

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

Sales:sales@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 1 of 52

Counter Modules and Circuit Applications
PROPELLER EDUCATION KIT LAB SERIES

Introduction
Each Propeller cog has two counter modules, each of which can be configured to independently
perform repetitive tasks. So, not only does the Propeller chip have the ability to execute code
simultaneously in separate cogs, each cog can also orchestrate up to two processes with counter
modules while the cog continues executing program commands.

Counters can provide a cog with a variety of services; here are some examples:

• Measure pulse and decay durations
• Count signal cycles and measure frequency
• Send numerically controlled oscillator (NCO) signals, i.e. square waves
• Send phase-locked loop (PLL) signals, which can be useful for higher frequency square

waves
• Signal edge detection
• Digital to analog (D/A) conversion
• Analog to digital (A/D) conversion
• Provide internal signals for video generation

Since each counter module can be configured to perform many of these tasks in a “set it and forget it”
fashion, it is possible for a single cog to execute a program and at the same time do things like
generate speaker tones, control motors and/or servos, count incoming frequencies, and transmit and/or
measure analog voltages.

This lab provides examples of how to use ten of the thirty-two different counter modes to perform
variations of eight different tasks:

• RC decay time measurement for potentiometers and photoresistor
• D/A conversion to control LED brightness
• NCO signals to send speaker tones
• NCO signals for modulated IR for object and distance detection
• Count speaker tone cycles
• Detect a signal transition
• Pulse width modulation
• Generate high frequency signals for metal proximity detection

The majority of the code examples in this lab are top level objects that demonstrate the details and
inner workings of counter modules. In several of the projects at the end of the lab, you will use these
examples to write objects that make it possible to get the same job done with a simple method call.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 2 of 52

Prerequisites
Please complete the following labs first before continuing here:

• Setup and Testing
• I/O and Timing
• Methods and Cogs
• Objects

How Counter Modules Work
Each cog has two counter modules, Counter A and Counter B. Each cog also has three 32-bit special
purpose registers for each of its counter modules. The Counter A special purpose registers are phsa,
frqa, ctra, and Counter B’s are phsb, frqb and ctrb. Note that each counter name is also a reserved
word in Spin and Propeller assembly. If this lab is referring to a register generally, but it doesn’t
matter whether it’s for Counter A or Counter B, it will use the generic names PHS, FRQ, and CTR.

Here is how each of the three registers works in a counter module:

• PHS – the “phase” register gets updated every clock tick. A counter module can also be
configured make certain PHS register bits affect certain I/O pins.

• FRQ – the “frequency” register gets conditionally added to the PHS register every clock tick.
The counter module’s mode determines what conditions cause FRQ to get added to PHS.
Mode options include “always”, “never”, and conditional options based on I/O pin states or
transitions.

• CTR – the “control” register configures both the counter module’s mode and the I/O pin(s)
that get monitored and/or controlled by the counter module. Each counter module has 32
different modes, and depending on the mode, can monitor and/or control up to two I/O pins.

Measuring RC Decay with Positive Detector Mode
Resistor-Capacitor (RC) decay is useful for a variety of sensor measurements. Some examples
include:

• Dial or joystick position with one or more potentiometers
• Ambient light levels with either a light-dependent resistor or a photodiode
• Surface infrared reflectivity with an infrared LED and phototransistor
• Pressure with capacitor plates and a compressible dielectric
• Liquid salinity with metal probes

RC Decay Circuit
RC decay measurements are typically performed by charging a capacitor (C) and then monitoring the
time it takes the capacitor to discharge through a resistor (R). In most RC decay circuits, one of the
values is fixed, and the other varies with an environmental variable. For example, the circuit in
Figure 1 is used to measure a potentiometer knob’s position. The value of C is fixed at 0.01 µF, and
the value of R varies with the position of the potentiometer’s adjusting knob (the environmental
variable).

 Build the circuit shown in Figure 1 on your PE Platform. This circuit and all others in this lab
are in addition to the basic Propeller circuit built in the Setup and Testing lab.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 3 of 52

Figure 1: RC Decay Parts and Circuit
 Parts List Schematic
 ─────────────────────── ───────────────────────────────
 (1) Potentiometer 10 kω P17 ─────┳───────────┐
 (1) Capacitor - 0.01 µF │ │
 (misc) Jumper wires └ R 0.01 µF
  
 GND GND
 ─────────────────────── ───────────────────────────────

Measuring RC Decay
Before taking the RC decay time measurement, the Propeller chip needs to set the I/O pin connected
to the circuit to output-high. This charges the capacitor up to 3.3 V as shown on the left side of
Figure 2. Then, the Propeller chip starts the RC decay measurement by setting the I/O pin to input, as
shown on the right side of Figure 2. When the I/O pin changes to input, the charge built up in the
capacitor drains through the variable resistor. The time it takes the capacitor to discharge from 3.3 V
down to the I/O pin’s 1.65 V threshold is:

 δt = 0.693 × C × R

Since 0.693 and C are constants, the time ∆t it takes for the circuit to decay is directly proportional to
R, the variable resistor’s resistance.

Figure 2: RC Charge and Decay Circuits and Voltages
 Charge Circuit Decay Circuit
 (I/O pin = output-high) (I/O pin = input)
 ───────────────────────────────────── ─────────────────────────────────────
 3.3 V
  Vc Vc
 │i ── │ │
 └───────┳─────┴──────┐ I/O Pin ───────┳─────┴──────┐
 │ │ │ ── │
 │ir ic │ │  i  │
 └ R  C └ R  C
 │ │ │ │
    
 GND GND GND GND
 ───────────────────────────────────── ─────────────────────────────────────
 3.3 -
 │ │

 │ │
 1.65 -
 │ │

 │ │
│ 0 -
Vc (V) t, (s) ─── │─ δt ─│ δt = 0.693 × C × R

Where is the current-limiting series resistor?

The Propeller chip’s I/O pin driver circuits do not need to be protected from the sudden initial current spike that
results when the I/O pin is taken from either output-low or input to output-high. The I/O pins’ output capacity
and current-limiting characteristics prevent any damage from occurring.

If you try to use this circuit with a different microcontroller, you will probably need to include a current-
limiting resistor between the I/O pin and the RC circuit. Make sure that it is large enough to prevent the I/O pin
from getting damaged. The decay time won’t be linear because the voltage divider created by the second
resistor causes the RC decay measurement’s starting voltage to vary. Choosing an R in the RC circuit that is
very large compared to the series resistor will help the decay time more closely resemble a linear behavior.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 4 of 52

Positive Detector Mode
In positive detector mode, the Propeller chip’s counter module monitors an I/O pin, and adds FRQ to
PHS for every clock tick in which the pin is high. To make the PHS register accumulate the number
of clock ticks in which the pin is high, simply set the counter module’s FRQ register to 1. For
measuring RC decay, the counter module should start counting (adding FRQ = 1 to PHS) as soon as
the I/O pin is changed from output-high to input. After the signal level decays below the I/O pin’s
1.65 V logic threshold, the module no longer adds FRQ to PHS, and what’s stored in PHS is the
decay time measurement in system clock ticks.

One significant advantage to using a counter module to measure RC decay is that the cog doesn’t
have to wait for the decay to finish. Since the counter automatically increments PHS with every
clock tick in which the pin is high, the program is free to move on to other tasks. The program can
then get the value from the PHS register whenever it’s convenient.

Configuring a Counter Module for “POS detector” Mode
Figure 3 shows excerpts from the Propeller Library’s CTR object’s Counter Mode Table. The CTR
object has counter module information and a code example that generates square waves. The CTR
object’s Counter Mode Table lists the 32 counter mode options, seven of which are shown below.
The mode we will use for the RC decay measurement is positive detector, shown as “POS detector”
in the table excerpts.

Figure 3: Excerpts from the CTR.spin’s Counter Mode Table
 Accumulate APIN BPIN
 CTRMODE Description FRQ to PHS output* output*
┌────────┬─────────────────────────────┬────────────┬────────────┬────────────┐
│ %00000 │ Counter disabled (off) │ 0 (never) │ 0 (none) │ 0 (none) │
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
 .
 .
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
│ %01000 │ POS detector │ A¹ │ 0 │ 0 │
│ %01001 │ POS detector w/feedback │ A¹ │ 0 │ !A¹ │
│ %01010 │ POSEDGE detector │ A¹ & !A² │ 0 │ 0 │
│ %01011 │ POSEDGE detector w/feedback │ A¹ & !A² │ 0 │ !A¹ │
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
 .
 .

│ %11111 │ LOGIC always │ 1 │ 0 │ 0 │
└────────┴─────────────────────────────┴────────────┴────────────┴────────────┘
 * must set corresponding DIR bit to affect pin

 A¹ = APIN input delayed by 1 clock
 A² = APIN input delayed by 2 clocks
 B¹ = BPIN input delayed by 1 clock

Notice how each counter mode in Figure 3 has a corresponding 5-bit CTRMODE code. For example,
the code for “POS detector” is %01000. This value has to be copied to a bit field within the counter
module’s CTR register to make it function in “POS detector” mode. Figure 4 shows the register map
for the ctra and ctrb registers. Notice how the register map names bits 31..26 CTRMODE. These
are the bits that the 5 bit mode code from Figure 3 have to be copied to to make a counter module
operate in a particular mode.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 5 of 52

Like the dira, outa and ina registers, the ctra and ctrb registers are bit-addressable, so the procedure
for setting and clearing bits in this register is the same as it would be for a group I/O pin operations
with dira, outa, or ina. For example, here’s a command to make Counter A a “POS detector”:

 ctra[30..26] := %01000

Figure 4: CTRA/B Register Map from CTR.spin
 ┌────┬─────────┬────────┬────────┬───────┬──────┬──────┐
 bits │ 31 │ 30..26 │ 25..23 │ 22..15 │ 14..9 │ 8..6 │ 5..0 │
 ├────┼─────────┼────────┼────────┼───────┼──────┼──────┤
 Name │ ── │ CTRMODE │ PLLDIV │ ────── │ BPIN │ ──── │ APIN │
 └────┴─────────┴────────┴────────┴───────┴──────┴──────┘

 The Counter Mode Table and CTRA/B Register Map appear in the Propeller Library’s CTR object, and also
in the Propeller Manual’s CTRA/B section, located in the Spin Reference chapter. APIN and BPIN are I/O pins
that the counter module might control, monitor, or not use at all, depending on the mode.

Notice also in Figure 4 how there are bit fields for PLLDIV, BPIN, and APIN. PLLDIV is short for
“phase-locked loop divider” and is only used for PLL counter modes, which can synthesize high-
frequency square waves (more on this later). APIN (and BPIN for two-pin modes) have to store the
I/O pin numbers that the counter module will monitor/control. In the case of the Counter A module
set to positive detector mode, frqa gets added to phsa based on the state of APIN during the previous
clock. (See the A¹ reference and footnote in Figure 3.) So the APIN bit field needs to store the value
17 since P17 will monitor the RC circuit’s voltage decay. Here’s a command that sets bits 5..0 of the
ctra register to 17:

 ctra[5..0] := 17

Remember that frqa gets added to phsa with every clock tick where APIN was high. To make the
counter module track how many clock ticks the pin is high, simply set frqa to 1:

 frqa := 1

At this point, the phsa register gets 1 added to it for each clock tick in which the voltage applied to
P17 is above the Propeller chip’s 1.65 V logic threshold. The only other thing you have to do before
triggering the decay measurement is to clear the phsa register.

In summary, configuring the counter module to count clock ticks when an I/O pin is high takes three
steps:

1) Store %01000 in the CTR register’s mode bit field:

 ctra[30..26] := %01000

2) Store the I/O pin number that you want monitored in the CTR register’s APIN bit field:

 ctra[5..0] := 17

3) Store 1 in the FRQ register so that the phsa register will get 1 added to it for every clock tick
that P17 is high:

 frqa := 1

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 6 of 52

1 isn’t the only useful FRQ register value. Other FRQ register values can also be used to prescale the
sensor input for calculations or even for actuator outputs. For example, FRQ can instead be set to
clkfreq/1_000_000 to count the decay time in microseconds.

 frqa := clkfrq/1_000_000

This expression works for Propeller chip system clock frequencies that are common multiples of
1 MHz. For example, it would work fine with a 5 MHz crystal input, but not with a 4.096 MHz
crystal since the resulting system clock frequency would not be an exact multiple of 1 MHz.

One disadvantage of larger FRQ values is that the program can not necessarily compensate for the
number of clock ticks between clearing the PHS register and setting the I/O pin to input. A command
that compensates for this source of error can easily be added after the clock tick counting is finished,
and it can be followed by a second command that scales to a convenient measurement unit, such as
microseconds.

 Measure input or output signals. This counter mode can be used to measure the duration in which an I/O
pin sends a high signal as well as the duration in which a high signal applied to the I/O pin. The only
difference is the direction of the I/O pin when the measurement is taken.

“Counting” the RC Decay Measurement
Before the RC decay measurement, the capacitor should be charged. Here’s a piece of code that sets
P17 to output-high, then waits for 10 µs, which is more than ample for charging the capacitor in the
Figure 1 RC network.

 dira[17] := outa[17] := 1
 waitcnt(clkfreq/100_000 + cnt)

To start the decay measurement, clear the PHS register, and then set the I/O pin that’s charging the
capacitor to input:

 phsa~
 dira[17]~

After clearing phsa and dira, the program is free to perform other tasks during the measurement. At
some later time, the program can come back and copy the phsa register contents to a variable. Of
course, the program should make sure to wait long enough for the decay measurement to complete.
This can be done by polling the clock, waiting for the decay pin to go low, or performing a task that is
known to take longer than the decay measurement.

To complete the measurement, copy the phsa register to another variable and subtract 624 from it to
account for the number of clock ticks between phsa~ and dira[17]~. The result of this subtraction
can also be set to a minimum of 0 with #> 0. This will make more sense than -624 when the
resistance is so low that it pulls the I/O pin’s output-high signal low.

 time := (phsa – 624) #> 0

Where did 624 come from?

