
 

 
 

Retargetable Concurrent Small C 
Dr. Dobb's Journal August 1997  

Porting CSC to the 8051 

By Andy Yuen 

Andy is a consultant working for the Professional Services Organization of Hewlett-Packard in Sydney, 

Australia. He can be reached at andyyuen@ozemail.com.au.  
 

Since presenting "Concurrent Small C" in DDJ (August 1996), I have been inundated 
with e-mail asking when the 8051 version will be available. The apparent demand for 
an 8051 version is probably due to CSC's language-level support of preemptive 
multitasking, synchronization, and interrupt handling, and partially to the lack of a 
freely available C compiler for the 8051. The so-called "freeware" C compilers, to my 
knowledge, limit the size of the generated code to 1 or 2 KB, which make them 
practically useless, even for hobbyist projects.  
In this article, I'll present a version of CSC that is retargetable, with the port available 
here targeting the 8051. I've selected the 8051 for two reasons: 

• The 8051 is one of the world's most popular 8-bit microcontrollers: Over 120 millions units (including 

variants) were sold in 1993 alone.  

• The 8051 poses a special challenge to a compiler writer because of its peculiar architecture and 

nonorthogonal instruction set.  

The Retargetable CSC (RCSC) distribution (source code and related files and tools) is 
available electronically; see "Availability," page 3. 

Concurrent Small C Organization 

To make CSC easily retargetable, you have to separate the code generator from the 
compiler itself. Otherwise, for each port, you have to modify the compiler -- not an 
easy task if you are unfamiliar with CSC internals.  
CSC, like Small C Version 2.2, consists of four modules:  

• cc1.c handles the overall program flow and parsing.  

• cc2.c handles the input preprocessing such as macro expansion.  

• cc3.c handles expression analysis.  

• cc4.c handles code generation and optimization.  

CSC generates intermediate codes in memory called PCODEs (P for pseudo), which 
are instructions for a 2-accumulator, 16-bit virtual machine with a stack pointer. It 
then runs the PCODEs through a peep-hole optimizer before translating them into 
the target processor's assembler language using a translation table contained in 



cc4.c. There are a total of 109 PCODEs defined. A brief description of PCODEs and 
their addressing modes can be found in the header file cc.h. For an in-depth 
discussion on PCODEs, see James E. Hendrix's A Small C Compiler (ISBN 0-13-
814724-8), or Dr. Dobb's Small-C Compiler Resource CD. 
RCSC outputs PCODEs instead of target assembler code. A macro processor 
translates the PCODEs into the target processor's assembler code; see Figure 1. The 
macro processor must possess features such as arithmetic capabilities, conditional 
macro expansion, and string manipulation (a task that the GNU M4 macro processor 
handles deftly). RCSC requires that a set of macros be defined for each target 
machine to implement the PCODEs. The macro processor takes the intermediate 
PCODE file generated by the compiler as input and processes them using the set of 
processor-specific macros to generate the target machine's assembler code. The 
advantage of this approach is that a program needs to be compiled only once. The 
macro processor takes the same RCSC-produced PCODE file as input and produces 
code for different processors using different macro sets. The resulting file is then 
converted into executable format using the target platform's assembler, linker, and 
run-time libraries. Since the PCODE has been optimized by the compiler, the 
translated assembler code for different processors is also optimized. 

