

 HDMF User’s Manual

 Go Forth And Rock 1

HYDRA DENSE MUSIC FORMAT (HDMF)

USER’S MANUAL
Version 1.0

05/27/07

Eric Moyer
Midnight Tea Studios
Huntington Beach, CA

 HDMF User’s Manual

 Go Forth And Rock 1

TABLE OF CONTENTS

1. HDMF Overview...4
1.1. The HDMF Tool Chain ...5
1.2. Features ..6

1.2.1. MIDI Translation..6
1.2.2. Nicophilic ..6
1.2.3. Polyphony..6
1.2.4. Fine Temporal Granularity ..6
1.2.5. “Velocity” Control ..6
1.2.6. Frequency Control..6
1.2.7. Instruments ...6
1.2.8. Simplicity..7
1.2.9. Data Density...7
1.2.10. Graceful Degradation ...7

2. Installation...8
2.1. HDMF Drivers and Demos ..8
2.2. HDMF Converter...8

3. The Demos..9
3.1. HDMF RAM Demo ..9
3.2. HDMF EEPROM Demo...9
3.3. HDMF LITE PLAYER Demo...10

4. A Quick HDMF Converter Walkthrough..11
4.1. Playing your first song..11
4.2. Track Transposition...11
4.3. Muting Tracks..12
4.4. Assigning Instruments to Tracks...12
4.5. Defining Instruments..12
4.6. Controlling Tempo...13

 HDMF User’s Manual

 Go Forth And Rock 2

4.7. Controlling Song Transposition ..13
4.8. Stuff You Can’t Do...13

5. Using the HDMF Converter Application...14
5.1. Viewing raw MIDI file data ...14
5.2. Making Spin HDMF Data Sets..14
5.3. Exporting HDMF Assets for EEPROM storage..14
5.4. Options ...15

5.4.1. Force 6 Byte Notes...15
5.4.2. Verbose Logging ..15
5.4.3. Log Source Data ..15

6. Creating and Using RAM based HDMF assets ..16
7. Creating and Using EEPROM based HDMF assets...17
8. The “HDMF Lite” Player ..18

8.1. Using the Lite Player..18
8.2. Tips for good Lite Player Results ..18

9. How Many Cogs? ..19
10. The HDMF Data Format...20
11. Building the HDMF EEPROM Demo ...23
12. The Hydra Asset Manager (HAM) ...24
13. Hey what about game sound effects?...25

 HDMF User’s Manual

 Go Forth And Rock 3

With many thanks to my wonderful wife Krisula for understanding my

 strange and often unjustifiable obsession over this project.

“If it sounds good it is good”

 -Duke Ellington

 HDMF User’s Manual

 Go Forth And Rock 4

1. HDMF Overview

HDMF Stands for “Hydra Dense Music Format”. It is a data
format and supporting tool / driver suite enabling complex and
emotive polyphonic music to be played on the Hydra system
with minimal memory overhead.

HDMF was designed to allow Hydra game music to be
developed using industry standard MIDI tools, or to be
imported from existing MIDI files.

HDMF provides an “end to end” solution, allowing you to
convert MIDI data easily to a format which can be
incorporated into Hydra projects and played/stopped with
simple driver calls.

 HDMF User’s Manual

 Go Forth And Rock 5

1.1. The HDMF Tool Chain

The HDMF tool chain allows you to create MIDI content, edit it for playback, preview the results immediately on a Hydra target
system, convert your data into a storage format appropriate for your game (either as local data in RAM, or as assets stored in
EEPROM), and to easily play/stop content from within your program.

 HDMF User’s Manual

 Go Forth And Rock 6

1.2. Features

1.2.1. MIDI Translation

MIDI data can be translated into HDMF very efficiently. I
wanted to be able to compose music in an external toolset
and then import it into a game, using all the musical goodness
that MIDI has to offer (polyphony, velocity, time granularity,
etc.).