The number of clock ticks between phsa~ and dira[17]~ was determined by replacing the 0.01 µF
capacitor with a 100 pF capacitor and finding the lowest value before zero was returned. In the test program,
time := phsa replaces time := (phsa – 624) #> 0, and the lowest measurable value was 625.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 7 of 52

Example Object Measures RC Decay Time
The TestRcDecay object applies the techniques just discussed to measure RC decay in a circuit with
variable resistance controlled by the position of a potentiometer’s adjusting knob. The program
displays a “working on other tasks” message after starting the RC decay measurement to demonstrate
that the counter module automatically increments the phsa register until the voltage applied to P17
decays below the Propeller chip’s 1.65 V I/O pin threshold. The program can then check back at a
later time to find out the value stored in phsa.

 Open the TestRcDecay.spin object. It will call methods in FullDuplexSerialPlus.spin, so
make sure they are both saved in the same folder.

 Load TestRcDecay.spin into the Propeller chip.
 Open PropellerCOM. (See Object’s Lab for setup instructions.)
 Try moving the potentiometer knob to various positions and note the time values. They

should vary in proportion to the potentiometer’s adjusting knob across its range of motion.
 Remember to disconnect HyperTerminal before loading the next object into the propeller

chip.

'' TestRcDecay.spin
'' Test RC Decay circuit decay measurements.

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

OBJ

 Debug: "FullDuplexSerialPlus" ' Use with HyperTerminal to display values

PUB Init

 'Start serial communication, and wait 2 s for user to connect to HyperTerminal.

 Debug.Start(31, 30, 0, 57600)
 waitcnt(clkfreq * 2 + cnt)

 ' Configure counter module.

 ctra[30..26] := %01000 ' Set mode to "POS detector"
 ctra[5..0] := 17 ' Set APIN to 17 (P17)
 frqa := 1 ' Increment phsa by 1 for each clock tick

 main ' Call the Main method

PUB Main | time
'' Repeatedly takes and displays P17 RC decay measurements.
 repeat

 ' Charge RC circuit.

 dira[17] := outa[17] := 1 ' Set pin to output-high
 waitcnt(clkfreq/100_000 + cnt) ' Wait for circuit to charge

 ' Start RC decay measurement. It's automatic after this...

 phsa~ ' Clear the phsa register
 dira[17]~ ' Pin to input stops charging circuit

 ' Optional - do other things during the measurement.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 8 of 52

 Debug.str(String(10, 10, 13, "working on other tasks"))
 repeat 10
 Debug.tx(".")
 waitcnt(clkfreq/30 + cnt)

 ' Measurement has been ready for a while. Adjust ticks between phsa~ & dira[17]~.

 time := (phsa - 624) #> 0

 ' Display Result

 Debug.Str(String(10, 13, "time = "))
 Debug.Dec(time)
 waitcnt(clkfreq/2 + cnt)

Two Concurrent RC Decay Measurements
Since the counter module keeps track of high time after the decay starts, it is possible to take two
concurrent RC decay measurements on different pins. Let’s do so with P25 and a light-dependent
resistor (abbreviated LDR and also called a photoresistor) instead of a potentiometer. The second
measurement will start later than the first since the phsb~ and dira[25]~ commands will follow
dira[17]~. However, the decays can occur in parallel, and while the decays last, the cog continues to
execute other commands.

 Build the circuit shown in Figure 5.
 Modify a copy of TestRcDecay.spin so that it can measure the circuits from Figure 1 and

Figure 5 concurrently.

Be careful, you’ll need to add commands that set the values of ctrb, frqb, and phsb, but the DIR
register should be dira, not dirb. dirb is reserved for I/O pins 32..63 in a module with 64 I/O pins.
Also, phsb~ and dira[25]~ should come immediately after dira[17]~.

Figure 5: Second RC Decay Parts and Circuit
 Parts List Schematic
 ─────────────────────── ───────────────────────────────
 (1) Photoresistor P25 ─────┳───────────┐
 (1) Capacitor - 0.1 µF │ │
 (misc) Jumper wires LDR 0.1 µF
  
 GND GND
 ─────────────────────── ───────────────────────────────

D/A Conversion – Controlling LED Brightness with Duty Mode
A counter module in duty mode allows you to control a signal that can be used for digital to analog
conversion with the FRQ register. Although the signal switches rapidly between high and low, the
average time it is high (the duty) is determined by the ratio of the FRQ register to 232.

 pin high time FRQ
 duty = ───────────── = ─────────────
 time 4_294_967_296

Eq. 1

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 9 of 52

For D/A conversion, let’s say the program has to send a 0.825 V signal. That’s 25% of 3.3 V, so a
25% duty signal is required. Figuring out the value to store in the FRQ register is simple. Just set
duty = 0.25 and solve for FRQ.

 FRQ
 0.25 = ───────────── → FRQ = 1_073_741_824
 4_294_967_296

You can also use Eq. 1 to figure out what duty signal an object is sending. Let’s say 536_870_912 is
stored in a counter module’s FRQ register, and its CTR register has it configured to duty mode.

 536_870_912
 duty = ───────────── = 0.125
 4_294_967_296

On a 3.3 V scale, that would resolve to 0.375 V. Again, the great thing about counters is that they can
do their jobs without tying up a cog. So, the cog will still be free to continue executing commands
while the counter takes care of maintaining the D/A conversion duty signal.

How Duty Mode Works
Each time FRQ gets added to PHS, the counter module’s phase adder (that adds FRQ to PHS with
every clock tick) either sets or clears a carry flag. This carry operation is similar to a carry operation
in decimal addition. Let’s say you are allowed 3 decimal places, and you try to add two values that
add up to more than 999. Some value would normally be carried from the hundreds to the thousands
slot. The binary version of addition-with-carry applies when the FRQ register gets added to the PHS
register when the result is larger than 232 − 1. If the result exceeds this value, the PHS adder’s carry
flag (think of it as the PHS registers “bit 32”) gets set.

The interesting thing about this carry flag is that the amount of time it is 1 is proportional to the value
stored in the FRQ register divided by 232. In single-ended duty mode, the counter module’s phase
adder’s carry bit controls an I/O pin’s output state. Since the time in which the phase adder’s carry
bit is 1 is proportional to FRQ/232, so is the I/O pin’s output state. The I/O pin may rapidly switch
between high and low, but the average pin high time is determined by the FRQ-to-232 ratio shown in
Eq. 1 above.

Parts and Circuit
Yes, it’s back to LEDs for just a little while, and then we’ll move on to other circuits. Previous labs
used LEDs to indicate I/O pin states and timing. This portion of this lab will use duty mode for D/A
conversion to control LED brightness.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 10 of 52

Figure 6: LED Circuit for Brightness Control with Duty Signals
 Parts List Schematic
 ─────────────────── ──────────────────────
 (4) Resistors 100 ω green
 (2) LEDs - green 100 ω LED
 (2) LEDs - yellow P4 ────────────┐
 (misc) Jumper wires green │
 100 ω LED │
 P5 ────────────┫
 yellow │
 100 ω LED │
 P6 ────────────┫
 yellow │
 100 ω LED │
 P7 ────────────┫
 
 GND
 ─────────────────── ──────────────────────

 Add the circuit shown in Figure 6 to your PE Platform, leaving the RC decay circuit in place.

Configuring a Counter for Duty Mode
Figure 7 shows more entries from the CTR object’s and Propeller Manual’s Counter Mode Table.
There are two types of duty modes, single-ended and differential. With single-ended, the APIN
mirrors the state of the phase adder’s carry bit. So, if FRQ is set to the 1_073_741_824 value
calculated earlier, the APIN will be high ¼ of the time. An LED circuit receiving this signal will
appear to glow at ¼ of its full brightness. In differential mode, the APIN signal still matches the
phase adder’s carry bit, while the PBIN is the opposite value. So whenever the phase adder’s carry
bit (and APIN) are 1, BPIN is 0, and vice-versa. If FRQ is set to 1_073_741_824, APIN would still
cause an LED to glow at ¼ brightness while BPIN will glow at ¾ brightness.

Figure 7: More Excerpts from the CTR.spin’s Counter Mode Table
 Accumulate APIN BPIN
 CTRMODE Description FRQ to PHS output* output*
┌────────┬─────────────────────────────┬────────────┬────────────┬────────────┐
│ %00000 │ Counter disabled (off) │ 0 (never) │ 0 (none) │ 0 (none) │
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
 .
 .
 .
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
│ %00110 │ DUTY single-ended │ 1 │ PHS-Carry │ 0 │
│ %00111 │ DUTY differential │ 1 │ PHS-Carry │ !PHS-Carry │
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
 .
 .
 .

│ %11111 │ LOGIC always │ 1 │ 0 │ 0 │
└────────┴─────────────────────────────┴────────────┴────────────┴────────────┘
 * must set corresponding DIR bit to affect pin

 A¹ = APIN input delayed by 1 clock
 A² = APIN input delayed by 2 clocks
 B¹ = BPIN input delayed by 1 clock

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 11 of 52

Figure 8 is a repeat of Figure 3. This time, the counter module will be configured to duty mode
instead of positive detector mode. From Figure 7, we know that the value stored in the CTR
register’s CTRMODE bit field has to be either %00110 (single-ended) or %00111 (differential).
Then, the APIN (and optionally BPIN) bit fields have to be set to the I/O pins that will transmit the
duty signals.

Figure 8: CTRA/B Register Map from CTR.spin
 ┌────┬─────────┬────────┬────────┬───────┬──────┬──────┐
 bits │ 31 │ 30..26 │ 25..23 │ 22..15 │ 14..9 │ 8..6 │ 5..0 │
 ├────┼─────────┼────────┼────────┼───────┼──────┼──────┤
 Name │ ── │ CTRMODE │ PLLDIV │ ────── │ BPIN │ ──── │ APIN │
 └────┴─────────┴────────┴────────┴───────┴──────┴──────┘

The RC decay application set the FRQ register to 1, and the result was that 1 got added to PHS for
every clock tick in which the pin being monitored was high. In this application, the FRQ register gets
set to values that control the high time of the duty signal applied to an I/O pin. There is no condition
for adding with duty mode; FRQ gets added to PHS every clock tick.

Setting up a Duty Signal
Here are the steps for setting a duty signal with a counter:

(1) Set the CTR register’s CTRMODE bit field to choose duty mode.
(2) Set the CTR register’s APIN bit field to choose the pin.
(3) (Optional) set the CTR register’s BPIN field if CTRMODE is differential.
(4) Set the I/O pin(s) to output.
(5) Set the FRQ register to a value that gives you the percent duty signal you want.

Example – Send a 25% single-ended duty signal to P4 Using Counter A.

(1) Set the CTR register’s CTRMODE bit field to choose duty mode. Remember that bits 30..26 of
the CTR register (shown in Figure 8) have to be set to the bit pattern selected from the CTRMODE
list in Figure 7. For example, here’s a command that configures the counter module to operate in
single-ended duty mode:

 ctra[30..26] := %00110

(2) Set the CTR register’s APIN bit field to choose the pin. Figure 8 indicates that APIN is bits 5..0 in
the CTR register. Here’s an example that sets the ctra register’s APIN bits to 4, which will control
the green LED connected to P4.

 ctra[5..0] := 4

We’ll skip step (3) since the counter module is getting configured to single-ended duty mode and
move on to:

(4) Set the I/O pin(s) to output.

 dira[4]~~

(5) set the FRQ register to a value that gives you the duty signal you want. For ¼ brightness, use
25% duty. So, set the frqa register to 1_073_741_824 (calculated earlier).

 frqa := 1_073_741_824

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 12 of 52

Tips for Setting Duty
Since the special purpose registers initialize to zero, frqa is 0, so 0 is repeatedly added to the PHS
register, resulting on no LED state changes. As soon as the program sets the FRQ register to some
fraction of 232, the I/O pin, and the LED, will start sending the duty signal.

Having 232 different LED brightness levels isn’t really practical, but 256 different levels will work
nicely. One simple way to accomplish that is by declaring a constant that’s 232 ÷ 256.

CON

 scale = 16_777_216 ' 232 ÷ 256

Now, the program can multiply the scale constant by a value from 0 to 255 to get 256 different LED
brightness levels. Now, if you want ¼ brightness, multiply scale by ¼ of 256:

 frqa := 64 * scale

Time Varying D/A and Filtering: When modulating the value of frqa to send time varying signals, an RC
circuit typically filters the duty signal. It’s better to use a smaller fraction of the useable duty signal range, say
25% to 75% or 12.5% to 87.5%. By keeping the duty in this middle range, the D/A will be less noisy and
smaller resistor R and capacitor C values can be used for faster responses. This is especially important for
signals that vary quickly, like audio signals, which will be introduced in a different lab.

 R
 duty signal ────────┳─── voltage
 C
 
 GND

Duty Code Example
The LedDutySweep object demonstrates the steps for configuring a counter for duty mode and
transmitting a duty signal with an I/O pin. It also sweeps a duty variable from 0 to 255 repeatedly,
causing the P4 LED to gradually increase in brightness and then turn off.

 Load the LedDutySweep object into the Propeller chip and observe the effect.

''LedDutySweep.spin
''Cycle P4 LED from off, gradually brighter, full brightness.

CON

 scale = 16_777_216 ' 2³²÷ 256

PUB TestDuty | pin, duty, mode

 'Configure counter module.

 ctra[30..26] := %00110 ' Set ctra to DUTY mode
 ctra[5..0] := 4 ' Set ctra's APIN
 frqa := duty * scale ' Set frqa register

 'Use counter to take LED from off to gradually brighter, repeating at 2 Hz.

 dira[4]~~ ' Set P5 to output

 repeat ' Repeat indefinitely
 repeat duty from 0 to 255 ' Sweep duty from 0 to 255
 frqa := duty * scale ' Update frqa register

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 13 of 52

 waitcnt(clkfreq/128 + cnt) ' Delay for 1/128th s

Duty – Single Ended vs. Differential Modes
The LedDutySweep object uses the single-ended version of a counter module’s duty mode.
Differential is a second option for duty and several other counter modes. Differential signals are
useful for getting signals across longer transmission lines, and are used in wired Ethernet, RS485, and
certain audio signals.

