
1

1

SX-Tech Toolkit and SX/B

Point out that we are experimenting with the SX Tech Toolkit, which has the
SX-Key programming and debugging tool, the SX Tech carrier board with
socket and breadboard, two 28 pin versions of the SX chip, a 4 MHz oscillator, a
50 MHz oscillator, and a serial cable for programming. (Dr. Matthews, there’s a
USB to serial converter included in your package in case your PCs are USB
only.)

Explain that this kit’s 28 pin SX microcontroller has 20 I/O pins, and that
there’s also a 48 pin version with 36 I/O pins (and some extra RAM and Flash
program memory too). Emphasize that you can do really involved projects with
the SX28 and that many students with projects will never encounter limitations
that would make them consider the SX48. Additionally, SX28 chips can easily
be networked for larger projects as well as group projects where individual
students are making modules. While SX48 chips are only available in SMT
packages, there is also an SX48 Proto Board (Stock#: 45300) if the project
really does requires that much memory and/or I/O pins.

2

2

SX-Tech Toolkit and SX/B

Explain the power supply and programming/debugging connection between
board and PC.
The software for programming and debugging is called the SX Key IDE
(integrated development environment).
This IDE supports two languages: SX/B (BASIC) and SX assembly. Programs
can also be a mixture of the two languages.
Download the SX Key IDE from http://www.parallax.com/sx/sxb.asp.
Download the SX Key/Blitz Development System Manual from the same page
(http://www.parallax.com/sx/sxb.asp.)
Connect the SX Tech board (with SX chip) as shown in the slide.
Run the software.

3

3

Software Settings

If the software doesn’t automatically make you look at these screens, click Run
and Select Configure. Click the IDE category, and make sure SX/B is selected.
Click the Assembler category, and make sure the boxes shown on the right are
checked/not checked as shown.

4

The Editor

Save Assemble Debug

The example programs are in a zip file that accompanies this slide show. This program is an empty
template that does nothing (over and over again) since there are no commands between the DO and LOOP
keywords. The device directives tell the IDE that you are writing programs for the 28 pin SX chip
(SX28L), that the chip should use its internal 4 MHz oscillator (OSC4MHZ). There are lots of different
oscillator settings for either internal or external oscillators. From the Device Settings table in the SX-
Key/Blitz Development System Manual, you can find the settings for the SX Tech Toolkit’s external 4 MHz
and 50 MHz oscillators (OSCXT2 and SXCHS3). There are three more settings that are beyond the scope
of this introduction, but they are necessary for the SX/B compiler, and there’s almost never a reason to
change them or leave them out.

NOTE: You can use the SX-Key/Blitz Development System Manual to find out about device directives.
You can also click Help -> SX/B Help to find out about most of the other keywords in the program (DO,
LOOP, PROGRAM, FREQ, etc.).

If you end up using the debugging tools (next slide) FREQ 4000000 tells the SX-key to clock the SX chip
at 4 MHz while it’s in debugging mode. If it’s running on its own, it will instead use the
device…OSC4MHZ directive.

PROGRAM Start tells the compiler to start at the Start: label. Sometimes, there is an interrupt service
routine between the PROGRAM directive and the label that signifies the beginning of the program. This
will be explained in the sixth and last demonstration program that accompanies this slide show.

To debug a program, click the Save, Assemble and Debug buttons (in that order). There are also buttons
for Run and Program that you would use to program the chip to run its program on its own, without being
connected to the software and SX-Key. There are also more options you can see by clicking the IDE’s Run
menu.

Open “0 Get Started Template.SXB” (File -> Open).
Then, click the Save, Assemble and Debug buttons.

5

The Debugging Environment

The debugging environment will look similar to this. The registers window
shows the state of the SX chip’s RAM. The Code – List file shows the assembly
version of the SX/B code, along with commented SX/B code commented to the
right of the corresponding assembly code. The Code – List File window also
shows the line number and machine codes. The blue bar in the Code – List File
window shows the current command getting executed, and you can click a line
in the window to make the red line appear. That’s a breakpoint, and by clicking
it again, you can toggle the breakpoint off. The Debug window has buttons for
stop, Walk, Run, and Poll. Poll is ideal for when you have a WATCH directive,
which will cause the Watch window to show the value of one or more variables.
The Poll mode updates all the registers (and the Watch window) every it passes
the break point. The break point will cause other debug modes such as Run, and
Walk to halt when they get there. Run is for full speed execution, and Stop is to
manually halt full speed execution.