The HDMF Converter application reads MIDI file data and
outputs ‘DAT’ section code which can be cut and pasted
directly into the Propeller IDE, or binary data which can be
stored in upper EEPROM using the Hydra Asset Manager
(HAM). In a nutshell, it’s quick and painless.

1.2.2. Nicophilic

I am a “Nicophile”; I just love Nick Sabalausky’s fabulous
Hydra sound driver and I can’t say enough good things about
it. HDMF was written to bolt directly into Nick’s driver, in
that the format can be readily translated into PlaySoundFM()
calls. As Nick’s driver grows and changes in the future, HDMF
will have an easy time picking up the new features and
remaining compatible.

1.2.3. Polyphony

The HDMF format (yes, I realize that is redundant :) supports
up to 8 voice polyphony. Today the HDMF Converter limits
file generation to 6 voices, because that is what Nick’s sound
driver currently supports.

1.2.4. Fine Temporal Granularity

Part of what makes MIDI sound so good (and simple formats
like RTTTL sound so lifeless) is that RTTTL only specifies note
start times and durations on fixed time boundaries (quarter
notes, half notes, etc.). MIDI allows note start and end times
to be specified with typically 96 divisions per quarter note
(although the spec supports other divisions). HDMF specifies
note start times and durations on a 10msec boundary,
allowing the human aspects of a live performance to come
through.

1.2.5. “Velocity” Control

Like MIDI, HDMF stores the volume (or “velocity”) of each
note separately, so that performance dynamics can be
expressed. HDMF currently uses 5 bits of velocity information
(MIDI uses 8).

1.2.6. Frequency Control

HDMF is currently capable of playing notes at arbitrary
frequencies. This potentially allows the encoding of pitch bend
and detune effects. Frequencies are currently stored as 13
bits.

1.2.7. Instruments

HDMF supports the declaration of 8 playback “Instruments”,
where each instrument is defined by a “wave shape” and an
“amplitude envelope” (as defined/implemented in Nick’s sound
driver). Any of the 8 playback instruments can then be
assigned to each playback note.

 HDMF User’s Manual

 Go Forth And Rock 7

In the future I intend to explore the possibility of supporting
PCM “instruments” for (limited) percussive effects. PCM data
tends to be large, so I don’t anticipate people wasting the data
space for whole drum kits or anything, but a single snare or
wood block might be fun if the data set were small.

1.2.8. Simplicity

HDMF is simple. To play a song just call the driver and pass it
the address of an HDMF song data set located either in RAM
or in EEPROM. HDMF song data can be generated from MIDI
files with just a few clicks using the HDMF Translator
application.

1.2.9. Data Density

For the features it aims to support, HDMF is very dense. Each
note takes either 5 or 6 bytes to represent (Notes with a
duration shorter than 1.28 seconds take 5 bytes, longer notes
take 6)

1.2.10. Graceful Degradation

The HDMF Converter does its best to render MIDI into
HDMF using the channels you give it. If you want 4 channels
for music and 2 left over for game sound effects, then you
crank the HDMF Converter down to 4 channels and let it rip.
As gracefully as possible the converter will attempt to squeeze
your MIDI data into the available channels, cutting notes short
if necessary. Of course, it you want a superior experience you
should compose/choose music that meets your design
constraints.

 HDMF User’s Manual

 Go Forth And Rock 8

2. Installation

2.1. HDMF Drivers and Demos

Unzip the install package into an hdmf subdiretory under
your main Hydra directory (for example C:\hydra\hdmf).

The source code is all located in “..\Spin Source”. You will
need to supply the Hydra drivers listed below yourself since
they are not public domain. Place a copy of them in the
“..\Spin Source” directory.

• NS_eeprom_drv_011.spin

• NS_sound_drv_052_22khz_16bit.spin

• copio_drv_001.spin

2.2. HDMF Converter

If you already have the latest Microsoft .NET Framework
installed then you can try running the “HDMF
Translator.exe” executable included with the distribution
package. If it runs, you’re done!

If not, unzip the installer (HDMF Translator Installer.zip)
and run setup.exe to install it.