When a counter module functions in differential mode, it uses one I/O pin to transmit the same signal
that single-ended transmits, along with a second I/O pin that transmits the opposite polarity signal.
For example, a counter module set to duty differential mode can send the opposite signal that P4
transmits on P5 or any other I/O pin. Whenever the signal on P4 is high, the signal on P5 is low, and
visa versa. Try modifying a copy of LedDutySweep.spin so that it sends the differential signal on P5.
Then, as the P4 LED gets brighter, the P5 LED will get dimmer. Here are the steps:

 Save a copy of the LedDutySweep object that you will modify.
 To set the counter module for “DUTY differential” mode, change ctra[30..26] := %00110 to
ctra[30..26] := %00111.

 Set the ctra module’s BPIN bit field by adding the command ctra[14..9] := 5
 Set P5 to output so that the signal gets transmitted by the I/O pin with the command
dira[5]~~.

Using Both A and B Counter Modules
Using both counter modules to display different LED brightnesses is also a worthwhile exercise. To
get two counter modules sending duty signals on separate pins, try these steps:

 Save another copy of the original, unmodified LedDutySweep object.
 Add ctrb[30..26] := %00110.
 Assuming ctrb will control P6, add ctrb[5..0] := 6.
 Also assuming ctrb will control P6, add dira[6]~~.
 In the repeat duty from 0 to 255 loop, make frqb twice the value of frqa with the

command frqb := 2 * frqa. This will cause the P6 LED to get bright twice as fast as the
P4 LED.

Inside Duty Mode
Let’s take a closer look at how this works by examining the 3-bit version. Since the denominator of
the fraction is 2 raised to the number of bits in the register, a 3-bit version of FRQ would be divided
by 23 = 8:

 pin high time frq
 duty = ───────────── = ───── (3-bit example)
 time 8

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 14 of 52

Let’s say the carry bit needs to be high 3/8 of the time. The 3-bit version of the FRQ register would
have to store 3. The example below performs eight additions of 3-bit-FRQ to 3-bit-PHS using long-
hand addition. The carry bit (that would get carried into bit-4) is highlighted with the ↓ symbol
whenever it’s 1. Notice that out of eight PHS = PHS + FRQ additions, three result in set carry bits.
So, the carry bit is in fact set 3/8 of the time.

 carry flag set ↓ ↓ ↓
 ¹¹ ¹¹ ¹¹ ¹¹¹ ¹ ¹¹¹
 3-bit frq 011 011 011 011 011 011 011 011
 3-bit phs(previous) +000 +011 +110 +001 +100 +111 +010 +101
 ──── ──── ──── ──── ──── ──── ──── ────
 3-bit phs(result) 011 110 001 100 111 010 101 000

Binary Addition works just like decimal addition when it’s done “long hand”. Instead of carrying a digit from 1
to 9 when digits in a particular column add up to a value greater than 9, binary addition carries a 1 if the result
in a column exceeds 1.

 Binary Result

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10 (0, carry the 1)

1 + 1 + 1 = 11 (1, carry the 1)

Special Purpose Registers
Each cog has a special purpose register array whose elements can be accessed with spr[index]. The
index value lets you pick a given special purpose register. For example, you can set the value of ctra
by assigning a value to spr[8], or ctrb by assigning a value to spr[9]. Likewise, you can assign
values to frqa and frqb by assigning values to spr[10] and spr[11], or phsa and phsb by assigning
values to spr[12] and spr[13]. A full list of the spr array elements can be found in the Propeller
Manual.

 Look up SPR in the Spin Language reference section of the Propeller Manual, and review the
SPR explanation and table of SPR array elements.

The advantage to using SPR array elements is that they are accessible by index values. Also, ctrb,
frqb, and phsb are all one array element above ctra, frqa, and phsa. This makes it possible to choose
between A and B counter registers by simply adding 1 to (or subtracting 1 from) the index value used
to access a given SPR register. This in turn makes it possible to eliminate condition statements for
deciding which counter module to use and it also makes it possible to initialize and update counter
modules within looping structures.

One drawback to special purpose registers is that they are not bit-addressable. For example, the
commands ctra[30..26] := %00110 and ctra[5..0] := 4 have to be coded differently for spr[8],
which is the ctra special purpose array element. The most convenient way to accomplish these two
commands in Spin language with the SPR array is like this:

 spr[8] := (%00110 << 26) + 4

In the command above, the bit pattern %00110 is shifted left by 26 bits, which accomplishes the same
thing as ctra[30..26] := %00110, and adding 4 to it without any shifting has the same effect as
ctra[5..0] := 4. Here is the equivalent addition:

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 15 of 52

 %00110 << 26 %00011000000000000000000000000000
 + 4 %00000000000000000000000000000100
 ──────────── ─────────────────────────────────
 spr[8] %00011000000000000000000000000100

Let’s say that the application will send duty signals on P4 and P5. A loop that could set up these I/O
pins for duty signals might look like this:

 repeat module from 0 to 1 ' 0 is A module, 1 is B.
 spr[8 + module] := (%00110 << 26) + (4 + module)
 dira[4 + module]~~

The first time through the loop, module is 0, so the value 4 gets stored in bits 5..0 of spr[8] and
dira[4 + module]~~ becomes dira[4]~~. The second time through the loop, module is 1, so 5 gets
stored in bits 4..0 of spr[9], and dira[4 + module]~~ becomes dira[5]~~.

When using counters in objects, the pins will probably get passed as parameters. If the parameters
hold the pin values, they might not be contiguous or linked by some mathematical relationship. A
handy way to keep a list of non-contiguous pins if you’re not expecting them to come from elsewhere
would be a lookup or lookupz command. Given an index value, both lookup and lookupz return an
element in a list. For example the command value := lookup(index: 7, 11, 13, 1) will store 7 in
value if index is 1, 11 in value if index is 2, and so on. If index exceeds the length of the lookup
table, the lookup command stores 0 in value. The same command with lookupz will store 7 in value
if index is 0, or 11 in value if index is 1, and so on. Like lookup, lookupz returns 0 if index exceeds
the list length.

Here is a version of the repeat loop that uses lookupz to store a list of non-contiguous pins and load
them into the 5..0 bits of the cog’s A and B CTR special purpose registers (spr[8] and spr[9]).
Notice how the lookupz command stores 4 and 6. The first time through the loop, module is 0, so 4
gets stored in apin, which in turn gets stored in bits 5..0 of spr[8] and sets bit 4 in the dira register.
The second time through the loop, module is 1, so 6 gets stored in apin, which in turn gets stored in
bits 5..0 of spr[9] and bit 6 of dira gets set.

 repeat module from 0 to 1 ' 0 is A module, 1 is B.
 apin := lookupz (module: 4, 6)
 spr[8 + module] := (%00110 << 26) + (apin)
 dira[apin]~~

The LedSweepWithSpr object does the same job as the LedDutySweep code you modified in the
“Using Both A and B Counter Modules” section. The difference is that it performs all counter
module operations using the SPR array instead of referring to the A and B module’s CTR, FRQ and
PHS registers.

 Compare your copy of LedDutySweep that sweeps both counters against the code in
LedSweepWithSpr.

 Run LedSweepWithSpr and use the LEDs to verify that it controls two separate duty signals.

''LedSweepWithSpr.spin
''Cycle P4 and P5 LEDs through off, gradually brighter, brightest at different rates.

CON

 scale = 16_777_216 ' 2³²÷ 256

PUB TestDuty | apin, duty[2], module

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 16 of 52

 'Configure both counter modules with a repeat loop that indexes SPR elements.

 repeat module from 0 to 1 ' 0 is A module, 1 is B.
 apin := lookupz (module: 4, 6)
 spr[8 + module] := (%00110 << 26) + apin
 dira[apin]~~

 'Repeat duty sweep indefinitely.

 repeat
 repeat duty from 0 to 255 ' Sweep duty from 0 to 255
 duty[1] := duty[0] * 2 ' duty[1] twice as fast
 repeat module from 0 to 1
 spr[10 + module] := duty[module] * scale ' Update frqa register
 waitcnt(clkfreq/128 + cnt) ' Delay for 1/128th s

Modifying LedSweepWithSpr for Differential Signals
Try updating the LedSweepWithSpr object so that it does two differential signals, one on P4 and P5,
and the other on P6 and P7.

 Make a copy of LedSweepWithSpr.spin.
 Add a bpin variable to the TestDuty method’s local variable list.
 Add the command bpin := lookupz(module: 5, 7) just below the command that assigns the
apin value with a lookup command.

 Change spr[8 + module] := (%00110 << 26) + apin to
spr[8 + module] := (%00111 << 26) + (bpin <<9) + apin.

 Add dira[bpin]~~ immediately after dira[apin]~~.
 Load the modified copy of LedSweepWithSpr.spin into the Propeller chip and verify that it

sends two differential duty signals.

Generating Piezospeaker Tones with NCO Mode
NCO stands for numerically controlled oscillator. If a counter module is configured for the single-
ended version of this mode, it will make an I/O pin send a square wave. Assuming clkfreq remains
constant, the frequency of this square wave is “numerically controlled” by a value stored in a given
cog’s counter module’s FRQ register.

 Assemble the parts list and build the schematic shown in Figure 9.

Figure 9: Audio Range NCO Parts List and Circuits

 Parts List Schematic
 ───────────────────── ───
 (2) Piezospeakers Piezospeakers
 (misc) Jumper wires
 \+ +/
 (((─────── P3 P27 ───────)))
 /│ │\
  
 Vss Vss
 ───────────────────── ───

Counter Module in NCO Mode
When configured to single-ended NCO mode, the counter module does two things:

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 17 of 52

• The FRQ register gets added to the PHS register every clock tick.
• Bit 31 of the PHS register controls the state of an I/O pin.

When bit 31 of the PHS register is 1, the I/O pin it controls sends a high signal, and when it is 0, it
sends a low signal. If clkfreq remains the same, the fact that FRQ gets added to PHS every clock
tick determines the rate at which the PHS register’s bit 31 toggles. This in turn determines the square
wave frequency transmitted by the pin controlled by bit 31 of the PHS register.

Given the system clock frequency and an NCO frequency that you want the Propeller to transmit, you
can calculate the necessary FRQ register value with this equation:

 32
 2
 FRQ register = PHS bit 31 frequency × ─────────
 clkfreq

Eq. 2

Example:
What value does frqa have to store to make the counter module transmit a 2093 Hz square wave if
the system clock is running at 80 MHz? (If this were a sine wave, it would be a C7, a C note in the 7th
octave.)

For the solution, start with Eq. 2. Substitute 80_000_000 for clkfreq and 2093 for frequency.

frqa = 2_093 × 232 ÷ 80_000_000
frqa = 2093 × 53.687
frqa = 112_367

Table 1 shows other notes in the 6th octave and their FRQ register values at 80 MHz. The sharp notes
are for you to calculate. Keep in mind that these are the square wave versions. In another lab, we’ll
use objects that digitally synthesize sine waves for truer tones.

Table 1: Notes, Frequencies, and FRQA/B Register Values for 80 MHz

Note Frequency
(Hz)

FRQA/B
Register Note Frequency

(Hz)
FRQA/B
Register

C6 1046.5 56_184 G6 1568.0 84_181
C6# 1107.8 G6# 1661.2
D6 1174.7 63_066 A6 1760.0 94_489
D6# 1244.5 A6# 1864.7
E6 1318.5 70_786 B6 1975.5 105_629
F6 1396.9 74_995 C7 2093.0 112_367
F6# 1480.0

Eq. 3 can also be rearranged to figure out what frequency gets transmitted by an object given a value
the object stores in its FRQ register:

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 18 of 52

 clkfreq × FRQ register
 PHS bit 31 frequency = ───────────────────────────
 32
 2

Eq. 3

Example: An object has its cog’s Counter B operating in single-ended NCO mode, and it stores
70_786 in its frqb register. The system clock runs at 80 MHz. What frequency does it transmit?

We already know the answer from Table 1, but here it is with Eq. 3

 80_000_000 × 70_786
 PHS bit 31 frequency = ───────────────────── = 1318 Hz
 32
 2

Configuring a Counter Module for NCO Mode
Figure 10 shows the NCO mode entries in the CTR object’s Counter Mode table. Note that it is
called NCO/PWM mode in the table, you may see that occasionally. PWM is actually an application
of NCO mode that will be explored in the PWM section on page 35. Like DUTY mode, NCO mode
has a single-ended and differential options. Single-ended causes a signal that matches bit 31 of the
PHS register to be transmitted by the APIN. Differential mode sends the same signal on APIN along
with an inverted version of that signal on BPIN.

Figure 10: NCO Excerpts from the CTR Object’s Counter Mode Table
 Accumulate APIN BPIN
 CTRMODE Description FRQ to PHS output* output*
┌────────┬─────────────────────────────┬────────────┬────────────┬────────────┐
│ %00000 │ Counter disabled (off) │ 0 (never) │ 0 (none) │ 0 (none) │
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
 .
 .
 .
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
│ %00100 │ NCO/PWM single-ended │ 1 │ PHS[31] │ 0 │
│ %00101 │ NCO/PWM differential │ 1 │ PHS[31] │ !PHS[31] │
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
 .
 .
 .

│ %11111 │ LOGIC always │ 1 │ 0 │ 0 │
└────────┴─────────────────────────────┴────────────┴────────────┴────────────┘
 * must set corresponding DIR bit to affect pin

 A¹ = APIN input delayed by 1 clock
 A² = APIN input delayed by 2 clocks
 B¹ = BPIN input delayed by 1 clock

The steps for configuring the counter module for NCO mode are similar to the steps for DUTY mode.
The CTR register’s CTRMODE, APIN (and BPIN in differential mode) bit fields have to be set.
Then, the FRQ register gets a value that sets the NCO frequency. As with other output examples, the
I/O pins used by the counter module have to be set to output.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 19 of 52

Remember that the steps for configuring the counter module are similar to the previous two modes
(POS detector and DUTY) but the functional result is again very different. In DUTY mode, the phase
adder’s carry flag (“bit 32” of the PHS register) determined the I/O pin’s state, which in turn resulted
in a duty signal that varied with the value stored by the FRQ register. In NCO mode, bit 31 of the
PHS register controls the I/O pin, which results in a square wave whose frequency is determined by
the value stored in the FRQ register.