Click Quit to exit the Debugging environment.

6

Four CircuitsRC6

Vss

LED
470 Ω

Vss

RB7

Pot
10 kΩ

X

0.1 µF

220 Ω nc

Vss

RC1

Vdd

10 kΩ

Vss

RB3
220 Ω

Here are the four circuits the example programs will work with along with a
wiring diagram. For more information about these circuits, consult What’s a
Microcontroller by Andy Lindsay (Chapters 2, 3, 5, and 8). It’s available for
PDF download (no charge) from www.parallax.com.

7

The LED Circuit

RC6

Vss

LED
470 Ω

We’ll start with the LED circuit. Explain LED circuit theory of operation.
Note that the LED is connected to RC6!!!

8

SX28

On/Off Control

RC6
19

Vdd

Vss

VSS

RC6
19

Vdd

Vss

SX28

VSS

Instruct group to open “1 Blink Led.SXB”.
Explain how the chip is programmed to short RC6 alternately to Vdd and Vss
using the HIGH and LOW commands. The PAUSE commands make the LED
blink on/off at human speed instead of electronic speed. Because the HIGH,
LOW, and PAUSE commands are between DO and LOOP, they are repeated
indefinitely.

9

Digital Input - Pushbuttons

Vdd

10 kΩ

Vss

RB3
220 Ω

Commands like HIGH, LOW, and TOGGLE can make the pin an output.
However it will default to a high impedance input of none of those commands
are used. As an input, the I/O pin will sense 0 V (Vss) if the button is not
pressed, or 5 V if the pushbutton is pressed. The 220 ohm resistor is there to
protect the I/O pin in case a LOW command is used on RB3 by accident.
Without the 220 resistor, this command would cause the chip to try to short RB3
to ground, and it would battle with the Vdd connection until its I/O drivers fry.

10

10

SX28

SX28

Sensing a Pushbutton

RB3
8

1

0

Vdd

10 kΩ

Vss

220 Ω

8

1

0

Vdd

10 kΩ

Vss

220 Ω

RB3

The RB register stores the states of all the RB bank of I/O pins. When you press and
release the pushbutton, other RB pins that are floating may change state, but RB.3 will
change with the pushbutton. To observe this:
Save, Run, Debug
Set a breakpoint at the DO keyword in the Code – File List window.
Click Poll in the Debug window.
Press and release the pushbutton while watching the RB3 bit carefully. It will be 1 if
the I/O pin senses above 2.5 V or 0 if it’s below 2.5 V.

11

11

Pushbutton Control of LED Circuit

Vdd

10 kΩ

Vss

RB3
220 Ω

RC6

Vss

LED
470 Ω

Vss

LED
470 Ω

This program uses IF…THEN statements to make the LED blink when the
pushbutton is pressed (RB.3 = 1). Otherwise (ELSE), it just pauses for 2/10 of a
second and checks again.

Open/Save/Compile/Run “2 Poll Pushbutton Control LED.sxb”
Note that nothing is happening.
Press and hold the pushbutton and verify that it causes the light to blink.

12

12

Measuring Rotation

Vss

RB7

Pot
10 kΩ

X

0.1 µF

220 Ω nc

I/O pins can also be bidirectional. To measure the resistance of this
potentiometer (pot), the I/O pin can be set to output high to charge the capacitor.
Then, it can be changed to input, and the SX chip can measure the amount of
time it takes the capacitor to discharge to the 2.5 V input logic threshold voltage
through the POT. This decay time would be directly proportional to the pot’s
resistance if it weren’t for the voltage divider caused by the 220 resistor.

13

13

HIGH RB.7

PAUSE 1

RCTIME RB.7, 1, time, 5

RC-Time

Vss

RB7

Pot
10 kΩ

X

0.1 µF

220 Ω nc

Although you could write an assembly routine to do this accurately, or a SX/B
routine to do it fairly well, there’s already an SX/B command called RCTIME
that results in assembly code that measures the RC decay time for you. The
SX/B command is called RCTIME. Try the example program shown in the next
slide, and then click Help -> SX/B help to find out more about the RCTIME
command.

14

14

RC-Time with a
Watch Window

A variable declaration at the beginning of the program named a byte of the SX
chip's RAM time. A WATCH directive was added to display the value the time
variable stores at the breakpoint. A BREAK directive was added to cause the
Debugging environment to refresh its display (including the watch window)
after it takes each RCTIME measurement.