 HDMF User’s Manual

 Go Forth And Rock 9

3. The Demos

3.1. HDMF RAM Demo

This program demonstrates the capabilities of the HDMF
player when playing song assets from RAM. Use Up/Down on
Gamepad 0 to select a song. Press A to play the selected
song. Press B to stop the current song.

Figure 1: HDMF RAM Demo

3.2. HDMF EEPROM Demo

This program demonstrates the capabilities of the HDMF
player when playing song assets from EEPROM. Use
Up/Down on Gamepad 0 to select a song. Press A to play the
selected song. Press B to stop the current song.

Since this demo uses assets stored above the 32K program
space in EEPROM it must be loaded using the Hydra Asset
Manager (HAM) utility (see section 12).

To build load the assets from scratch and build the demo from
source code see section 11.

Figure 2: HDMF EEPROM Demo

To load the 128K demo binary, do the following:

1) Load the HAM driver into the propeller IDE and run it
(benson_ham_driver_1_06.spin). You'll see a load
screen appear on your Hydra TV, and it will say
"Waiting".

2) Run the Hydra Asset Manager Windows application.

3) Set the COM port to the port your Hydra is attached
to.

4) Drag the binary demo file
(EPM_HDMF_EEPROM_DEMO_010.eeprom)
into the "Memory Map" window in the HAM windows
application
NOTE: There is currently a small bug in HAM which means
you have to drag the EEPROM file to a point just above the
black "Memory Map" box (otherwise it will show you an

 HDMF User’s Manual

 Go Forth And Rock 10

error near the bottom of its screen saying that the asset
"doesn't fit"). If you get the error just try again until you get
it to drop in.

5) Click "Upload to Hydra"

6) When the upload is complete you will get a
"Programming complete" message from HAM.

7) Reset your Hydra and the Demo will start

3.3. HDMF LITE PLAYER Demo

This program demonstrates the capabilities of the HDMF Lite
player. The Lite player is a “cogless” driver, and its
performance is largely dependant upon the frame rate of the
game loop from which you call its do_playback() function. Ok,
its not really “cogless”, since it does load the sound driver
into a cog, but obviously you need that one.

In order to demonstrate the behavior of the driver at different
frame rates, the demo simulates a the calling procedure’s
frame rate, shown in Frames Per Second (FPS). The simulated
frame rate can be modified on the fly in order to preview its
effect on playback quality.

Use Up/Down on Gamepad 0 to select a song. Press A to
play the selected song. Press B to stop the current song.
Press “Start” to toggle song looping on and off (this option will
not affect a song in progress, only the next song started).
Press Left/Right to modify the simulated Frame Rate.

Figure 3: HDMF Lite Demo

 HDMF User’s Manual

 Go Forth And Rock 11

4. A Quick HDMF Converter Walkthrough

4.1. Playing your first song

Connect your Hydra system to your PC’s USB port. This
must be done before starting the HDMF Converter, or the
Converter will fail to recognize the Hydra’s assigned serial
COM port.

Start the HDMF Converter.

In the “COM Port:” combo box select the COM port of the
Hydra.

Use the Propeller Tool to start the HDMF Live Player and
leave the PC to Hydra USB cable connected.

Figure 4: HDMF Live Player

In the Converter, click “Load MIDI File” and select “Ms.
Pacman.mid” from the “..\Examples” directory.

The file will load and a bunch of MIDI parsing information will
appear in the Converter console; ignore it for now.

Click “Send to Live Player”. If everything is configured
properly you will see the file download and will hear the Ms.
Pacman theme playing from your Hydra.

4.2. Track Transposition

Click “Configuration” to open the Configuration window.

 HDMF User’s Manual

 Go Forth And Rock 12

The bottom section labeled “Tracks” gives you control over
the individual tracks in the source MIDI file. Track 0 typically
contains no note data, which is true of this example song. In
this song the melody is on track 1 and the bass is on track 2,
but the bass notes are too low to hear clearly so let’s bring
them up an octave.