Here are the steps for configuring a counter module to NCO mode.

(1) Configure the CTRA/B register
(2) Set the FRQA/B register
(3) Set the I/O pin to output

1) Configure the CTRA/B register:

Here is an example that sets Counter A to “NCO single-ended” mode, with the signal transmitted on
P27. To do this, set ctra[30..26] to %00100, and ctra[5..0] to 27.

 ctra[30..26] := %00100
 ctra[5..0] := 27

2) Set the FRQA/B register:

Here is an example for the square wave version of the C7 note:

 frqa := 112_367

3) Set the I/O pin to output:

Since it’s P27 that’s sending the signal, make it an output:

 dira[27]~~

After starting the counter module, it runs independently. The code in the cog can forget about it and
do other things, or monitor/control/modify the counter’s behavior as needed.

Square Wave Example
The SquareWaveTest object below plays the square wave version of C in the 7th octave for 1 second.

 Examine the SquareWaveTest object and compare it to steps 1 through 4 just discussed.
 Load the SquareWaveTest object into the Propeller chip. Run it and verify that it plays a

tone.
 Change frqa := 112_367 to frqa := 224_734. That’ll be C8, the C note in the next higher

octave.
 Load the modified object into the Propeller chip. This time, the note should play at a higher

pitch.

''SquareWaveTest.spin
''Send 2093 Hz square wave to P27 for 1 s with counter module.

CON

 _clkmode = xtal1 + pll16x ' Set up clkfreq = 80 MHz.
 _xinfreq = 5_000_000

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 20 of 52

PUB TestFrequency

 'Configure ctra module
 ctra[30..26] := %00100 ' Set ctra for "NCO single-ended"
 ctra[5..0] := 27 ' Set APIN to P27
 frqa := 112_367 ' Set frqa for 2093 Hz (C7 note) using:
 ' FRQA/B = frequency × (232 ÷ clkfreq)
 'Broadcast the signal for 1 s
 dira[27]~~ ' Set P27 to output
 waitcnt(clkfreq + cnt) ' Wait for tone to play for 1 s

Stopping (and restarting) the Signal
In the SquareWaveTest object, the cog runs out of commands, so the tone stops because the program
ends. In many cases, you will want to stop and restart the signal. The three simplest ways to stop
(and resume) signal transmission are:

(1) Change the Direction of the I/O pin to input. In the SquareWaveTest object, this could be
done with either dira[27] := 0 or dira[27]~ when the program is ready to stop the signal.
(To restart the signal, use either dira[27] := 1 or dira[27]~~.)

(2) Stop the counter module by clearing CTR bits 30..26. In the SquareWaveTest object, this
can be accomplished with ctra[30..26] := 0. Another way to do it is by setting all the bits
in the ctra register’s CTRMODE bitfield to zero with ctra[30..26]~. In either case, the I/O
pin is still an output, and its output state might be high or low. Later, we’ll examine a way to
make sure the signal ends when the I/O pin is transmitting a low signal. (To restart the
signal, copy %00100 back into ctra[30..26].)

(3) Stop adding to PHS by setting FRQ to 0. In the SquareWaveTest object, this could be done
with either frqa := 0 or frqa~. The counter would keep running, but since it would add zero
to phsa with each clock tick, bit 31 of phsa wouldn’t change, so the I/O pin would also stop
toggling. Like stopping the counter, the I/O pin would hold whatever output state it had at
the instant frqa is cleared. (To restart the signal, use frqa := 112_367.)

The Staccato object toggles the I/O pin between output and input to cause the 2.093 kHz tone to start
and stop at 15 Hz for 1 s. It uses approach (1) for stopping and restarting the signal. Your job will be
to modify two different copies of the code to use approaches 2 and 3.

 Load Staccato.spin into the Propeller chip and verify that it chirps at 15 Hz for 1 s.
 Make two copies of the program.
 Modify one copy so that it uses approach 2 for starting and stopping the signal.
 Modify the other copy so that it uses approach 3 for starting and stopping the signal.

''Staccato.spin
''Send 2093 Hz beeps in rapid succession (15 Hz for 1 s).

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

PUB TestFrequency

 'Configure ctra module
 ctra[30..26] := %00100 ' Set ctra for "NCO single-ended"
 ctra[8..0] := 27 ' Set APIN to P27
 frqa := 112_367 ' Set frqa for 2093 Hz (C7 note):

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 21 of 52

 'Ten beeps on/off cycles in 1 second.
 repeat 30
 !dira[27] ' Set P27 to output
 waitcnt(clkfreq/30 + cnt) ' Wait for tone to play for 1 s

 'Program ends, which also stops the counter module.

Use F10 and F11 to easily compare programs:

It is convenient to put the original Staccato.spin into the EEPROM with F11, then use F10 when you test your
modifications. After running your new program, you can then press and release the PE Platform’s reset button
to get an instant audio comparison.

Playing a List of Notes
DoReMi.spin is an example where the counter module is used to play a series of notes. Since it isn’t
needed for anything else in the meantime, the I/O pin that sends the square wave signal to the
piezospeaker is set to input during the ¼ stops between notes. bit 31 of the phsa register still toggles
at a given frequency during the quarter stop, but the pseudo-note doesn’t play.

The frqa register values are stored in a DAT block with the directive:

DAT
 ...
 notes long 112_367, 126_127, 141_572, 149_948, 168_363, 188_979, 212_123, 224_734

A repeat loop that sweeps a variable named index from 0 to 7 is used to retrieve and copy each of
these notes to the frqa register. The loop copies each successive value from the notes sequence into
the frqa register with this command:

 repeat index from 0 to 7
 'Set the frequency.
 frqa := long[@notes][index]
 ...

 Load the DoReMi object into the Propeller chip and observe the effect.

''DoReMi.spin
''Play C6, D6, E6, F6, G6, A6, B6, C7 as quarter notes quarter stops between.

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

PUB TestFrequency | index

 'Configure ctra module
 ctra[30..26] := %00100 ' Set ctra for "NCO single-ended"
 ctra[8..0] := 27 ' Set APIN to P27
 frqa := 0 ' Don't play any notes yet

 repeat index from 0 to 7

 frqa := long[@notes][index] 'Set the frequency.

 'Broadcast the signal for 1/4 s
 dira[27]~~ ' Set P27 to output
 waitcnt(clkfreq/4 + cnt) ' Wait for tone to play for 1/4 s

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 22 of 52

 dira[27]~ '1/4 s stop
 waitcnt(clkfreq/4 + cnt)

DAT
'80 MHz frqa values for square wave musical note approximations with the counter module
'configured to NCO:
' C6 D6 E6 F6 G6 A6 B6 C7
notes long 56_184, 63_066, 70_786, 74_995, 84_181, 94_489, 105_629, 112_528

Counter NCO Mode Example with bit 3 Instead of bit 31
In NCO mode, the I/O pin’s output state is controlled by bit 31 of the PHS register. However, the
on/off frequency for any bit in a variable or register can be calculated using Eq. 4 and assuming a
value is repeatedly added to it at a given rate:

frequency = (value × rate) ÷ 2bit + 1

Eq. 4

Here is an example that can be done on scratch paper that may help clarify how this works.

bit 3 Example
At what frequency does bit 3 in a variable toggle if you add 4 to it eight times every second?

Value is 4, rate is 8 Hz, and bit is 3, so

frequency = (value × rate) ÷ 2bit + 1

 = (4 × 8 Hz) ÷ 23 + 1
 = 32 Hz ÷ 16
 = 2 Hz

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 23 of 52

Table 2 shows how this works. Each 1/8 second, the value 4 gets added to a variable. As a
result, bit 3 of the variable gets toggled twice every second, i.e. at 2 Hz.

Table 2: Bit 3 Example

Bit 3 in Variable
Time
(s) Value Variable 7 6 5 4 3 2 1 0

0.000 0 0 0 0 0 0 0 0 0
0.125 4 4 0 0 0 0 0 1 0 0
0.250 4 8 0 0 0 0 1 0 0 0
0.375 4 12 0 0 0 0 1 1 0 0
0.500 4 16 0 0 0 1 0 0 0 0
0.625 4 20 0 0 0 1 0 1 0 0
0.750 4 24 0 0 0 1 1 0 0 0
0.875 4 28 0 0 0 1 1 1 0 0

1.000 4 32 0 0 1 0 0 0 0 0
1.125 4 36 0 0 1 0 0 1 0 0
1.250 4 40 0 0 1 0 1 0 0 0
1.375 4 44 0 0 1 0 1 1 0 0
1.500 4 48 0 0 1 1 0 0 0 0
1.625 4 52 0 0 1 1 0 1 0 0
1.750 4 56 0 0 1 1 1 0 0 0
1.875 4 60 0 0 1 1 1 1 0 0

NCO FRQ Calculator Method
The HyperTerminalFrequencies object allows you to enter square wave frequencies into
HyperTerminal, and it calculates and displays the FRQ register value and plays the tone on the P27
piezospeaker. The object’s NcoFrqReg method is an adaptation of the Propeller Library CTR object’s
fraction method. Given a square wave frequency, it calculates frqReg = frequency × (232 ÷
clkfreq), and returns frqReg. So, for a given square wave frequency simply set the FRQ register
equal to the result returned by the NcoFrqReg method call.

The NcoFrqReg method uses a binary calculation approach to come up with frqReg = frequency × (232
÷ clkfreq). It would also have been possible to use the FloatMath library to perform these
calculations. However, the NcoFrqReg method takes much less code space than the FloatMath library.
It also takes less time to complete the calculation, so it makes a good candidate for a counter math
object.

 Open PropellerCOM. (See Object’s Lab for setup instructions.)
 Disconnect PropellerCOM.
 Load the HyperTerminalFrquencies object into the Propeller chip.
 You will have two seconds to click PropellerCOM’s connect button and follow the prompts.
 Try entering the integer portion of each frequency value (not the FRQ register values) from

Table 1 on page 17. Verify that the NcoFrqReg method’s calculations match the calculated
FRQ register values in the table.

 Remember to click HyperTerminal’s Disconnect button before loading the next program.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 24 of 52

''HyperTerminalFrequencies.spin
''Enter frequencies to play on the piezospeaker and display the frq register values
''with HyperTerminal.

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

OBJ

 Debug : "FullDuplexSerialPlus" ' Display object to use with HyperTerminal

PUB Init

 'Configure ctra module.
 ctra[30..26] := %00100 ' Set ctra for "NCO single-ended"
 ctra[8..0] := 27 ' Set APIN to P27
 frqa := 0 ' Don't send a tone yet.
 dira[27]~~ ' I/O pin to output

 'Start FullDuplexSerialPlus.
 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq * 2 + cnt)

 Main

PUB Main | frequency, temp

 repeat

 Debug.Str(String(10, 13, "Enter a frequency: "))
 frequency := Debug.getDec
 temp := NcoFrqReg(frequency)
 Debug.Str(String(10, 13, "frqa = "))
 Debug.Dec(temp)

 'Broadcast the signal for 1 s
 frqa := temp
 waitcnt(clkfreq + cnt)
 frqa~

PUB NcoFrqReg(frequency) : frqReg
{{
Returns frqReg = frequency × (2³² ÷ clkfreq) calculated with binary long
division. This is faster than the floating point library, and takes less
code space. This method is an adaptation of the CTR object's fraction
method.
}}

 repeat 33
 frqReg <<= 1
 if frequency => clkfreq
 frequency -= clkfreq
 frqReg++
 frequency <<= 1

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 25 of 52

Use Two Counter Modules to Play Two Notes
The TwoTones object demonstrates how both counters can be used to play two different square wave
tones on separate speakers. In this example, all the program does is wait for certain amounts of time
to pass before adjusting the frqa and frqb register values. The program could also perform a number
of other tasks before coming back and waiting for the CLK register to get to the next time increment.

 Load the TwoTones object into the Propeller chip.
 Verify that it plays the square wave approximation of C6 on the P27 piezospeaker for 1 s,

then pauses for ½ s, then plays E6 on the P2 piezospeaker, then pauses for another ½ s, then
plays both notes on both speakers at the same time.

''TwoTones.spin
''Play individual notes with each piezospeaker, then play notes with both at the
''same time.

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

OBJ

 SqrWave : "SquareWave"

PUB PlayTones | index, pin, duration

 'Initialize counter modules
 repeat index from 0 to 1
 pin := byte[@pins][index]
 spr[8 + index] := (%00100 << 26) + pin
 dira[pin]~~

 'Look tones and durations in DAT section and play them.
 repeat index from 0 to 4
 frqa := SqrWave.NcoFrqReg(word[@Anotes][index])
 frqb := SqrWave.NcoFrqReg(word[@Bnotes][index])
 duration := clkfreq/(byte[@durations][index])
 waitcnt(duration + cnt)

DAT
pins byte 27, 3

'index 0 1 2 3 4
durations byte 1, 2, 1, 2, 1
anotes word 1047, 0, 0, 0, 1047
bnotes word 0, 0, 1319, 0, 1319

Inside TwoTones.spin
The TwoTones object declares the SquareWave object (see Appendix A) in its OBJ block and gives it
the nickname SqrWave. This object has a method with the same name and function as NcoFrqReg in
the HyperTerminalFrequencies object, but the coding relies on methods adapted from the Propeller
Library’s CTR object to perform the calculation.

The first repeat loop in the PlayTones method initializes the counter method by setting SPR array
elements 8 and 9, which are the ctra and ctrb registers. The index variable in that loop is also used

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 26 of 52

to look up the pin numbers listed in the DAT block’s Pins sequence using pin := byte[@pin][index].
The second repeat loop looks up elements in the DAT block’s durations, anotes and bnotes
sequences. Each sequence has five elements, so the repeat loop indexes from 0 to 4 to fetch each
element in each sequence.