8051-Specific Design Issues 

The 8051 has an unusual architecture that separates memory into five different 
areas: code (ROM), internal RAM, bit-addressable memory (a certain area of the 
internal RAM), special function registers, and external RAM. It uses different 
instructions to access different memory areas. The 8051 has an unusually 
nonorthogonal instruction set. For example, it uses the DPTR pointer to access 
external RAM and code segments. It has an INC DPTR instruction to increment the 
pointer but no corresponding decrement instruction, which makes address 
manipulation a bit inconvenient. Also, the 8051 has an 8-bit hardware stack pointer, 
which means that the maximum possible stack size is 256 bytes, hardly enough for 
reentrant functions.  
To get around the small stack limitation, 8051 C compilers usually implement their 
own stacks in software. As this will impact performance to a certain extent, most 
compilers have at least three different programming models to cater to different 
needs: small, medium, and large. The small model does not support external RAM 
access. All the program's data must fit in the 8051's internal RAM. All function 
parameters are passed using registers. The medium model supports external RAM 
access and uses either the 8051's paged memory access (for example, accessing 
external memory using the P0 and P2 ports and indirect addressing mode) or 
registers to pass function arguments. Both models are nonreentrant, but avoid the 
performance degradation associated with a software-stack implementation. The large 
model supports external RAM access. It also implements a software stack to pass 
function arguments. Some implementations do not support reentrancy by default; 
users have to use pragmas to enable it explicitly. 
If all the program's data can be squeezed into the 8051's 128-byte (256 bytes for 
8052) internal memory, you probably don't need RCSC's multitasking features. So, 
the small memory model can be eliminated. By definition, RCSC requires reentrancy 
for concurrent operation; therefore the nonreentrant medium model is obviously not 
acceptable either. Consequently, RCSC only provides one programming model -- the 



large reentrant model -- which implies that it implements its own software stack. 
RCSC always generates reentrant code. The downside is that reentrant code is 
slower than the two nonreentrant models because of the software-stack operations. 

Implementation 

I modified cc1.c and cc4.c to generate PCODEs instead of target-specific assembler 
code. A number of pseudo PCODEs have been added to give more information to the 
code generator, but these pseudo PCODEs usually do not themselves cause code to 
be generated. The closest analogy to a pseudo PCODE is an assembler directive. 
Table 1 summarizes these new pseudo PCODEs and their intended use. 
The GNU M4 macro processor is used for expanding the PCODEs. It reads text one 
line at a time from the input stream and scans the text for macros that have been 
defined. When M4 finds a macro, it replaces it with the macro definition and puts the 
replacement text back to the input stream. It then reads another line of text from the 
input stream and repeats the process until there is no more input. A macro 
expansion is invoked either by a macro name or a macro name immediately followed 
by a number of arguments like a C function call; see Example 1(a). A macro is 
defined using the built-in define macro as in Example 1(b), where OPxy is the macro 
name and what follows is the macro definition. M4 replaces the string $n with the 
value of the nth argument. A macro call like Example 2(a) results in Example 2(b). 
ifelse and len are M4 built-in macros. ifelse compares the first parameter with the 
second one. If they are the same, the value returned is that of the third parameter. 
If not, and if there are more than four arguments, the process is repeated for 
arguments 4, 5, and 6; otherwise, the value returned is that of the last argument. 
len returns the length of a string. M4 contains many more built-in macros and other 
powerful features not shown here. (For more information, see the documentation 
that comes with the M4 package.) 
A set of M4 Macros (like that above) is defined to expand PCODE into processor-
specific assembler code. The macros for the 80x86 are straightforward, most of them 
are copied from the original translation table contained in cc4.c with minor 
modifications. The macros for the 8051 are more complicated because the 8051 is an 
8-bit processor and the PCODEs are instructions for a 16-bit virtual machine. 
Consequently, many more 8051 instructions are needed to implement the PCODEs 
than the 16-bit 80x86 instructions. The macro definition files are 8086.M4 and 
8051.M4 for the respective processors. Listings One through Four resent the C code, 
RCSC-generated PCODE, and M4-generated assembler-code listings for the 80x86 
and 8051 for the strcpy function.  
Again, the virtual machine consists of three 16-bit registers: the primary and 
secondary accumulators, and the stack pointer. The register usage for the 80x86 and 
8051 are summarized in Table 2. The 80x86 uses the hardware stack, which grows 
toward low memory, while the 8051 uses hardware and software stacks, which grow 
toward high memory. Such a choice for the 8051 is to simplify variable access since 
the 8051 assembler directive DW stores the high byte before the low byte (Big-
endian). 
A stack frame is created on every C function invocation by the function prolog ENTER 
and released by RETURN. Figure 2 shows the differences between the two stack-
frame implementations. Assembler programmers must fully understand the stack 
frame structure to interface assembler routines successfully with RCSC programs. 