Click the Transpose Combo box for track 2 and change it to
“+12” (i.e. 12 half steps, or one octave). Click “Send to Live
Player”. The bass line now plays an octave higher.

4.3. Muting Tracks

To hear the bass line by itself, mute track 1 by unchecking the
“Enable” box for track 1, and click “Send to Live Player”.
Only track 2 will sound (Track 0 contains no notes, and tracks

3 and up do not exist in the source MIDI file). Re-enable
track 1.

4.4. Assigning Instruments to Tracks

Each track can be assigned to one of 8 “Instruments”. To
assign an instrument to a track select it in the “Instrument”
Combo Box. Set track 1 (the melody) to instrument 1.

The song will still sound the same because at startup all the
instruments are defined the same way, and we haven’t
modified instrument 1 yet.

4.5. Defining Instruments

Each instrument is defined by its waveform and its amplitude
envelope.

Change the Waveform of instrument 1 from “Sine” to
“Sawtooth” and play the song again to hear the difference.

Experiment with the other waveforms, then set instrument 1
back to “Sawtooth”.

Amplitude envelopes are defined by a 32 bit word where each
nibble (4 bits, 0 – F) defines the volume of a different part of
the playback note in segments which are 1/8th of the note’s
total playback time. The nibbles appear backward in time, so
0x12345678 will cause a note to fade away slowly, and
0x87654321 will cause a note to ramp up in volume. Set
Instrument 1’s Envelope to “Pizzicato” and listen to the result.

When done, set the Envelope back to “Bell Fade”.

 HDMF User’s Manual

 Go Forth And Rock 13

4.6. Controlling Tempo

Most MIDI files contain tempo information, and some contain
elaborate tempo maps which alter the tempo throughout the
playback of an entire song. Today the HDMF converter only
pays attention to the first Tempo directive found in a MIDI
file, and ignores the rest. Sometimes this tempo is
inappropriate for playing back the whole song and you will
want to modify the tempo manually.

Change the value in the “Tempo Scale:” box to “2” and click
“Send to Live Player”. The song plays twice as fast.

Change the value in the “Tempo Scale:” box to “0.5” and click
“Send to Live Player”. The song plays twice as slow.

You changed it to 10 or something, didn’t you? Well if you
didn’t go ahead and try it. You’ll find that HDMF can play
back at very fast rates.

You’ll also find that there is no bounds checking on the
number you enter here. The realistic limits depend on the
song data you are working with. Yes, you can set it so fast /
slow that you cause nasty things to come from your speaker.
So, um, just don’t do that.

Set the tempo back to 1.0 when you are done.

4.7. Controlling Song Transposition

Use the “Transpose” box in the “Global Song Settings” area
to transpose a whole song up or down in key. Settings are
listed in half-steps, with +12/-12 being an octave up/down
respectively.

4.8. Stuff You Can’t Do

There are few things which cannot be done in the current
version of the HDMF converter:

1) Volume mixing

2) Manual entry of custom volume envelopes

3) Total volume control

These features may be added at a later date. All can be
achieved if necessary by manually editing the song data
generated by the converter.

 HDMF User’s Manual

 Go Forth And Rock 14

5. Using the HDMF Converter Application

If you have not already formalized yourself with the
walkthrough in section 3 you should run through that section
first as it covers most of the Converter’s features.

5.1. Viewing raw MIDI file data

Load a MIDI file. Click “Dump File”. The contents of the
currently loaded file will appear in the console, dumped in
Hexadecimal and ASCII

Source data dump:

00000000: 4D 54 68 64 00 00 00 06 |MThd....

00000008: 00 01 00 03 01 80 4D 54 |......MT

00000010: 72 6B 00 00 00 2C 00 FF |rk...,..

…

000001E8: 91 24 64 81 3C 81 24 64 |.$d.<.$d

000001F0: 04 91 29 64 81 3C 81 29 |..)d.<.)

000001F8: 64 00 FF 2F 00 |d../.