Take a look at the command frqa := SquareWave.NcoFrqReg(word[@Anotes][index]) in the
TwoTones object’s second repeat loop. First, word[@Anotes][index] returns the value that’s index
elements to the right of the anotes label. The first time through the loop, index is 0, so it returns
1047. The second, third and fourth time through the loop, index is 1, then 2, then 3. It returns 0 each
time. The fifth time through the loop, index is 4, so it returns 1047 again. Each of these values
returned by word[@Anotes][index] becomes a parameter in the SquareWave.NcoFrqReg method call.
Finally, the value returned by SquareWave.NcoFrqReg gets stored in the frqa variable. The result? A
given frequency value in the anotes sequence gets converted to the correct value for frqa to make the
counter module play the note.

Counter Control with an Object
If you examined the SquareWave object, you may have noticed that has a Freq method that allows
you to choose a counter module (0 or 1 for Counter A or Counter B), a pin, and a frequency. The
Freq method considerably simplifies the TwoTones object.

 Compare TwoTonesWithSquareWave (below) against the TwoTones object (above).
 Load TwoTonesWithObject into the Propeller chip and verify that it behaves the same as the

TwoTones object.

''TwoTonesWithSquareWave.spin
''Play individual notes with each piezospeaker, then play notes with both at the
''same time.

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

OBJ

 SqrWave : "SquareWave"

PUB PlayTones | index, pin, duration

 'Look tones and durations in DAT section and play them.
 repeat index from 0 to 4
 SqrWave.Freq(0, 27, word[@Anotes][index])
 SqrWave.Freq(1, 3, word[@Bnotes][index])
 duration := clkfreq/(byte[@durations][index])
 waitcnt(duration + cnt)

DAT
 pins byte 27, 3

 'index 0 1 2 3 4
 durations byte 1, 2, 1, 2, 1
 anotes word 1047, 0, 0, 0, 1047
 bnotes word 0, 0, 1319, 0, 1319

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 27 of 52

Applications - IR Object and Distance Detection
When you point your remote at the TV and press a button, the remote flashes an IR LED on/off
rapidly to send messages to the IR receiver in the TV. The rate at which the IR LED flashes on/off is
matched to a filter inside the TV’s IR receiver. Common frequencies are 36.7, 38, 40, and 56.9 kHz.
This frequency-and-filter system is used to distinguish IR remote messages from ambient IR such as
sunlight and the 120 Hz signal that is broadcast by household lighting.

 The wavelength of IR used by remotes is typically in the 800 to 940 nm range.

The remote transmits the information by modulating the IR signal. The amount of time the IR signal
is sent can contain information, such as start of message, binary 1, binary 0, etc. By transmitting
sequences of signal on/off time, messages for the various buttons on your remote can be completed in
just a few milliseconds.

The IR LED and receiver that are used for beaming messages to entertainment system components
can also be used for object detection. In this scheme, the IR LED and IR receiver are placed so that
the IR LED’s light will bounce off an object and return to the IR receiver. The IR LED still has to
modulate its light for the IR receiver’s pass frequency. If the IR LED’s light does reflect off an object
and return to the IR receiver, the receiver sends a signal indicating that it is receiving the IR signal. If
the IR does not reflect off the object and return to the IR receiver, it sends a signal indicating that it is
not receiving IR.

 This detection scheme uses very inexpensive parts, and has become increasingly popular in hobby
robotics.

The PE Kit’s IR receiver shown on the right side of Figure 11 has a 38 kHz filter. A Propeller chip
cog’s counter module can be used to generate the 38 kHz signal for the IR LED to broadcast for either
IR object detection or entertainment system component control. This section of the lab will simply
test object detection, but the same principles will apply to remote decoding and entertainment system
component control.

 Build the circuit shown in Figure 11 – Figure 13, using the photo as a parts placement guide.

Figure 11: IR Detection Parts and Schematic

 Parts List Schematic
 ───────────────────── ───
 (1) Resistor 1 kω IR Detector +5V
 (1) Resistor 10 kω 
 (1) IR LED │ ┌┐
 (1) IR detector └──┤│
 (1) LED shield P1 ──────────────┐ P0 ──────────┤│‣
 (1) LED standoff 1 kω IRLED │ 10 kω ┌──┤│
 (misc) Jumper wires  │ └┘
 Vss  PNA4602
 or
 equivalent
 ───────────────────── ───

Figure 12 shows how to assemble the IR LED for object detection. First, snap the IR LED into the
LED standoff. Then, attach the light shield to the standoff.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 28 of 52

Figure 12: IR LED Assembly

A breadboard arrangement that works well for the IR LED and receiver is shown in the upper-left
side of Figure 13. Notice how the IR receiver’s 5 V source is jumpered from the center breadboard’s
socket (l, 3) to the left breadboard’s socket (g, 1). The IR receiver’s ground is jumpered from the
center breadboard’s socket (k, 4) to the left breadboard’s (g, 2) socket. The IR LED’s shorter cathode
pin is connected to the left vertical ground rail (black, 4). A 1 kΩ resistor is in series between the IR
LED’s anode and P1. A large resistor is important for connecting a 5 V output device to the Propeller
chip’s 3.3 V input; a 10 kΩ resistor is used between the IR receiver’s 5 V output and the Propeller
chip’s P0 I/O pin. A 1 to 2 kΩ resistor is useful in series with the IR LED to reduce the detection
range. A small resistor like 100 Ω often causes the ceiling to be detected.

Figure 13: IR LED and Detector Orientation

IR Object Detection with NCO
The IrObjectDetection object sets up the 38 kHz signal using NCO mode. Whenever the I/O pin
connected to the IR LED is set to output, the 38 kHz transmits. In a repeat loop, the program allows
the IR LED to transmit the 38 kHz infrared signal for 1 ms, then it saves ina[0] in a variable named
state and displays it on HyperTerminal.

 Make sure PropellerCOM.ht is open but disconnected.
 Load IrObjectDetection.spin into the Propeller chip.
 Connect PropellerCOM.
 The state should be 1 with no obstacles visible, or 0 when you place your hand in front of the

IR LED/receiver.

''IrObjectDetection.spin
''Detect objects with IR LED and receiver and display with HyperTerminal.

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 29 of 52

OBJ

 Debug : "FullDuplexSerialPlus"
 SqrWave : "SquareWave"

PUB IrDetect | state

 'Start 38 kHz square wave
 SqrWave.Freq(0, 1, 38000) ' 38 kHz signal → P1
 dira[1]~ ' Set I/O pin to input when no signal needed

 'Start FullDuplexSerialPlus
 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq * 2 + cnt)

 Debug.Str(String(10, 13, " <- IR Detection bit: "))

 repeat

 ' Detect object.
 dira[1]~~ ' I/O pin → output to transmit 38 kHz
 waitcnt(clkfreq/1000 + cnt) ' Wait 1 ms
 state := ina[0] ' Store I/R detector output
 dira[1]~ ' I/O pin → input to stop signal

 ' Display detection (0 detected, 1 not detected)
 Debug.Dec(state)
 Debug.tx(13)
 waitcnt(clkfreq/10 + cnt)

IR Distance Detection with NCO and Duty Sweep
If the IR LED shines more brightly, it makes the detector more far-sighted. If it shines less brightly,
it makes it more near-sighted. Recall that a counter module’s Duty mode can be used to control LED
brightness and even sweep the LED’s brightness from dim to bright (see page 8.) This same duty
sweep approach can be combined with the NCO signal from the IR object detection example to make
the IR LED flash on/off at 38 kHz, sweeping from dim to bright. With each increase in brightness,
the IR detector’s output can be rechecked in a loop. The number of times the IR detector reported
that it detected an object will then be related to the object’s distance from the IR LED/detector.

Although the circuit from Figure 11 can be used for distance detection with a combination of NCO
and duty signals, the circuit in Figure 14 makes it possible to get better results from the IR receiver.
Instead of tying the IR LED’s cathode to GND, it is connected to P2. The program can then sweep
the voltage applied to IR LED’s cathode from 0 to 3.3 V via P2 while the signal from P1 transmits the
38 kHz NCO signal to the anode end of the circuit. Since an LED is a 1-way valve, the low portion
of the 38 kHz signal does not get transmitted since it is less than the DC voltage that the duty signal
synthesizes on P2. During the high portions of the 38 kHz signal, the voltages applied to P2 reduce
the voltage across the LED circuit, which in turn reduces its brightness. So, it’s the same 38 kHz
signal, just successively less bright.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 30 of 52

Figure 14: IR Detection Parts and Schematic

 Parts List Schematic
 ───────────────────── ───
 (1) Resistor 220 ω IR Detector +5V
 (1) Resistor 10 kω 
 (1) IR LED │ ┌┐
 (1) IR detector └──┤│
 (1) LED shield P1 ──────────── P2 P0 ──────────┤│‣
 (1) LED standoff 220ω IRLED 10 kω ┌──┤│
 (misc) Jumper wires │ └┘
  PNA4602
 or
 equivalent
 ───────────────────── ───

The IR Detector object below performs the distance detection just discussed. The parent object has to
call the init method to tell the object which pins are connected to the IR LED circuit’s anode and
cathode ends and the IR receiver’s outputs. When the distance method gets called, it uses the duty
sweep approach just discussed and the pin numbers that were passed to the init method to measure
the object’s distance.

The IrDetector object’s distance method uses the SquareWave object to start transmitting the 38 kHz
signal to the IR LED circuit’s anode end using Counter B. Then, it configures Counter A to duty
mode and initializes frqa and phsa to 0, which results in an initial low signal to the IR LED circuit’s
cathode end. Next, a repeat loop very rapidly sweeps duty from 0/256 to 255/256. With each
iteration, the voltage to the IR LED circuit’s cathode increases, making the IR LED less bright and te
IR detector more nearsighted. Between each duty increment, the loop adds the IR receiver’s output to
the dist return parameter. Since the IR receiver’s output is high when it doesn’t see reflected IR,
dist stores the number of times out of 256 that it did not see an object. When the object is closer, this
number will be smaller; when it’s further, the number will be larger. So, after the loop, when the
method returns the dist parameter, it contains a representation of the object’s distance.

 Keep in mind that this distance measurement will vary with the surface reflecting the IR.

For example, if the distance method returns 175, the measured distance for a white sheet of paper might be
five times the distance of a sheet of black vinyl. Reason being, the white paper readily reflects infrared, so it
will be visible to the receiver much further away. In contrast, black vinyl tends to absorb it, and is only visible
at very close ranges.

'IrDetector.spin

CON

 scale = 16_777_216 ' 2³²÷ 256

OBJ

 SquareWave : "SquareWave" ' Import square wave cog object

VAR

 long anode, cathode, recPin, dMax, duty

PUB init(irLedAnode, irLedCathode, irReceiverPin)

 anode := irLedAnode
 cathode := irLedCathode
 recPin := irReceiverPin

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 31 of 52

PUB distance : dist
{{
Performs a duty sweep response test on the IR LED/receiver and returns dist, a zone value
from 0 (closest) to 256 (no object detected).
}}
 'Start 38 kHz signal.
 SquareWave.Freq(1, anode, 38000) ' ctrb 38 kHz
 dira[anode]~~

 'Configure Duty signal.
 ctra[30..26] := %00110 ' Set ctra to DUTY mode
 ctra[5..0] := cathode ' Set ctra's APIN
 frqa := phsa := 0 ' Set frqa register
 dira[cathode]~~ ' Set P5 to output

 dist := 0

 repeat duty from 0 to 255 ' Sweep duty from 0 to 255
 frqa := duty * scale ' Update frqa register
 waitcnt(clkfreq/128000 + cnt) ' Delay for 1/128th s
 dist += ina[recPin] ' Object not detected? Add 1 to dist.

The TestIrDutyDistanceDetector object gets distance measurements from the IrDetector object and
displays them in HyperTerminal. With the 220 Ω resistor in series with the LED, whether or not the
system detects your ceiling from table height depends on how high and how reflective your ceiling is.
If it detects no object, it will return 256. Daylight streaming in through nearby windows may
introduce some noise in the detector’s output, resulting in values slightly less than 256 when no
object is detected. As a target object is brought closer to the IR LED/receiver, the measurements will
decrease, but not typically to zero. To get the detected distance clear down to zero, it is usually
necessary to point the IR detector directly into the IR receiver’s phototransistor (the black bubble
under the crosshairs).

 Make sure IrDetector.spin is saved to the same folder as TestIrDutyDistanceDetector.spin and
FullDuplexSerialPlus.spin.

 Load the TestIrDutyDistanceDetector object into the Propeller chip.
 Experiment with a variety of targets and distance tests to get an idea of what such a system

might and might not be useful for.

' TestIrDutyDistanceDetector.spin

CON

 _xinfreq = 5_000_000
 _clkmode = xtal1 | pll16x

OBJ

 ir : "IrDetector"
 debug : "FullDuplexSerialPlus"

PUB TestIr | dist

 'Start serial communication, and wait 2 s for user to connect to HyperTerminal.
 Debug.Start(31, 30, 0, 57600)
 waitcnt(clkfreq * 2 + cnt)
 debug.str(String("running...", 10, 13))

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 32 of 52

 'Configure IR detectors.
 ir.init(1, 2, 0)

 repeat
 'Get and display distance.
 dist := ir.Distance
 debug.dec(dist)
 debug.str(String(10, 13))
 waitcnt(clkfreq/3 + cnt)

Counting Transitions
Counter modules also have positive and negative edge detection modes (see Figure 15). In
POSEDGE mode, a counter module will add FRQ to PHS when it detects a transition from low to
high on a given I/O pin. NEGEDGE mode makes the addition when it detects a high to low
transition. Either can be used for counting the cycles of signals that pass above and then back down
below a Propeller I/O pin’s 1.65 V logic threshold.

 These counter modes can be used to either count the transitions of a signal applied to the I/O pin or
the transitions of a signal the I/O pin is transmitting.

