
Co-Pro-M48 Microprocessor Co-Processor

Features

High Performance. Low Power AVR 8-Bit Microcontroller Co-Processor
Speed - 20MHz

I/O and Package
 18 Programmable I/O Lines
 6 – Special function high latching input pins
 6 – Special function low latching input pins

 Internal pull-ups option
 28-pin PDIP
Interface
 Synchronous serial communication

 Shiftin and Shiftout commands from any Basic Stamp
Peripheral Features
 Real Time 24 Hour Seconds Minutes and Hours counter.

 6 - Channel 8 Bit ADC – VCC Reference and 1.1V internal Reference
Memories
 256 byte SRAM buffer Unlimited Write/Erase Cycles
 256 byte EEPROM – 100,000 Write/Erase Cycles

 6 – Banks of 256 Byte FLASH memory storage 10,000 Write/Erase Cycles
Operating Voltage:
 2.7 – 5.5V
Temperature Range:

 -40C to 85C
Low Power Sleep Mode

Co-Pro-M48 Command Reference

_init Initialize Co-Processor

_errors Get error flags
_low Set pin (0…17) low

_high Set pin (0…17) high
_input Set pin (0…17) to input

_inputp Set pin (0..17) to input with pullup
_push Push a byte on the internal 256 byte SRAM buffer

_pop Pop a byte from the internal 256 byte SRAM buffer
_zstack Set the SRAM stack pointer to Zero (0)

_clrbl Clear the B-Latching pins (pins 6…11)
_clrcl Clear the C-Latching pins (pins 12…17)

_rpinsa Read pins (0…5)
_rpinsb Read pins (6...11)

_rpinsc Read pins (12…18)

_pinsbl Read the B-Latching pins
_pinscl Read the C-Latching pins

_seconds Read seconds (0…59)
_minutes Read minutes (0…59)

_hours Read hours (0..23)
_time Read seconds, minutes, hours

_stime Set Seconds, Minutes, Hours
_adc0 Read adc0 – 1.1V Reference

_adc1 Read adc1 – 1.1V Reference
_adc2 Read adc2 – 1.1V Reference

_adc3 Read adc3 – 1.1V Reference
_adc4 Read adc4 – 1.1V Reference

_adc5 Read adc5 – 1.1V Reference
_adcvcc0 Read adc0 – VCC Reference

_adcvcc1 Read adc1 – VCC Reference

_adcvcc2 Read adc2 – VCC Reference
_adcvcc3 Read adc3 – VCC Reference

_adcvcc4 Read adc4 – VCC Reference
_adcvcc5 Read adc5 – VCC Reference

_writeflash Write 256 bytes from the SRAM buffer to FLASH
_readflash Read 256 bytes from FLASH memory to the SRAM buffer

_readsram Read a byte at the current SRAM, increment pointer
_setstack Set the SRAM pointer to a specific location

_ewrite Write a byte at a specified address to EEPROM
_eread Read a byte from a specified address from EEPROM

Initialize Coprocessor

Byte Code: $FFAA

Function

Sets the internal timer width to read 8 bits.

Explanation

The Coprocessor receives data using a clock input and a data input. Eight bits of

data are required for each command. The Basic Stamp 2, sends eight bits of data
using the shiftout command up to 16 kBits/Sec. Other stamps can send data faster.

This command synchronizes the timeout error control.

Below is the default timeout when the Coprocessor is started (blue line) of 833uS.

If less than 7 bits are received the co-processor will timeout. If 8 bits are received
the timeout clock is stopped and the data is processed.

Below is the timeout after initialization (Blue line). It has been shortened to the

data rate of 8 bits. This allows any errors in sending data to be processed faster
than an arbitrary timeout. Error flags for timeout conditions can be read with the

ERROR command.

Basic Stamp Example:

Shiftout Dpin,Cpin,1, [$FFAA\16]

Timing window for receiving data from co-processor

When receiving data from the co-processor the Basic Stamp uses the shiftin

command. For every byte requested a 1.2 mS timer is set to time-out the request if
8 bits are not clocked out within the time window. Below, the blue line shows the

time-out window. If 8 bits are not clocked out of the co-processor within this
window the data exchange is terminated for that byte and the co-processor returns

to input mode ready to accept new commands. Multi byte reads will also terminate
in a time-out condition. The Time-out window starts with the last bit read of the

preceding command that requested the data.

Set Pin to Output Low

Byte Code: $B0 Pin

Variables: Pin

Pin is a one BYTE value 0 through 17. It can be a BYTE variable or a constant.

Function

Sets any of the Coprocessors 18 pins to Output LOW

Explanation:

The Coprocessor has 18 pins that can be set four different modes.

Input without Pullup
Input with Pullup

Output Low
Output High

Basic Stamp Examples:

Shiftout Dpin, Cpin, 1, [$B0, 0] ‘Sets the Coprocessors pin 0 to Output Low

‘Using the 16 bit shiftout command with the optional 16 bit command.

Shiftout Dpin, Cpin, 1, [$B000\16,$B001\16] ‘Set pins 0 and 1 to output low

‘Using shiftout with an 8 bit BYTE variable.

ledpin VAR BYTE

For ledpin=0 to 17

 Shiftout Dpin, Cpin, 1, [$B0, ledpin] ‘The loop will set all 18 pins to Output low
Next

Set Pin to Output High

Byte Code: $B1 Pin

Variables: Pin

Pin is a one BYTE value 0 through 17. It can be a BYTE variable or a constant.

Function

Sets any of the Coprocessors 18 pins to Output HIGH

Explanation:

The Coprocessor has 18 pins that can be set four different modes.