Figure 3 shows fragments of assembler code to access function parameters and local 
variables allocated on the software stack within a C function. If you understand the 
80x86 stack frame setup, the easy way to do it on the 8051 is to use PCODE 
GETw1s(n), where n is the same offset used for the 80x86, to access the function 
parameters and local variables. If you are using PCODEs in your assembler program 
to interface to RCSC functions, you have to process it using the M4 macro processor. 
The 8051.M4 macro will take care of the translation for you. I recommend you take 
the time to get familiarized with the PCODEs because they may come in handy while 
coding in assembler. When you are using PCODEs to call a C function, make sure you 
remove the function arguments from the software stack on return from the function 
call by using ADDSP(n), where n is the number of function arguments. This is 
necessary because, for C, unlike Pascal, the calling program is responsible for such a 
chore, not the called function. 
In the 8051 implementation, whenever a C function is called, the first thing the called 
function does is pop the return address from the hardware stack and store it in the 
stack frame on the software stack. Aside from providing a recursion level limited only 
by the allocated size of the software stack (declared when defining a task), moving 
the return address from the hardware to the software stack also makes task 
switching quicker, because there are less data on the hardware stack to copy.  
When a task is declared, the kernel allocates the amount of stack space specified, or 
defaults to STKSIZE bytes if the stack size is left unspecified. The initial values for all 
the relevant registers are initialized on the software stack. Of particular interest are 
the return address and the hardware- and software-stack pointers. Together, they 
ensure that the task will be started correctly when it runs for the first time. When a 
timer interrupt occurs, the current task's context, its CPU register contents, and the 
data on the hardware stack are copied to the task's descriptor block. Saving the 
contents in the hardware stack is necessary because each task owns the hardware 
stack when it is running due to its small hardware-limited size. This is followed by 
restoring the context of the task to run next. This involves copying the context saved 
on the task descriptor back to the cpu registers. Again, the data on the hardware 
stack at the time this task was last run is also restored before it resumes execution.  
While saving the registers always takes the same amount of time (fixed numbers of 
registers to save), the same is not true for the data on the hardware stack if 
uncontrolled. The hardware stack may be empty (best case) to full (worst case). To 
guarantee the task-switching time, you want to limit the amount of data stored on 
the hardware stack. RCSC does this in two ways: moving the return address on entry 
to a C function from the hardware to the software stack, and controlling the 
hardware stack in the run-time library. While RCSC uses the 8051 LCALL instruction 
to invoke a C function, the called function immediately pops the return address from 
the hardware stack and saves it in a stack frame created on the software stack. 
Consequently, the depth of the hardware stack does not increase even for recursive 
calls. The run-time library is mostly written in 8051 assembly code for performance 
reasons. As such, most of the instructions don't use the software stack. Function 
parameters are passed using registers. I've taken care not to exceed a call level of 
three. RCSC users should also observe this rule when using assembler code to 
interface to RCSC programs to guarantee task switch performance. 
Registers starting from bank 2 are used to implement RCSC's virtual machine with 
the hardware stack immediately following them. My intention is to simplify context 



switching. Context saving is performed by simply copying the registers starting from 
bank 2 to the register pointed to by the hardware stack pointer. 
Like the 80x86 implementation, the compiler collects information on monitor 
initialization and task information so that RCSC can execute the monitor initialization 
code and create tasks at startup. On hardware reset, startup (located in kernel.c) is 
executed. It calls initvar to initialize all variables in the XDATA segment by copying 
the literals and constants from the code segment. The watchdog timer (if one is 
present) should be activated only after the copying is complete. If that is not 
possible, then users have to add code to reset the watchdog timer in the initvar 
routine to prevent it from expiring. Once the variables are initialized, RCSC looks at 
the table containing the addresses of monitor-initialization routines (built by the 
RCSC compiler) and executes them before allocating stack space and creating user-
defined tasks whose starting addresses are in the task table. It then converts main() 
into a task, and initializes the timers and serial port and goes into multitasking mode.  
The interrupt mechanism remains unchanged from CSC Version 1 -- all interrupts 
share a common interrupt function that saves the task context, determines the 
source of the interrupt, executes the user-defined interrupt function, and restores 
the context. On the 80x86, all interrupt information is held in a list of interrupt 
descriptors. On the 8051, the information is compiled into the CODE segment in 
Example 3. 
For example, the timer interrupt vectors to __intr_1, which calls the common 
interrupt handler __handler. The return address on the stack points to the user-
defined interrupt function. Immediately following it is the interrupt number. Hence, it 
is easy for __handler to determine the location of the user interrupt function and the 
interrupt source. Table 3 summarizes the interrupt sources supported by the 8051 
version of RCSC. 