Figure 15: Edge Detector Excerpts from the CTR Object’s Counter Mode Table
 Accumulate APIN BPIN
 CTRMODE Description FRQ to PHS output* output*
┌────────┬─────────────────────────────┬────────────┬────────────┬────────────┐
│ %00000 │ Counter disabled (off) │ 0 (never) │ 0 (none) │ 0 (none) │
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
 .
 .
 .
│ %01010 │ POSEDGE detector │ A¹ & !A² │ 0 │ 0 │
 .
 .
 .
│ %01110 │ NEGEDGE detector │ !A¹ & A² │ 0 │ 0 │
 .
 .
 .
│ %11111 │ LOGIC always │ 1 │ 0 │ 0 │
└────────┴─────────────────────────────┴────────────┴────────────┴────────────┘
 * must set corresponding DIR bit to affect pin

 A¹ = APIN input delayed by 1 clock
 A² = APIN input delayed by 2 clocks
 B¹ = BPIN input delayed by 1 clock

Notice from the notes in the Counter Mode Table excerpt in Figure 15 that the addition of FRQ to
PHS occurs one clock cycle after the edge. This could make a difference in some assembly language
programs where the timing is tight, but does not have any significant impact on interpreted Spin
language programs.

The steps for setting up a counter still involve setting the CTR register’s MODE bit field (bits 30..26)
and its APIN bit field (bits 5..0) along with setting the FRQ register to the value that should be added
to the PHS register when an edge is detected. Before the measurement, they can be set to zero.

 ctrb[30..26] := %01110
 ctrb[8..0] := 27

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 33 of 52

 frqb~
 phsb~

Here’s an example from the next program that demonstrates one way of using NEGEDGE detector to
control the duration of a tone played on the piezospeaker. The Counter A module is set to transmit a
2 kHz square wave with NCO mode on the same I/O pin the Counter B register will monitor with
NEGEDGE mode. The frqb register is set to 1, so that with each negative clock edge, 1 gets added to
frqb. To play a 2 kHz tone for 1 second, it takes 2000 cycles. The repeat while phsb < 2000
command only allows the program to move on and clear frqa to stop playing the tone after 2000
negative edges have been detected.

 frqb := 1
 frqa := SquareWave.NcoFrqReg(2000)

 repeat while phsb < 2000

 frqa~

 Polling: This example polls the phsb register, waiting for the number of transitions to exceed a certain value,
but it doesn’t necessarily need to poll for the entire 2000 cycles. This will free up the cog to get a few things
done while the signal is transmitting and check periodically to find out how close phsb is to 2000.

 Load CountEdgeTest.spin into the Propeller chip and verify that counting edges can be used

to control the duration of the tone.

{{
CountEdgeTest.spin
Transmit NCO signal with Counter A
Use Counter B to keep track of the signal's negative edges and stop the signal
after 2000.
}}

CON

 _clkmode = xtal1 + pll16x 'System clock → 80 MHz
 _xinfreq = 5_000_000

OBJ

 SqrWave : "SquareWave"

PUB TestFrequency

 ' Configure counter modules.

 ctra[30..26] := %00100 'ctra module to NCO mode
 ctra[8..0] := 27

 ctrb[30..26] := %01110 'ctrb module to NEGEDGE detector
 ctrb[8..0] := 27
 frqb~
 phsb~

 'Transmit signal for 2000 NCO signal cycles

 outa[27]~ ' P27 → output-low
 dira[27]~~

 frqb := 1 ' Start the signal
 frqa := SqrWave.NcoFrqReg(2000)

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 34 of 52

 repeat while phsb < 2000 ' Wait for 2 k reps

 frqa~ ' Stop the signal

Faster Edge Detection
The next example program can stop frequencies up to about 43.9 kHz on the falling clock edge. For
controlling the number of pulses delivered by faster signals, an assembly language program will be
way more responsive, and can likely detect the falling edge and stop it within a few clock cycles.

BetterCountEdges.spin monitors a 3 kHz signal transmitted by Counter A. Instead of monitoring
negative edges, it configures Counter B to monitor positive edges on P27 with ctrb[30..26] :=
01010 and ctrb[5..0] := 27. Next, it sets frqb to 1 so that 1 gets added to the PHS register with
each positive edge. Instead of clearing the PHS register and waiting for 3000 positive edges, it sets
phsb to -3000. Next, it sets bit 27 in a variable named a to 1 with the command a |< 27.

 Look up the bitwise decode |< operator in the Propeller Manual.

When the frqa := SquareWave.CalcFreqReg(3000) command executes, P27 starts sending a 3 kHz
square wave. Since phsb is bit-addressable, the command repeat while phsb[31] repeats while bit
31 of the phsb register is 1. Recall that the highest bit of a variable or register will be 1 so long as the
value is negative. So phsb[31] will be 1 (non zero) while phsb is negative. The phsb register will
remain negative until frqb = 1 is added to phsb 3000 times.

When the repeat loop terminates, the signal is high because it was looking for a positive edge. The
goal is to stop the signal after it goes low. The command waitpeq(0, a, 0) waits until P27 is zero.
The command waitpeq(0, |< 27, 0) could also have been used, but the program wouldn’t respond
as quickly because it would have to first calculate |< 27; whereas waitpeq(0, a, 0) already has that
value calculated and stored in the a variable. So the waitpeq command allows the program to
continue to frqa~, which clears the frqa register, and stops the signal at output-low after the 3000th
cycle.

 Look up and read about waitpeq in the Propeller Manual.
 Load BetterCountEdges.spin into the Propeller chip and verify that it plays the 3 kHz signal

for 1 s.
 If you have an oscilloscope, set the signal for ten cycles instead of 3000. Then, try increasing

the frequency, and look for the maximum frequency that will still deliver only 10 cycles.

''BetterCountEdges.spin

CON

 _clkmode = xtal1 + pll16x 'System clock → 80 MHz
 _xinfreq = 5_000_000

OBJ

 SquareWave : "SquareWave"

PUB TestFrequency | a, b, c

 ' Configure counter modules.

 ctra[30..26] := %00100 'ctra module to NCO mode

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 35 of 52

 ctra[8..0] := 27
 outa[27]~ 'P27 → output-low
 dira[27]~~

 ctrb[30..26] := %01010 'ctrb module to POSEDGE detector
 ctrb[8..0] := 27
 frqb := 1 'Add 1 for each cycle
 phsb := -3000 'Start the count at -3000

 a := |< 27 'Set up a pin mask for the waitpeq command

 frqa := SquareWave.NcoFrqReg(3000) 'Start the square wave
 repeat while phsb[31] 'Wait for 3000th low→high transition
 waitpeq(0, a, 0) 'Wait for low signal
 frqa~ 'Stop the signal

PWM
PWM stands for pulse width modulation, which can be useful for both servo and motor control. A
counter module operating in NCO mode can be used to generate precise duration pulses, and a repeat
loop with a waitcnt command can be used to maintain the signal’s cycle time.

Let’s first take a look at sending a single pulse with a counter module. This is a very precise method
is good down to the duration of a Propeller chip’s system clock tick. After setting up the counter in
NCO mode, simply set the PHS register to the duration you want the pulse to last by loading it with a
negative value. For example, the command phsa := -clkfreq in the next example program sets the
phsa register to -80_000_000. Remember that bit 31 of a register will be 1 so long as it’s negative,
and also remember that in NCO mode bit 31 of the PHS register controls an I/O pin’s output state.
So, when the PHS register is set to a negative value (and FRQ to 1), the I/O pin will send a high
signal for the same number of clock ticks as the negative number stored in PHS.

Sending a Single Pulse
The SinglePulseWithCounter object uses this technique to send a 1 second pulse to the LED on P4.
Even thought the program can move on as soon as it has set the PHS register to -clkfreq, it can’t
ignore the PHS register indefinitely. Why? Because, 231 – 1 = 2_147_483_647 clock ticks later, the
PHS register will roll over from a large positive number to a large negative number and start counting
down again. Since bit 31 of the PHS register will change from 0 to 1 at that point, the I/O pin will
transition from low to high for no apparent reason.

 Load SinglePulseWithCounter.spin into the Propeller chip and verify that it sends a 1 second
pulse. This pulse will last exactly 80_000_000 clock ticks.

 With the Propeller chip’s clock running at 80 MHz, the pin will go high again about 26.84
seconds later. Verify this with a calculator and by waiting 27 seconds after the 1 s high signal
ended.

 If you have an oscilloscope, try setting the PHS register to -1 and see if you can detect the
12.5 ns pulse the propeller I/O pin transmits. Also try setting phsa to clkfrq/1_000_000 for a
1 µs pulse.

''SinglePulseWithCounter.spin
''Send a high pulse to the P4 LED that lasts exactly 80_000_000 clock ticks.

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 36 of 52

PUB TestPwm | tc, tHa, tHb, ti, t

 ctra[30..26] := %00100 ' Configure Counter A to NCO
 ctra[8..0] := 4
 frqa := 1
 dira[4]~~

 phsa := - clkfreq ' Send the pulse

 ' Keep the program running so the pulse has time to finish.
 repeat

Pulse Width Modulation
For a repeating PWM signal, the program has to establish the cycle time using waitcnt. Then, the
pulse duration is determined each time through the loop by setting the PHS register to a negative
value at the beginning of the cycle.

The 1Hz25PercentDutyCycle object blinks the P4 LED every second for 0.25 seconds. The repeat
loop repeats once every second, and the counter sends a high signal to the P4 LED for ¼ s with each
repetition. The command tC := clkfreq sets the variable that holds the cycle time to the number of
clock ticks in one second. The command tHa := clkfreq/4 sets the high time for the A counter
module to ¼ s. The command t := cnt records the cnt register at an initial time.

Next, a repeat loop manages the pulse train. It starts by setting phsa equal to -tHa, which starts the
pulse that will last exactly clkfrq/4 ticks. Then, it adds tC, the cycle time of clkfreq ticks, to t, the
target time for the next cycle to start. The waitcnt(t) command waits for the number of ticks in 1 s
before repeating the loop.

 Run the program and verify the ¼ s high time signal every 1 s with the LED connected to P4.
 If you have an oscilloscope, try a signal that lasts 1.5 ms, repeated every 20 ms. This would

be good to make a servo hold its center position.

''1Hz25PercentDutyCycle.spin
''Send 1 Hz signal at 25 % duty cycle to P4 LED.

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

PUB TestPwm | tc, tHa, t

 ctra[30..26] := %00100 ' Configure Counter A to NCO
 ctra[8..0] := 4
 frqa := 1
 dira[4]~~

 tC := clkfreq ' Set up cycle and high times
 tHa := clkfreq/4
 t := cnt ' Mark counter time

 repeat ' Repeat PWM signal
 phsa := -tHa ' Set up the pulse
 t += tC ' Calculate next cycle repeat
 waitcnt(t) ' Wait for next cycle

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 37 of 52

This is another good place to examine differential signals. The only differences between this example
program and the previous one are:

• The mode is set to NCO differential using ctra[30..26] := %00101 (differential) instead of
ctra[30..26] := %00100 (single-ended)

• A second I/O pin is selected for differential signals with ctra[14..9] := 5
• Both P4 and P5 are set to output with dira[4..5]~~ instead of just dira[4]~~

 Try the program and verify that P5 is on whenever P4 is off.

''1Hz25PercentDutyCycleDiffSig.spin
''Differential version of 1Hz25PercentDutyCycle.spin

CON

 _clkmode = xtal1 + pll16x ' clock → 80 MHz
 _xinfreq = 5_000_000

PUB TestPwm | tc, tHa, t

 ctra[30..26] := %00101 ' Counter A → NCO (differential)
 ctra[8..0] := 4 ' Select I/O pins
 ctra[14..9] := 5
 frqa := 1 ' Add 1 to phs with each clock tick

 dira[4..5]~~ ' Set both differential pins to output

 ' The rest is the same as 1Hz25PercentDutyCycle.spin

 tC := clkfreq ' Set up cycle and high times
 tHa := clkfreq/4
 t := cnt ' Mark counter time

 repeat ' Repeat PWM signal
 phsa := -tHa ' Set up the pulse
 t += tC ' Calculate next cycle repeat
 waitcnt(t) ' Wait for next cycle

The TestDualPwm object uses both counters to transmit PWM signals that have the same cycle time
but independent high times (1/2 s high time with Counter A and 1/5 s with Counter B). The duty
cycle signals are transmitted on P4 and P6.

 Try making both signals differential, using I/O pins P4..P7.
 Again, if you have an oscilloscope, try making one signal 1.3 ms and the other 1.7 ms. This

could cause a robot with two continuous rotation drive servos to either go straight forward or
straight backwards.

{{
TestDualPWM.spin
Demonstrates using two counter modules to send a dual PWM signal.
The cycle time is the same for both signals, but the high times are independent of
each other.
}}

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 38 of 52

PUB TestPwm | tc, tHa, tHb, t

 ctra[30..26] := ctrb[30..26] := %00100 ' Counters A and B → NCO single-ended
 ctra[8..0] := 4 ' Set pins for counters to control
 ctrb[8..0] := 6
 frqa := frqb := 1 ' Add 1 to phs with each clock tick

 dira[4] := dira[6] := 1 ' Set I/O pins to output

 tC := clkfreq ' Set up cycle time
 tHa := clkfreq/2 ' Set up high times for both signals
 tHb := clkfreq/5
 t := cnt ' Mark current time.

 repeat ' Repeat PWM signal
 phsa := -tHa ' Define and start the A pulse
 phsb := -tHb ' Define and start the B pulse
 t += tC ' Calculate next cycle repeat
 waitcnt(t) ' Wait for next cycle

A variable or constant can be used to stores a time increment for pulse and cycle times. In the
example below, the tInc variable stores clkfreq/1_000_000. When tC is set to 50_000 * tInc, it
means that the cycle time will be 500_000 µs. Likewise, tHa will be 100_000 µs.