5.2. Making Spin HDMF Data Sets

Clicking “Make Spin Data” will dump the HDMF song data set
(formatted for inclusion in a spin code “DAT” section) to the
console. You can copy the data from the console (select the
relevant lines and hit Ctrl-C) and paste it directly into your
Spin code.

Making HDMF data set...

Song will be constrained to use no more than 6 channels.

_song_data

 byte $02, $EF, $AD, $79, $35 'Instrument 0

 byte $FF 'End of Instrument list

 byte $00, $02, $0B, $0C, $08

 byte $08, $02, $4B, $0C, $08

 byte $09, $02, $93, $0C, $08

...

 byte $00, $25, $27, $0C, $18

 byte $19, $00, $AF, $0C, $18

 byte $00, $25, $75, $0C, $18

 byte $ff

This data set contains everything necessary for the HDMF
player to play the song. It is very nearly identical to the data
set which gets sent to the live player when you click “Send to
Live Player” with the exception that when you send data to
the live player notes are encoded using six bytes each,
whereas here each note may be encoded using either five or
six bytes depending upon the note’s duration. See section 10
for a detailed explanation of the HDMF data format.

5.3. Exporting HDMF Assets for EEPROM storage

Clicking “Save HDMF binary” will open a file save dialog box,
allowing you to save the HDMF song data set as a binary file.
Binary HDMF files can be easily stored in upper EEPROM
(above the lower 32K used for code) using the Hydra Asset
Manager (HAM) utility (see section 12). HDMF data can be
easily played from EEPROM using the HDMF driver.

See section

 HDMF User’s Manual

 Go Forth And Rock 15

5.4. Options

The following options can be enabled from the main HDMF
converter window:

Figure 5: HDMF Converter Options

5.4.1. Force 6 Byte Notes

HDMF notes will normally be encoded with a length of either
5 or 6 bytes depending each note’s duration (see section 10).
Setting this option will force all notes to be encoded using 6
bytes regardless of the necessary space required to store their
durations.

This feature is included to support specialized application
where you may wish to provide seek capabilities forward and
backward through a song, in which case having a fixed note
size is preferable.

You should normally leave this box unchecked to make your
song data sets as small as possible.

5.4.2. Verbose Logging

Turn this option on to see all the parsing the HDMF
converter does when processing a MIDI file.

5.4.3. Log Source Data

This option can on be enabled if Verbose Logging is on.
When enabled, it will cause the original raw (i.e. hex) MIDI
data to be logged alongside each snippet of MIDI data
interpreted by the parser.

 HDMF User’s Manual

 Go Forth And Rock 16

6. Creating and Using RAM based HDMF
assets

To create RAM based HDMF assets (i.e. to get song data into
your Spin code):

1. Load a MIDI file

2. Get it sounding the way you want it using the Live
Player and the Configuration options.

3. Click “Make Spin Data”.

4. Copy the Spin data into the DAT section of your spin
code.

5. Rename the default song start address label
(“_song_data”) to something more descriptive.

To play RAM based HDMF Assets.

1. Include the HDMF player object

2. Start the HDMF player object

3. Call play_song() and pass it the starting address of
your HDMF song data.

OBJ

 hdmf : "EPM_HDMF_driver_004.spin" 'HDMF song driver

PUB start | i

 ...

 ‘start music driver

 hdmf.start(0 {debug off})

 ‘play song

 hdmf.play_song(@_song_pacman, 0 {no flags})

For an example of how to play RAM based assets see the
HDMF RAM Demo source code.

 HDMF User’s Manual

 Go Forth And Rock 17

7. Creating and Using EEPROM based
HDMF assets

To create EEPROM based HDMF assets (i.e. to get song data
into your Spin code):

1. Load a MIDI file

2. Get it sounding the way you want it using the Live
Player and the Configuration options.

3. Click “Save HDMF Binary” and save the file.

4. Use the Hydra Asset Manger (HAM) to place the
binary HDMF asset file into upper EEPROM (i.e. above
the lower 32K program space).