Input without Pullup
Input with Pullup

Output Low
Output High

Basic Stamp Examples:

Shiftout Dpin, Cpin, 1, [$B1, 0] ‘Sets the Coprocessors pin 0 to Output HIGH

‘Using the 16 bit shiftout command with the optional 16 bit command.

Shiftout Dpin, Cpin, 1, [$B100\16,$B101\16] ‘Set pins 0 and 1 to Output HIGH

‘Using shiftout with an 8 bit BYTE variable.

ledpin VAR BYTE

For ledpin=0 to 17

 Shiftout Dpin, Cpin, 1, [$B1, ledpin] ‘The loop will set all 18 pins HIGH
Next

Set Pin to INPUT no pullup

Byte Code: $B2 Pin

Variables: Pin

Pin is a one BYTE value 0 through 17. It can be a BYTE variable or a constant.

Function

Sets any of the Coprocessors 18 pins to Output LOW

Explanation:

The Coprocessor has 18 pins that can be set four different modes.

Input without Pull-up
Input with Pull-up

Output Low
Output High

Basic Stamp Examples:

Shiftout Dpin, Cpin, 1, [$B2, 0] ‘Sets the Coprocessors pin 0 to Input

‘Using the 16 bit shiftout command with the optional 16 bit command.

Shiftout Dpin, Cpin, 1, [$B200\16,$B201\16] ‘Set pins 0 and 1 to Input

‘Using shiftout with an 8 bit BYTE variable.

ledpin VAR BYTE

For ledpin=0 to 17

 Shiftout Dpin, Cpin, 1, [$B2, ledpin] ‘The loop will set all 18 pins to Input

Next

Set Pin to INPUT with internal pullup

Byte Code: $B6 Pin

Variables: Pin

Pin is a one BYTE value 0 through 17. It can be a BYTE variable or a constant.

Function

Sets any of the Coprocessors 18 pins to Input with internal pullup

Explanation:

The Coprocessor has 18 pins that can be set four different modes.

Input without Pull-up
Input with Pull-up

Output Low
Output High

The internal pull-ups allow circuits for example a switch to pull the input to ground

without using an external pull-up resistor. The voltage on the input pin will read
HIGH and have a small output current in this state.

Basic Stamp Examples:

Shiftout Dpin, Cpin, 1, [$B6, 0] ‘Sets the Coprocessors pin 0 to Input with Pull-up

‘Using the 16 bit shiftout command with the optional 16 bit command.

Shiftout Dpin, Cpin, 1, [$B600\16,$B601\16] ‘Set pins 0 and 1 to Input with pull-up.

‘Using shiftout with an 8 bit BYTE variable.

ledpin VAR BYTE

For ledpin=0 to 17

 Shiftout Dpin, Cpin, 1, [$B2, ledpin] ‘The loop will set all 18 pins to Input with pull-ups

Next

PUSH BYTE TO SRAM

Byte Code: $D0 Pin

Variables: Pin

Pin is a one BYTE value $00 through $FF. It can be a BYTE variable or a constant.

Function

Writes one byte to the 255 byte circular buffer

Explanation:

Assembly language programmers have a limited number of registers (Varialbe

space) to work with. When additional space is needed during programming the

programmer can store values on what is called a stack. It is similar to a stack of
dinner plates. Stack up 10 plates then take the plates back off the pile in reverse

order, the 10th plate would be the first to come off then the 9th and so on. The
PUSH command $D0 works the same way. Up to 255 bytes can be pushed on the

stack and then taken back off the stack with the POP command $D1.

This stack is a little different in that it works like a circle. If 256 bytes are pushed
on the stack without popping the stack the 256th byte will overwrite the first

location 0 additional pushes without pops will continue to overwrite previous data.

One simple use of this circle buffer is to store the last 255 bytes of of a sensor for
example a temperature reading could be stored every 6 minutes. The data buffer

would then contain the last 24 hours of temperature readings.

Typical usage would be to store basic stamp variables and then use the variables

for something else and then restore the original values using the POP command.

Basic Stamp Example:

Shiftout Dpin, Cpin, 1, [$D0, Myvar] ‘Pushes the value of Myvar in the stack.

Also see: POP BYTE FROM SRAM $D1

POP BYTE FROM SRAM

Byte Code: $D1

Variables: None

Function

Sets up coprocessor output to pop one byte off the stack.

Input via shiftin Byte

The SHIFTIN command is used immediately after to read the data.

Explanation:

The POP command $D1 is used to read data from the SRAM stack in the
coprocessor. Two commands are used, $D1 is shifted out followed by the shiftin

command to receive the data.

Basic Stamp Example:

Myvar VAR Byte
Shiftout Dpin, Cpin, 1, [$D1] ‘Setup for output of 1 byte from stack

Shiftin Dpin, Cpin, 0, [Myvar] ‘One byte is transferred from the coprocessor to the variable Myvar

Set the stack pointer to 0

Byte Code: $D2

Variables: None

Function

Sets the memory pointer to the 255 byte circular stack to zero.

Explanation:

The 255 byte stack can be written to EPROM or FLASH memory for long term

storage using the WRITEFLASH $D2 command. When the PUSH command is used to
store data that is to be stored in Eprom or Flash memory later retrieval of the data

requires you know what byte the data starts from. This command sets the pointer

to zero so the first PUSH command writes the data in Sram to location 0.

Basic Stamp Example:

Shiftout Dpin, Cpin, 1, [$D2] ‘Reset stack pointer to 0