''SinglePwm with Time Increments.spin

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

PUB TestPwm | tc, tHa, t, tInc

 ctra[30..26] := %00100 ' Configure Counter A to NCO
 ctra[8..0] := 4 ' Set counter output signal to P4
 frqa := 1 ' Add 1 to phsa with each clock cycle
 dira[4]~~ ' P4 → output

 tInc := clkfreq/1_000_000 ' Determine time increment
 tC := 500_000 * tInc ' Use time increment to set up cycle time
 tHa := 100_000 * tInc ' Use time increment to set up high time

 ' The rest is the same as 1Hz25PercentDutyCycle.spin

 t := cnt ' Mark counter time

 repeat ' Repeat PWM signal
 phsa := -tHa ' Set up the pulse
 t += tC ' Calculate next cycle repeat
 waitcnt(t) ' Wait for next cycle

PLL for High Frequency
Up to this point, we have used NCO mode for generating square waves in the audible (20 to 20 kHz)
and IR detector (38 kHz) range. The NCO mode can be used to generate signals up to clkfreq/2. So,
with the version of the Propeller chip used in these labs, the ceiling frequency for this mode is 40
MHz.

For signals faster than clkfreq/2, you can use the counter’s PLL (phase-locked loop) mode. Instead
of sending bit 31 of the PHS register straight to an I/O pin, PLL mode passes the signal through two

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 39 of 52

additional subsystems before transmitting it. These subsystems are not only capable of sending
frequencies from 500 kHz to 128 MHz, they also diminish the jitter inherent to NCO signals. The
first subsystem (counter PLL) takes the frequency that bit 31 of the PHS register toggles at and
multiplies it by 16 using a voltage-controlled oscillator (VCO) circuit. The Propeller Manual and
CTR object call this the VCO frequency. The second subsystem (divider) divides the resulting
frequency by a power of 2 ranging from 1 to 128.

The PLL is designed to accept PHS bit 31 frequencies from 4 to 8 MHz. The PLL subsystem
multiplies this input frequency by 16, for a counter PLL frequency ranging from 64 to 128 MHz. The
divider subsystem then divides this frequency by a power of two from 128 to 1, so the final output for
PLL signals can range from 500 kHz to 128 MHz.

Configuring the Counter Module for PLL Mode
Figure 16 is the now-familiar excerpt from the Propeller Library’s CTR object, this time with the PLL
modes listed. “PLL internal” is used for synchronizing video signals. Although not discussed in this
lab, you can see it applied in the Propeller Library’s TV object. The CTRMODE values for routing
the PLL signal to I/O pins are %00010 for single-ended, and %00011 for differential.

Figure 16: NCO Excerpts from the CTR Object’s Counter Mode Table
 Accumulate APIN BPIN
 CTRMODE Description FRQ to PHS output* output*
┌────────┬─────────────────────────────┬────────────┬────────────┬────────────┐
│ %00000 │ Counter disabled (off) │ 0 (never) │ 0 (none) │ 0 (none) │
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
 .
 .
 .
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
│ %00001 │ PLL internal (video mode) │ 1 (always) │ 0 │ 0 │
│ %00010 │ PLL single-ended │ 1 │ PLL │ 0 │
│ %00011 │ PLL differential │ 1 │ PLL │ !PLL │
├────────┼─────────────────────────────┼────────────┼────────────┼────────────┤
 .
 .
 .

│ %11111 │ LOGIC always │ 1 │ 0 │ 0 │
└────────┴─────────────────────────────┴────────────┴────────────┴────────────┘
 * must set corresponding DIR bit to affect pin

 A¹ = APIN input delayed by 1 clock
 A² = APIN input delayed by 2 clocks
 B¹ = BPIN input delayed by 1 clock

The CTR Register’s PLLDIV bit Field
With NCO mode, setting I/O pin frequencies was done directly through the FRQ register. The value
in FRQ was added to PHS every clock tick, and that determined the toggle rate of PHS bit31, which
directly controlled the I/O pin. While setting I/O pin frequencies with PLL mode still uses PHS bit
31, there are some extra steps.

In PLL mode, the toggle rate of PHS bit31 is still determined by the value of FRQ, but before the I/O
pin transmits the signal, the PHS bit 31 signal gets multiplied by 16 and then divided down by a
power of two of your choosing (20 = 1, 21 = 2, 22 = 4, … 26 = 64, 27 = 128). The power of 2 is
selected by a value stored in the CTR register’s PLLDIV bit field, (bits 25..23) in Figure 17.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 40 of 52

Figure 17: CTRA/B Register Map from CTR.spin
 ┌────┬─────────┬────────┬────────┬───────┬──────┬──────┐
 bits │ 31 │ 30..26 │ 25..23 │ 22..15 │ 14..9 │ 8..6 │ 5..0 │
 ├────┼─────────┼────────┼────────┼───────┼──────┼──────┤
 Name │ ── │ CTRMODE │ PLLDIV │ ────── │ BPIN │ ──── │ APIN │
 └────┴─────────┴────────┴────────┴───────┴──────┴──────┘

Calculating PLL Frequency Given FRQ and PLLDIV
Let’s say you are examining a code example or object that’s generating a certain PLL frequency.
You can figure out what frequency it’s generating using the values of clkfreq, the FRQ register, and
the value in the CTR register’s PLLDIV bit field. Just follow these three steps:

a. Calculate the PHS bit 31 frequency:

 clkfreq × FRQ register
 PHS bit 31 frequency = ───────────────────────────
 32
 2

b. Use the PHS bit 31 frequency to calculate the VCO frequency:

 VCO frequency = 16 × PHS bit 31 frequency

c. Divide the PLLDIV result, which is 27−PLLDIV into the VCO frequency:

 VCO frequency
 PLL frequency = ───────────────
 7-PLLDIV
 2

Example: Given a system clock frequency (clkfreq) of 80 MHz and the code below, calculate the
PLL frequency transmitted on I/O Pin P15.

 'Configure ctra module
 ctra[30..26] := %00010
 frqa := 322_122_547
 ctra[25..23] := 2
 ctra[5..0] := 15
 dira[15]~~

1) Calculate the PHS bit 31 frequency:

 80_000_000 × 322_122_547
 PHS bit 31 frequency = ─────────────────────────
 32
 2

 = 5_999_999

2) Use the PHS bit 31 frequency to calculate the VCO frequency:

 VCO frequency = 16 × 5_999_999
 = 95_999_984

3) Divide the PLLDIV result (27−PLLDIV) into the VCO frequency:

 95_999_984
 PLL frequency = ───────────────

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 41 of 52

 7-2
 2

 = 2_999_999 MHz

 ≈ 3 MHz

Calculating FRQ and PLLDIV Given a PLL Frequency
Figuring out the PLL frequency given some pre-written code is well and good, but what if you want
to calculate FRQ register and PLLDIV bit fields values to generate a frequency with your own code?
Here are four steps you can use to figure it out:

1) Use the table below to figure out which value to put in the CTR register’s PLLDIV bit field
based on the frequency you want to transmit.

 MHz PLLDIV MHz PLLDIV
 ───────── ────── ───────── ──────
 0.5 to 1 0 8 to 16 4
 1 to 2 1 16 to 32 5
 2 to 4 2 32 to 64 6
 4 to 8 3 64 to 128 7

2) Calculate the VCO frequency with the PLL frequency you want to transmit and the PLL
divider, and round down to the next lowest integer.

 (7-PLLDIV)
 VCO frequency = PLL frequency × 2

3) Calculate the PHS bit 31 frequency you’ll need for the VCO frequency. It’s the VCO
frequency divided by 16.

PHS bit 31 frequency = VCO frequency ÷ 16

4) Use the NCO frequency calculations to figure out the FRQ register value for the PHS bit 31

frequency.
 32
 2
 FRQ register = PHS bit 31 frequency × ─────────
 clkfreq

Example: clkfreq is running at 80 MHz, and you want to generate a 12 MHz signal with PLL.
Figure out the FRQ register and PLLDIV bit fields.

1) Use the table to figure out which value to put in the CTR register’s PLLDIV bit field:

Since 12 MHz falls in the 4 to 16 MHz range, PLLDIV is 4.7. Round down, and use 4.

2) Calculate the VCO frequency with the final PLL frequency and the PLL divider:

 (7-4)
 VCO frequency = 12 MHz × 2
 = 12 MHz × 8
 = 96 MHz

3) Calculate the PHS bit 31 frequency you’ll need for the VCO frequency. It’s the VCO
frequency divided by 16:

PHS bit 31 frequency = 96 MHz ÷ 16

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 42 of 52

 = 6 MHz

4) Use the NCO frequency calculations to figure out the FRQ register value for the PHS bit 31
frequency:

 32
 2
 FRQ register = 6 MHz ─────────
 80 MHz

 = 322_122_547

Testing PLL Frequencies
The TestPllParameters object lets you control Counter A’s PLL output frequency by hand-entering
values for frqa and also ctra’s PLLDIV bit field into HyperTerminal. It transmits the frequency you
entered for 1 s, counting the cycles with Counter B set to NEGEDGE detection mode.

Although the PLL can generate frequencies up to 128 MHz, the Propeller chip’s counters can only
detect frequencies up to 40 MHz with counter modules. This concurs with the Nyquist sampling rate,
which must be twice as fast as the highest frequency it could possibly measure. Also, if you consider
that the edge detection mode adds FRQ to PHS when it detects a high signal during one clock tick and
a low signal during the next, it needs at least two clock ticks to detect a signal’s full cycle.

 Load TestPllParameters into the Propeller chip.
 Calculate FRQ register and PLLDIV bit field values for various frequencies in the 500 kHz to

40 MHz range.
 Enter the FRQ and PLLDIV values at the HyperTerminal prompts and verify that the

measured frequency is in the same neighborhood as your calculations.

{{
TestPllParameters.spin

Tests PLL frequencies up to 40 MHz. PHS register and PLLDIV bit field values
are entered into HyperTerminal. The Program uses these to synthesize square wave
with PLL mode using counter module A. Counter module B counts the cycles in 1 s
and reports it.
}}

CON

 _clkmode = xtal1 + pll16x ' System clock → 80 MHz
 _xinfreq = 5_000_000

OBJ

 SqrWave : "SquareWave"
 debug : "FullDuplexSerialPlus"

PUB TestFrequency | delay, cycles

 Debug.Start(31, 30, 0, 57600)
 waitcnt(clkfreq * 2 + cnt)

 ' Configure counter modules.
 ctra[30..26] := %00010 'ctra module to PLL single-ended mode
 'frqa := 322_122_547
 'ctra[25..23] := 2
 ctra[5..0] := 15

 ctrb[30..26] := %01110 'ctrb module to NEGEDGE detector
 ctrb[5..0] := 15

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 43 of 52

 frqb:= 1

 repeat

 Debug.str(String(10, 13, "Enter frqa: ")) 'frqa and PLLDIV are user intput
 frqa := Debug.GetDec

 Debug.str(String(10, 13, "Enter PLLDIV: "))
 ctra[25..23] := Debug.GetDec

 delay := clkfreq + cnt 'Precalculate delay ticks
 dira[15]~~ 'P15 → output
 phsb~ 'Wait 1 s.
 waitcnt(delay)
 cycles := phsb 'Store cycles
 dira[15]~ 'P15 → input

 Debug.str(String(10, 13, "f = ")) 'Display cycles as frequency
 debug.dec(cycles)
 debug.str(String(" Hz", 10, 13))

Metal Detection with PLL and Positive Detector Modes and an LC Circuit
Inductors are coils that when placed in a circuit have the capacity to store energy. They get used in
many types of applications, one of which is metal detection. There are lots of different kinds of metal
detection instruments aside from the ones you may have seen passed over the sands on just about any
beach on any given weekend. Other examples include instruments that identify the type of metal,
check for stress fractures in metal surfaces, and precisely measure the distance of a metal surface
from an instrument.

Even though there aren’t any inductors in the PE kit, there are lots of wires that can be shaped into
metal loops. When current passes through a metal loop, it becomes a small inductor. This portion of
the lab demonstrates how a cog can use two counters, one in PLL mode and the other in POS detector
mode, to send high-frequency signals into an LC (inductor-capacitor) circuit’s input, and infer the
presence or absence of metal by examining the circuit’s output signal.

Figure 18 shows a parts list and circuit for the PE Kit’s metal detector. Because of the small part
sizes and high frequencies involved, this circuit can be finicky. So, for best results, wire it exactly
like the breadboard photo shown in Figure 19. The capacitor and resistors should all be sticking
straight up off the board, and the two wires should be on the same plane as the board.

This circuit will also require some tuning. Figure 18 starts with R1 at 100 Ω, and R2 (100 Ω) and R3
(470 Ω) are in parallel. The notation these labs will use for parallel resistor combinations is R2 || R3.
Your particular circuit may require a larger or smaller resistor in parallel with either R1 or R2, but for
now, start with R1 = 100 Ω and R2 = 100 Ω || 470 Ω.

 Build the circuit in Figure 18 on your PE Platform exactly as shown in Figure 19.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 44 of 52

Figure 18: Metal Detector Parts and Schematic

Parts List Schematic
────────────────────── ──
(1) Capacitor 10 pF ┌───────────────── P13
(2) Jumper Wires │ 100 pF
(2) Resistors 100 ω │ R1 ┌─────┐
(misc) resistors: ┣────┫ ┣─── P15
220, 470, 1000, R2  └────┘
2000, 10k  2.5 inch
 GND wire loop

Make sure the wire loop you are using for an inductor is parallel to the surface of the board while the
other parts are perpendicular.

Figure 19: Metal Detector Wiring

Detecting Resonant Frequency
The LC circuit shown in Figure 18 is commonly called a bandreject, bandstop, or notch filter. The
filter attenuates a certain frequency sine wave component from an input signal, ideally down to
nothing at a certain frequency. The frequency that gets filtered is called the filter’s center frequency
as well as the LC circuit’s resonant frequency. Figure 20 shows a simulated plot of how the filter
responds to a range of input (P15) sine wave frequencies from 30 to 90 MHz. Notice that the filter’s
center frequency is 50 MHz. So, if the input were a sine wave, its amplitude would be attenuated
almost to nothing; whereas at frequencies well outside the filter’s center frequency, the output sine
wave amplitude would instead be in the 1.6 V neighborhood.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 45 of 52

Figure 20: Simulated P13 Output Vs. P15 Input for Sine Waves Frequencies

More about filters and simulation software:

If you swap R and C || L, you will have a bandpass filter. The frequency response is the upside-down version
of what’s shown in Figure 20. For more information on LC filters, look up terms frequency selective circuits,
filters, low-pass, high-pass, bandpass and bandreject in an electronics textbook.