Complications 

RCSC requires a relocating assembler that supports separate assembly and linking. 
Unfortunately, such a tool is hard to find in the 8051 world. None of the 8051 
freeware assemblers I found (with one exception) support separate assembly and 
linking. All source code has to be put in one file to be assembled into an Intel hex 
format output file. One of the packages in this category worth mentioning is W.W. 
Heinz's ASEM-51, which has excellent documentation and a bootstrap program. 
The only freeware assembler I could find that supports separate assembly and 
linking is CAS, the 8051 C-Assembler written by Mark Hopkins. It is a nice assembler 
that possesses all the usual 8051 assembler features plus some novel nonstandard 
ones. The only features missing for RCSC's needs are the support of public named 
segments (that can be used to combine data from different modules into a 
contiguous area) and a librarian utility (to archive assembled object files). These 
features are imperative for RCSC to group all variables and task and monitor 
information into contiguous areas for use during initialization. 
To simulate these features, I had to resort to a number of UNIX tools ported to MS-
DOS, such as awk, grep, and uniq, to manipulate the RCSC output to control the 
placement of variables in the code and data segments. (All tools used in this project 
are included in the RCSC distribution.) Because of this, to compile and link an 8051 
RCSC program consisting of multiple .c modules is not as straightforward as with the 
80x86 version. The procedure involves the following steps: 



1. Compile an RCSC module (with extension .c) into PCODE (with extension .m4). 
2. Use awk to reformat the output, extract data storage information to provide the 
named segment effect at a later stage, and record external function references. 
3. Use the M4 macro processor with the macro definition file 8051.M4 to expand the 
PCODE file into a file containing assembler code (with extension .s). 
4 Repeat step 1 until all .c modules are processed. 
5. Use awk and the information collected in step 2 to generate the header file 
memmap.i, containing symbols defining absolute address to control placement of 
code and data. 
6. Assemble all .s files into object files (with extension .o). 
7. Create and compile a module that contains all referenced library functions to be 
included for linking. 
8. Link all object modules to produce an executable in Intel hex format (with 
extension .hex). 
Fortunately, all these steps can be automated using a combination of batch files and 
makefiles. You may want to use the makefile for the 8051 demo program as a 
template for new projects. Creating an executable for the 80x86 version is much 
simpler, involving only steps 1, 3, 4, 6, and 8. The 80x86 executable, assembler, and 
object files have extensions .exe, .asm, and .obj, respectively, instead of .hex, .s, 
and .o for the 8051. 
Step 2 is required to group all literals and constants in the CODE segment and 
variables in the XDATA segment in contiguous areas in memory. The requirement 
exists because, at startup time, RCSC calls initvar, which initializes all data variables 
in the XDATA segment by copying the literals from the code segment. Keeping them 
in contiguous areas in the same order facilitates the copying process. As mentioned 
earlier, the CAS assembler does not support named segments like the 80x86 macro 
assembler does. You have to control the placement of data by specifying the 
absolute starting address of a segment as in: SEGMENT XDATA AT 100. 
The awk script groups and moves all memory-allocation statements such as DW, DB, 
and DS (which may scatter all over a module) to the end and keeps track of the 
number of bytes allocated. For example, if the current module allocated 100 bytes 
and the XDATA segment starts at 100 as in the previous example, the next module 
automatically places the data immediately following the previous module by using: 
SEGMENT XDATA AT 200. 
The same approach is used to collect task and monitor function addresses in 
contiguous areas for use during system initialization. The information is kept in a file 
with the same name as the .c program being compiled (but without a file extension). 
For example, if the program module being compiled is testprog.c, then the data 
allocation information is kept in testprog. This means that each module making up 
the application creates its own information file. 
This step also maintains a list of all external function references so that these 
functions can be included in step 7. Unlike the data placement-control information, 
the external references for all modules are kept in the file libc. 
The placement of code and data is governed by the RCSC configuration file rcsc.cfg, 
which must be located in the same directory as the modules being compiled. This 
configuration file defines five parameters for customizing RCSC to generate code for 
different 8051 memory configurations: 



• CLITBEG defines the starting location in the code segment where all literals and constants are to be 

placed. This usually points to the area right after the interrupt vectors.  