5. Note the starting address of the song asset. In the
following figure the song “Beale Street Blues” starts at
0x0b324 in EEPROM.

Figure 6: HAM Asset Example

To play EEPROM based HDMF Assets.

1. Include the HDMF player object

2. Start the HDMF player object

3. Call play_song() and pass it the starting EEPROM
address of your HDMF song data, OR’d with the
“EEPROM_ASSET” flag.

OBJ

 hdmf : "EPM_HDMF_driver_004.spin" 'HDMF song driver

PUB start | i

 ...

 ‘start music driver

 hdmf.start(0 {debug off})

 ‘play song

 hdmf.play_song($0b324 | hdmf#EEPROM_ASSET , 0 {no flags})

For an example of how to play EEPROM based assets see the
HDMF EEPROM Demo source code.

 HDMF User’s Manual

 Go Forth And Rock 18

8. The “HDMF Lite” Player

The HDMF Lite player was created for the special case where
you want to play RAM (i.e. not EEPROM) based HDMF assets
but you can only spare a single cog (which will be used to run
the sound driver).

Instead of running concurrently like the HDMF driver, the
HDMF Lite Player has a service function (do_playback())
which gets called from within your main game loop. Because
it is not a true concurrently executing process it has several
limitations:

1) Your main game loop must be very fast. The player
only gets a chance to start notes when it is called, so if
you only call it 5 times a second then you’ll never be
able to play back songs with notes occurring faster
than that. In practice, you’ll probably need a 20FPS
(Frame Per Second) or greater game loop time to use
the Lite Player.

2) The music you play cannot be too complex. Each note
of a chord will get played by a separate call to the
player. The more chords / voice parts in your song,
the more difficult it will be to render with the Lite
Player.

3) The longer your main loop frame rate, the less
accurate the note start times will become. It doesn’t
take too much start time inaccuracy for music to
sound awkward.

8.1. Using the Lite Player

RAM based assets should be created the same way detailed in
section 6.

To play RAM based assets with the Lite Player.

1) Include the HDMF Lite player object

2) Start the HDMF Lite player object using the start() call.

3) Call play_song() and pass it the starting address of
your HDMF song data.

4) Call do_playback() in your main code loop at least
once per loop iteration.

8.2. Tips for good Lite Player Results

1) Keep songs simple. Try to avoid pieces where more
than 2 notes start at the same time.

2) Keep your main loop fast.

3) You can call do_playback() as many times as you like
within the main game loop. The more often you call
it, the more accurate the playback timing will be; but
the calls should be spread out as evenly in time as
possible (i.e. just calling do_playback() twice at the end
of your main loop will not sound as good as calling it
once in the middle and once at the end).

 HDMF User’s Manual

 Go Forth And Rock 19

9. How Many Cogs?

The HDMF driver currently uses 3 cogs; one for itself (the
HDMF driver), one for the sound driver, and one for the
EEPROM driver.

In a future release the EEPROM driver code will be merged
with the HDMF driver so that loading the HDMF driver
consumes only 2 cogs instead of the current 3.

If you are using the HDMF driver but have no assets stored in
EEPROM (i.e. all your assets are RAM based) you can free a
cog by commenting out the EEPROM bits of the HDMF driver.

The HDMF Lite driver uses only 1 cog.

 HDMF User’s Manual

 Go Forth And Rock 20

10. The HDMF Data Format

HDMF song data consists of two sections; an instrument
section and a song data section.

The instrument section contains data for 1 to 8 instruments
(each consisting of 5 bytes), followed by a section termination
byte (0xff).