Open/Save/Compile/Debug “3 Watch Pot.sxb”
Click Poll in the Debug Window
Turn the pot and watch the Watch window’s value update with a value that
corresponds to decay time, which in turn corresponds to resistance measured.
Note that the POT code has just been added to the LED code, so if you press and
hold the pushbutton, the LED will still blink.
Rotate your pot so that the time is below 50 before moving on to the next
example.

15

15

Frequency and Sound

Vss

RC1

This piezospeaker works pretty well between about 1.5 and 3.6 kHz. It’s
resonant frequency is 4.5 kHz, at which point it’s no longer musical, but it’s
perfect for smoke detector alarms.

16

16

Speaker Control

This program triggers a sound alarm when the pot from the previous example is
twisted beyond a certain threshold (time > 50). Note that the time variable is
also used by the time command. So, as you twist the pot higher above 50, the
pitch will increase too.

NOTE: This example was written before SX/B was updated to support Word
variables. With the advent of SX/B word variables, there’s also a new
command called FREQOUT, which allows you to specify a frequency in Hz.

Also, note that the pushbutton LED control is still in effect, though it behaves
somewhat differently when the program takes extra time to beep.

17

17

Repetition
Control with
FOR…NEXT

This extension of the previous example program plays a multi-beep alarm
instead of tracking the pot by frequency. This demonstrates the FOR…NEXT
loop. The only part it doesn’t show is the fact that the value of counter
increments each pass through the FOR…NEXT loop. Try adding a watch
directive and moving the BREAK to observe this counting action (I haven’t
tested this yet).

18

18

Interrupt Service Routine (ISR)

An interrupt service routine is a segment of code that runs if an interrupt occurs. Interrupts can be one-
shot, from a pin state change or periodic, based on a number of clock ticks. This example in the slide uses
clock ticks. RETURNINT 250 sets a register called RTCC (real time clock counter) to 255. The SX chip’s
system automatically subtracts 1 from this register at a rate determined by the lowest four bits of the
OPTION register (which is set to %10011111 for this example). When the RTCC gets to 0, the interrupt
service routine gets serviced again, and the RTCC is set to 250 again. In this example, OPTION =
%10011111 causes RTCC to be decremented every 256 clock pulses. If the lowest four bits of option was
1110, it would be once every 128 clock ticks. 1101 would be once ever 64 clock ticks, and so on down to
1000, which is once every 2 clock ticks. For once every clock tick, use %10010000 (all four low bits are
zero).

Since the ISR gets serviced every 250 RTCC decrements regardless of whether the speaker is playing a
note, or the PAUSE command is in progress or an RCTIME measurement is happening. Every 250 clock
ticks, the delay1 variable in the ISR code is incremented by 1, and every time delay1 rolls over from 255 to
0, delay2 gets bumped up by 1. When delay2 gets up to 5, the LED state is toggled (high to low or low to
high). The net result isn’t all that exciting, all that happens is the LED flashes on/off regardless of what
else is happening in the program. However, the applications are exciting. For example, you can use it to
write serial communication code, take periodic A/D measurements, deliver servo pulses periodically, and
much more.

Open/Save/Compile/Run (IMPORTANT: Don’t use Debug, use Run).
Note that the LED flashes on/off at a constant rate no matter what.

If you want to unplug the cable, and run this independent of the Debugging environment, click Run and
select Program.
Take a look at the device directive, it’s the one for a 4 MHz resonator, so insert the 4 MHz resonator into
the OSC1/OSC2 socket.
Then, you can unplug the SX-Key, and the application will still run because it’s depending on its own
clock, not the SX-Key’s.
IMPORTANT: Always unplug the resonator before using the Debugging environment.

19

19

ISR PWM Example

Here is another example ISR example. This one runs at 50 MHz instead of 4
MHz. If you want to run it independently (disconnected from programming
cable), you’ll need to use the 50 MHz resonator included with the kit.

This program allows you to adjust the duty cycle to the LED with the
potentiometer. To verify this program, simply adjust the potentiometer, and the
LED’s brightness will adjust accordingly because the RCTIME command’s time
variable also controls the duty cycle in the INTERRUPT (interrupt service
routine) section.

To be continued…

20

20

To be continued…

• Using 16 bit word variables (instead of 8-bit byte
variables)

• Organizing your foreground code into a main routine and
subroutines.

• Inserting assembly language
• Compensating for the (background) ISR’s effect on the

main (foreground) code execution