The simulations in this section were preformed with OrCAD Demo Software, which is available for free
download from www.cadence.com.

Regardless of whether it’s a bandreject or bandpass filter, the circuit’s resonant frequency (fR) can be
calculated with this equation. L is the inductor’s inductance, measured in henrys (H), and C is the
capacitor’s capacitance, measured in farads (F). Of course, the L and C in Figure 18 are minute
fractions of henrys and farads, respectively.

LC

fR π2
1

=

Eq. 5

Rearranging terms makes it possible to calculate the inductance (L) based on frequency response
tests.

Cf

L
R

2)2(
1

π
=

Eq. 6

In this lab, the LC circuit’s input will be a square wave from P15. Although the output is still related
to the circuit’s filtering characteristics, its behavior will make a lot more sense if examined from the
step response standpoint. A circuit’s step response is especially important to digital circuits, and the
typical goal is to make the circuit’s output quickly and accurately respond to the input and settle at its
new value. The most desirable step response is called critically damped because it reaches the target
value as quickly as possible without overshooting it. Some designs can get quicker responses with an
underdamped circuit, but at a penalty of some oscillation above and below the new target voltage
before the signal settles down. Other designs need an overdamped step response, which is slower to
reach its target voltage, but ensures that no overshoot or ringing will occur.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 46 of 52

The simulated step response shown in Figure 21 is a fairly drastic case of an underdamped step
response. V(P15Step) in the upper plot is the LC circuit’s input signal. V(P13) is the output signal,
and V(Threshold) is a DC signal at the Propeller chip’s 1.65 V threshold. The simulation is not really
a typical step response because a 50 MHz square wave was applied for 960 ns before the so-called
step (high signal) was applied. The result was that the inductor and capacitor both accumulated some
stored energy, which makes V(P13)’s pseudo-step response to the right of the 960 ns mark more
pronounced than it would otherwise be. The important thing to notice about V(P13) to the right of the
960 ns mark is that it’s a sine wave that decays gradually. This sine wave occurs at the LC circuit’s
50 MHz resonant frequency.

Figure 21: P13 Response to Resonant Frequency at P15

Also, take a look at the V(P13) trace between 930 and 960 ns. With each transition of the 50 MHz
V(P15Step) signal, V(P13) starts a sine wave reaction that initially opposes the V(P15Step) input
signal. Since the V(P13) signal only gets through half of its 50 MHz sine wave response before the
V(P15Step) signal changes, the portions of those sine wave responses never make it above the
Propeller chip’s 1.65 V threshold.

Next, compare the V(P13) response to square wave frequencies slightly above and below the circuit’s
50 MHz resonant frequency, shown in Figure 22. At 47.62 MHz, the sine wave completes slightly
more than ½ of its cycle, part of which has climbed above the 1.65 V threshold voltage (designated by
the line with the + characters). At 49.02 MHz, the sine wave is still repeating more than a full cycle,
but not as much, so the signal spends less time above the threshold voltage. At 50 MHz, the input
frequency matches the sinusoidal response, and since only half the sine wave repeats, the signal
doesn’t spend any time above the threshold voltage. At 51.02 and 52.63 MHz, the signal again
spends some time above the 1.65 V I/O pin threshold, this time because the input signal changes
before the sine wave has completed its cycle.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 47 of 52

Figure 22: LC Circuit P13 Output Responses at Various Frequencies

The most important thing Figure 22 indicates is that the output signal, which can be monitored by
P13, will spend more time above the I/O pin’s logic threshold when the P15 input signal is further
away from the circuit’s resonant frequency, either above or below. The Propeller can use a counter in
PLL mode to generate square waves in the range of frequencies shown in Figure 22, and it can use
another counter on POS detector mode to track how long the circuit’s output signal spends above the
P13 I/O pin’s threshold voltage.

So, the Propeller chip can use two counter modules and a small amount of code to sweep the P15
PWM frequency through a range of values to find the resonant frequency of the Figure 18 circuit, but
how does that make it possible to detect metal? The answer is that a nearby metal object
electromagnetically interacts with the Figure 18 circuit’s wire loop inductor in such a way that it
changes its inductance, and also adds a small amount of resistance. When the circuit’s inductance
changes, its resonant frequency also changes, and the Propeller chip can detect that by sweeping P15
PLL frequencies and measuring P13 high times, which will reach a minimum at a different resonant
frequency as a result of a nearby metal object.

47.62 MHz

49.02 MHz

50.00 MHz

51.02 MHz

52.63 MHz

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 48 of 52

How Eddy Currents in a nearby Metal Object Affect the Loop’s Resonant Frequency
Figure 23 illustrates the electromagnetic interaction between a nearby metal object and the wire’s
loop inductance. The alternating currents through the loop cause alternating electromagnetic fields.
These alternating magnetic fields cause groups of electrons in the conductive metal to travel in
alternating circular paths. These magnetically induced circular paths are called eddy currents. The
alternating eddy currents generate magnetic fields that oppose the fields generated by the wire loop.

Figure 23: Eddy Currents Causing Opposing Magnetic Fields

The eddy currents shown in Figure 23 provide a very small, high-frequency example of how power is
transferred in AC lines. A coil connected to the power line is typically magnetically coupled with a
coil of fewer turns. The alternating current in the primary induces an alternating magnetic field that
induces AC current in the secondary winding. Figure 24 shows how the secondary winding and load
affect the primary. The secondary winding’s inductance and any resistive load can be seen in the
primary, and can be accounted for as L2’ and R’.

Figure 24: Eddy Currents Effects on the Loop’s Inductance

Figure 24 also represents how eddy currents, which have a certain inductance due to the fact that
eddies (circular electron currents) are induced in the metal, affect the primary circuit’s inductance and
resistance. So, eddy currents in the nearby metal object affect the metal loop’s inductance. Since the
loop’s inductance is measured by L in the resonance equation, it will change the LC circuit’s resonant
frequency. Also, since the Propeller chip can detect the circuit’s resonant frequency by sweeping
PLL square wave frequencies on one pin while measuring the number of ticks the circuit’s output
signal is above the threshold on another, the application can detect the presence or absence of nearby
metals.

I

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 49 of 52

Testing for Resonant Frequency
The Calibrate Metal Detector object below provides an interface for testing the LC circuit’s frequency
response with the Propeller chip. As mentioned earlier, the small values and relatively high
frequencies used with this circuit make it a little finicky. For example, if the capacitor is more than
90° from the loop, the resonant frequency drops, if it is less than 90°, the resonant frequency
increases. Also, the various parts will have slightly different characteristics, so it will take some
tinkering to set up the circuit so that the resistor divider will cause the LC circuit’s output signal to
stay below the I/O pin threshold at resonant frequency and creep above it as the frequency sweep gets
either further above or below it.

Figure 25 shows Calibrate Metal Detector.spin’s output after the circuit has been calibrated. The high
tick counts on the left actually resemble Figure 20’s frequency response plot. On the other hand, the
tick counts on the right show that there is still a resonant frequency, but it’s up in the 52+ MHz range.
Because the circuit inductive loop also experiences increased resistance, it may prevent the circuit
from attenuating the signal so that the high ticks never quite make it to zero.

Figure 25: Calibrated Metal Detector Response – without metal (left) and with metal (right)

Here is how to manually calibrate your metal detector circuit. Automatic detection is left for the
Projects section.

 Load CalibrateMetalDetector.spin into the Propeller Chip.
 Connect with PropellerCOM.ht.
 Press/release the PE Platform’s Reset button to restart the program.
 When prompted, enter a starting frequency, try 48_000_000.
 When prompted, enter a frequency step, try 200_000.

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 50 of 52

 Compare your display to the left sweep shown in Figure 25, looking not so much for your
values to match but that the overall profile is similar, which clearly indicates a resonant
frequency centered where the count = 0.

 If your display is showing a clear resonant frequency, try placing a quarter coin directly under
the metal loop, and press R to repeat the same frequency sweep.

 If your display changes significantly, like the right sweep shown in Figure 25, your metal
detector apparently doesn’t need any further calibration.

 If you are not seeing clear resonant frequencies, try refining the frequency start and frequency
step values so that the sweep clearly indicates the presence and absence of metal.

 If there is no apparent filter response, either all zeros, or values that are larger without an
apparent dip, try the suggestions below.

The circuit may instead need some tuning before it displays responses similar to those in Figure
25. If you instead see numbers that are either too high to show zeros or too low (all zeros), the
voltage divider likely needs to be adjusted. It is designed to make the output just under the
threshold voltage.

 If you see all zeros, the voltage divider needs to take less away from the signal. First, try

successively larger resistors in place of R3. Try 1 kΩ, then 2 kΩ, then 10 kΩ.
 If the voltage divider is still taking too much away from the signal, disconnect R3 entirely,

and instead add an R4 in parallel with R1. Start with a large resistor like 10 kΩ, and work
downward again, 2 kΩ, 1 kΩ, and so on. Repeat the frequency sweep between each
adjustment until you find a voltage divider that works for your circuit and Propeller chip’s
threshold voltage.

 If there is no apparent filter response, in other words, no cluster of low values like in Figure
25, you may need to search lower or higher frequencies after adjusting the voltage divider.
This involves starting the sweep at lower values, like 46 MHz instead of 48, and using
smaller increments, like 100_000 instead of 200_000, and selecting “M” or enter when
prompted by HyperTerminal.

 Once you are getting good resonant frequencies, can you also discern the metal object’s
distance, say between 1 mm, 5 mm and 10 mm?

{{
CalibrateMetalDetector.spin
}}

CON

 _clkmode = xtal1 + pll16x ' Set up 80 MHz internal clock
 _xinfreq = 5_000_000

OBJ

 Debug : "FullDuplexSerialPlus"
 frq : "SquareWave"

PUB Init | count, f, fstart, fstep, c

 'Start FullDuplexSerialPlus
 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*2 + cnt)

 'Configure ctra module for 50 MHz square wave
 ctra[30..26] := %00010

Copyright © Parallax Inc. ● PE Lab: Counters v0.8.0 ● 5/22/2007 ● Page 51 of 52

 ctra[25..23] := %110
 ctra[8..0] := 15
 frq.Freq(0, 15, 50_000_000)
 dira[15]~~

 'Configure ctrb module for negative edge counting
 ctrb[30..26] := %01000
 ctrb[8..0] := 13
 frqb := 1

 c := "S"

 repeat' until c == "Q" or c == "q"

 case c
 "S", "s":
 Debug.Str(String(10, 13, "Starting Frequency: "))
 f := Debug.GetDec
 Debug.Str(String(10, 13, "Step size: "))
 fstep := Debug.GetDec
 Debug.Str(String(10, 13))

 case c
 "S", "s", 13, 10, "M", "m":
 repeat 22
 frq.Freq(0, 15, f)
 count := phsb
 waitcnt(clkfreq/10000 + cnt)
 count := phsb - count
 Debug.Str(String(10, 13, "Freq = "))
 Debug.Dec(f)
 Debug.Str(String(" count = "))
 Debug.Dec(count)
 waitcnt(clkfreq/20 + cnt)
 f += fstep

 Debug.str(String(10,13,"Enter->more, Q->Quit, S->Start over, R->repeat: "))
 c := Debug.rx
 Debug.str(String(10, 13))

 "R", "r":
 f -= (22 * fstep)
 c := "m"

 "Q", "q": quit

 Debug.str(String(10, 13, "Bye!"))

Questions/Exercise/Projects/Solutions
Coming soon

Copyright © Parallax Inc. ● PE Lab: Counters v0.8 ● 5/22/2007 ● Page 52 of 52

Appendix A - SquareWave Object

'' SquareWave.spin

PUB Freq(Module, Pin, Frequency) | s, d, ctr

'' Determine CTR settings for synthesis of 0..128 MHz in 1 Hz steps
''
'' in: Pin = pin to output frequency on
'' Freq = actual Hz to synthesize
''
'' out: ctr and frq hold ctra/ctrb and frqa/frqb values
''
'' Uses NCO mode %00100 for 0..499_999 Hz
'' Uses PLL mode %00010 for 500_000..128_000_000 Hz
''

 Frequency := Frequency #> 0 <# 128_000_000 'limit frequency range

 if Frequency < 500_000 'if 0 to 499_999 Hz,
 ctr := constant(%00100 << 26) '..set NCO mode
 s := 1 '..shift = 1

 else 'if 500_000 to 128_000_000 Hz,
 ctr := constant(%00010 << 26) '..set PLL mode
 d := >|((Frequency - 1) / 1_000_000) 'determine PLLDIV
 s := 4 - d 'determine shift
 ctr |= d << 23 'set PLLDIV

 spr[10 + module] := fraction(Frequency, CLKFREQ, s) 'Compute frqa/frqb value
 ctr |= Pin 'set PINA to complete ctra/ctrb value
 spr[8 + module] := ctr

 dira[pin]~~

PUB NcoFrqReg(frequency) : frqReg
{{
Returns frqReg = frequency × (2³² ÷ clkfreq) calculated with binary long
division. This is faster than the floating point library, and takes less
code space. This method is an adaptation of the CTR object's fraction
method.
}}
 frqReg := fraction(frequency, clkfreq, 1)

PRI fraction(a, b, shift) : f

 if shift > 0 'if shift, pre-shift a or b left
 a <<= shift 'to maintain significant bits while
 if shift < 0 'insuring proper result
 b <<= -shift

 repeat 32 'perform long division of a/b
 f <<= 1
 if a => b
 a -= b
 f++
 a <<= 1