The note data section contains of any number of notes (each
consisting of 5 or 6 bytes), followed by a section termination
byte (0x0ff)

Figure 7: HDMF song data

Instrument entries have the following format:

Figure 8: Instrument Entry

 HDMF User’s Manual

 Go Forth And Rock 21

waveform is one of:

Value Waveform
0x01 Silent
0x02 Sine
0x03 Saw tooth
0x04 Square
0x05 Triangle
0x06 Noise

volume_envelope is defined as 32 bits interpreted as eight 4
bit nibbles (0x0–0xF) where each nibble represents the

volume of the output note for 1/8th of the note’s playback
time. Nibbles are arranged in reverse time order (i.e.
0x12345678 represents a fade out and 0x87654321
represents a fade in).

Note entries may use either of the following two formats:

Figure 9: Note Entry

 HDMF User’s Manual

 Go Forth And Rock 22

The fields within a Note Entry have the following definition:

Field Definition
time The playback time of the note, relative to

the start of the previous note, in 10
millisecond ticks.
Range: 0 to 255 (0 to 2.5 seconds)

channel The playback sound channel (i.e. which of
the sound driver’s channels the note will
be played on)
Range: 0 to 7 (But only 6 channels are
currently supported)

frequency Frequency in Hz.
Range: 0 to 8191

instrument The playback instrument.
Range: 0 to 7

volume The playback volume.
Range: 0 to 31 (MIDI data uses a range of 0-
127 (7 bits), which is scaled from MIDI’s7
bitts down to HDMF’s 5 bits. 31 represents
full volume).

duration The note’s playback duration. This value
will be encoded using either 1 or 2 bytes
depending on the required range. If the
high bit of the first duration byte is set,
then the duration is stored in 2 bytes,
otherwise a single byte is used. Duration
is represented in ticks at the sample rate
of the sound driver (22khz).
Range: 0 to 127 (uses 1 byte), 128 to 32767
(uses 2 bytes).

Table 1: Note Entry Fiend Definitions

 HDMF User’s Manual

 Go Forth And Rock 23

11. Building the HDMF EEPROM Demo

If you want to build the EEPROM Demo from source code
then you’re going to need to use HAM to get the EEPROM
demo and song assets into memory (see section 12).

Drag the 32K demo image into the top of the HAM memory
map window, and then drag all the song assets so that they
match the screenshot below.

Figure 10:Hydra Asset Manager (HAM)

The easiest way get the assets compacted together is to drag
them in first and then use HAM’s “Compress Assets” button
to push them together automatically.

Once you have reproduced the memory map shown you can
upload the entire image to the Hydra.

NOTE: In case you’re wondering, once you put assets into the
region above 32K you can still compile and load your code using
the Propeller Tool. When loading your propeller code to EEPROM
the Propeller Tool will not erase or modify your data above the
standard 32K code image.

 HDMF User’s Manual

 Go Forth And Rock 24

12. The Hydra Asset Manager (HAM)

The Hydra Asset Manager (HAM) is an application which
enables you to place data in the 96K region above the bottom
32K used for Propeller code.

The latest version of HAM can be found in the HAM posting
on the Parallax forums here:

http://forums.parallax.com/forums/default.aspx?f=33&m=16849
0

At the time of this writing the latest version of HAM is 1.06.

 HDMF User’s Manual

 Go Forth And Rock 25

13. Hey what about game sound effects?

The next version of the HDMF driver will include a “Pass
through” call which lets you call the sound driver via the
HDMF driver for sound effects playback. It’s pretty trivial to
add yourself if you need it now; just be careful to use a lock
(i.e. LOCSET(), LOCKCLR()) around both the new
PlaySoundFM() call and the one you add; they’ll be getting
called from different cogs so you’ll need to use the locks to
keep the calls from colliding.

The HDMF Converter allows you to restrict songs to some
fixed number of channels. The intention is that you can, for
example, restrict a song to 4 channels thus leaving yourself the
upper 2 for game sound effects.

A future version of the HDMF driver will likely also support
track muting so that one channel of a song in progress can be
temporarily borrowed (muted) for sound effects use and then
released (un-muted) when done. The HDMF converter
schedules notes so the lower number channels are used as
much as possible, thus the fewest notes possible end up
scheduled in the upper channels you give it, in anticipation of
channel “borrowing”.

