620
' update display

' disable all digits

' make dig pins outputs

' clear seg drivers

' make seg pins outputs

' clock and rst are outputs

clear display
' use all digits (1 - 4)

' read temperature
' display value
' delay between reads

' Initialize DS1620 for free-run mode and for use with a host CPU

SUB INIT 1620
Rst =1

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

' select device

Page 239



SHIFTOUT DQ, Clock, LSBFIRST, WrCfg ' write to config register

SHIFTOUT DQ, Clock, LSBFIRST, %00000010 ' with CPU; free-run
Rst = 0 ' deselect device
PAUSE 10 ' allow DS1620 EE to write
Rst = 1 ' reselect
SHIFTOUT DQ, Clock, LSBFIRST, StartC ' start conversion
Rst = 0 ' deselect

ENDSUB

' Use: theTemp = RD1620
' —- returns temp in whole degrees C in 'theTemp'

FUNC RD_ 1620

Rst = 1 ' select device
SHIFTOUT DQ, Clock, LSBFIRST, RdTmp ' send read temp command
SHIFTIN DQ, Clock, LSBPRE, tmpBl ' get temp (C x 0.5)
SHIFTIN DQ, Clock, LSBPRE, tSign\1 ' get sign bit
Rst = 0 ' deselect device
tmpBl = tmpBl + tmpB1l.0 ' round up
tmpBl = tmpBl >> 1 ' remove half bit
RETURN tmpB1l
ENDFUNC

' Use: NEW DISPLAY temperature, sign
' —— puts 'temperature' in display (pass value in degrees C)
' —- display mode (C or F) controlled by RC.4 input
SUB NEW DISPLAY
tmpBl =  PARAMI ' temperature
tmpB2 =  PARAM2 ' sign bit
IF tmpB2 = 1 THEN ' negative temp?
digLimit = 4
PUT display(0), Dash, Ltr o, Ltr L, Dash ' show "-Lo-"
GOTO Display Done
ENDIF
IF tmpBl > 49 THEN ' too high?
digLimit = 4
PUT display(0), Dash, Ltr i, Ltr H, Dash ' show "-Hi-"
GOTO Display Done
ENDIF

Check Mode:

IF DispMode = TC THEN ' check mode input switch
display(0) = Ltr C

ELSE
display(0) = Ltr F
tmpWl = tmpBl */ $1CC ' temp x 1.8 (9/5)
tmpBl = tmpWl LSB + 32

ENDIF

Set Display: ' blank leading zeros
digLimit = 2 ' 1-digit temp
IF tmpBl < 10 THEN Show_ Temp
INC digLimit ' 2-digit temp
IF tmpBl < 100 THEN Show Temp
INC digLimit ' 3-digit temp

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 240



Show Temp:

tmpB2 = tmpBl / 100
tmpBl =  REMAINDER
READ SegMap + tmpB2,
tmpB2 = tmpBl / 10

tmpBl =  REMAINDER
READ SegMap + tmpB2,
READ SegMap + tmpBl,

Display Done:

ENDSUB

display(3)

display(2)
display (1)

get hundreds digit
save 10's and 1's

get segment map 100's

get 10's digit
save 1's

get segment map for 10's

get segment map for 1's

User

Data

SegMap:
|l

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DigMap:

DATA
DATA
DATA
DATA

' segments maps

.gfedcba
$00111111
%$00000110
$01011011
%$01001111
%$01100110
$01101101
$01111101
$00000111
%$01111111
%$01100111

11111110
$11111101
$11111011
11110111

O o0 Jo Ul WD Er o

digit select map

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 241



SX/B Example: Clock / Timer

DEVICE
FREQ 4 000 _000
D "TIMER"

+5 +5 +5

Examples Index

t2 18K
SHIBAC/DF
! RTI:I:' ]
2upp  osct |2 4 MHE
1= S OS2 25_|
P =5 Ro7 |22 Aty
L e roe 22 Ay
- N e 228
7 22 o o
Rél ] EE
] rozfed
Hraz rozf22 . -
-] me |12 i RESET RUM MODE
—ee1 Rreafl® '
—1olpes o]
] Res |12
1HrEa res
File...... TIMER.SXB
Purpose... Dual-Mode digital timer
Author.... (c) Parallax, Inc. —-- All Rights Reserved
E-mail.... support@parallax.com
Started...

Updated... 05 JUL 2006

Displays running clock/timer on multiplexed 7-segment display. The
four-digit display is multiplexed through a "virtual" driver which is
handled in the INTERRUPT routine.

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

SX28,

OSCXT2, TURBO, STACKX, OPTIONX

Page 242



DigCtrl PIN RA ' digit control (cathodes)

Segs PIN RB ' display segments (anodes)

TmrMode PIN RC.6 ' mode: 0 = mmss, 1 = hhmm

TmrEnable PIN RC.7 ' enable input, 1 = run
L
' Constants
L
Yes CON 1

No CON 0

MaxDigit CON 4 ' 4-digit display

DecPnt CON %10000000 ' decimal point mask

TmrMMSS CON 1 ' show MM.SS (no blink)

TmrHHMM CON 0 ' show HH.MM (blink DP)

TmrRun CON 1 ' run timer

TmrHold CON 0 ' hold timer

MaxHr CON 24 '0 .. 23 (clock mode)

' make 100 for O .. 99
L
' Variables
L
ms VAR Word ' milliseconds
clock VAR Byte (3) ' clock array
secs VAR clock (0) ' seconds
mins VAR clock (1) ' minutes
hrs VAR clock(2)
blink VAR secs.0 ' DP blink control bit
display VAR Byte (MaxDigit) ' multiplexed segments
digPntr VAR Byte ' digit pointer
tmpB1l VAR Byte
tmpB2 VAR Byte

' The ISR is called every millisecond using the Rate parameter of the
' INTERRUPT instruction. With a 4 MHz clock, the prescaler will be set
' 1:16 and the ISR will run every 250 RTCC cycles.

' If the timer is enabled (TmrEnable pin = 1), the timer values will be
' updated every millisecond, otherwise only the display will be refreshed
' (one digit per interrupt).

ISR Start:
IF TmrEnable = TmrHold THEN Next Digit ' skip clock update if 0
Update Timer:
INC ms ' update ms counter
IF ms = 1000 THEN ' check for 1 second
ms = 0
INC secs
IF secs = 60 THEN ' check for new minute

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 243



secs = 0

INC mins

IF mins = 60 THEN ' check for new hour
mins = 0
INC hrs
IF hrs = MaxHr THEN

hrs = 0

ENDIF

ENDIF

ENDIF
ENDIF

Next Digit:
INC digPntr ' point to next digit
IF digPntr = MaxDigit THEN ' check pointer
digPntr = 0 ' wrap if needed
NDIF

Update Segs:

Segs %$00000000 ' blank segments

READ DigMap + digPntr, DigCtrl ' update digit control

Segs display(digPntr) ' output new segments
ISR Exit:

RETURNINT

PROGRAM Start

CLOCK_MMSS SUB 0 ' show mins & secs
CLOCK HHMM SUB 0 ' show hrs & mins

' Program Code

Start:
DigCtrl = %1111 ' disable all digits
TRIS A = %0000 ' make dig pins outputs
Segs = $00000000 ' clear seg drivers
TRIS B = %00000000 ' make seg pins outputs
PLP C = 311000000 ' pull-up unused pins
Main:
DO
PAUSE 50
IF TmrMode = TmrHHMM THEN ' check mode
CLOCK _HHMM
ELSE
CLOCK_MMSS
ENDIF
LOOP

Subroutine Code

SX/B Help File Version 1.51.03, ©2007 Parallax Inc Page 244



Display timer in MM.SS (00.00

SUB CLOCK MMSS
tmpBl = mins / 10
tmpB2 =  REMAINDER
READ SegMap + tmpBl,
READ SegMap + tmpB2, display(2)
display(2) = display(2) | DecPnt
tmpBl = secs / 10
tmpB2 =  REMAINDER
READ SegMap + tmpBl,
READ SegMap + tmpB2,

ENDSUB

display(3)

display (1)
display (0)

59.59)

format with solid DP
display mins & secs

' get 10's digit
save 1's digit

' add DP to hr0l digit

Display timer in HH.MM (00.00
CLOCK_HHMM:
tmpBl = hrs / 10
tmpB2 =  REMAINDER
READ SegMap + tmpBl,
READ SegMap + tmpB2,
IF blink = Yes THEN
display(2) = display(2) |
ENDIF
tmpBl = mins / 10
tmpB2 = _ REMAINDER
READ SegMap + tmpBl,
READ SegMap + tmpB2,
ENDSUB

display(3)
display(2)

display (1)
display (0)

23.59)

DecPnt

format with blinking DP

display hours & mins

' blink DP on hr0l digit

User Data

SegMap: ' segments maps
! .gfedcba
%$00111111
%00000110
501011011
501001111
%01100110
%$01101101
%$01111101
500000111
501111111
%$01100111

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DigMap: ' digit select map
DATA %$11111110
DATA %11111101
DATA %11111011
DATA %11110111

W oo Jo Ul & WDN P O

SX/B Help File Version 1.51.03, ©2007 Parallax Inc

Page 245