• LASTROM tells RCSC the last location of the installed ROM (code segment).  

• DVARBEG defines the starting location in the XDATA segment where program variables are to be 

placed. It must not have a value of zero because the NULL pointer in RCSC is defined as zero. If you 

use zero, you will not be able to access the variable placed at location zero.  

• LASTRAM tells RCSC the last location of the installed RAM (XDATA segment).  

• STKSIZE defines the default size of the stack for each task if the stack size is not declared in the task 

function. RCSC always creates a stack of this size for main().  

Figure 4 shows the memory organization of an RCSC program. Literals/constants, 
monitor/task tables, and the application code are all placed in the CODE segment. 
The heap starts immediately after the system and program data variables up to 
LASTRAM in the XDATA segment. Stacks for various tasks are allocated from the 
heap when they are created. 
Step 5 takes all the information collected in step 2 and generates the header file 
memmap.i, which contains constant definitions for the absolute location for the 
SEGMENT XDATA AT and SEGMENT CODE AT statements described in step 2. 
Step 7 is needed because there is no librarian utility to archive assembled C library 
object files for use in the linking process to produce an executable. Instead, step 7 
uses the information on external function references collected in step 2 (in the file 
libc) to generate the libc.c file (which contains #include statements of all C library 
modules needed by the target), compiles and expands it into assembler code, and 
assembles it to produce the object file libc.o. Libc.o is then used in the linking 
process to produce an executable. If there is no change in libc.c, it will not be 
recompiled. The dependencies of the various external library function references are 
found by using the index file file.idx located in RCSC's LIB51 directory. It has the 
format functionname:file1:file2:...:filen, where functionname is the name of the 
function, which depends on files: file1 through filen. All name fields are delimited by 
":". For each file named, an include statement is added to lib.c for that file. To avoid 
a file being included multiple times, the generated libc.c file is fed through the sort | 
uniq command pipeline to remove duplicate entries. If you want to add frequently 
used functions to LIB51 so that they are automatically included in the linking 
process, you must add an entry in file.idx for each function added. One limitation is 
that functions included this way must not contain any global-variable declarations. 
Users must include kernel.o as one of the targets in the makefile because kernel.c 
contains the function initvar that handles the copying of literals and constants from 
the CODE to the XDATA segment at startup time. To get that information, it includes 
memmap.i and has to be reassembled each time memmap.i is changed. initvar also 
initializes the variables __memptr, __memend, and __stksize with the heap starting 
address, last RAM address, and the default stack size, respectively, for use by the 
memory-allocation routines calloc(), malloc(), and free().  

80x86 and 8051 Version Differences 

The differences between the two implementations (aside from the way an executable 
is produced) arise because of their operating environment differences. The 80x86 
version assumes the presence of an operating system, namely MS-DOS. The target 
8051 program is the operating system itself.  



The 8051 version does not support a file system. Therefore, file I/O functions such 
as fopen, fread, and the like are not supported. The C standard I/O functions 
putchar, getchar, puts, and gets provide access to the serial port to communicate 
with the outside world, while sscanf and sprintf handle formatted input and output. 
Since the 8051 operates in the embedded-system environment, there is no need to 
pass command-line parameters to it through: main(argc, argv). Consequently, main 
does not support arguments. 
Unsigned integer arithmetic is much more efficient than its signed counterparts for 
the 8051 because all signed multiplies and divides are first converted from two's 
complement form into a sign/magnitude representation before invoking the 
corresponding unsigned routines to carry out the operations. The result is then 
converted back to two's complement form. However, there is no difference in 
efficiency between signed and unsigned operations for the 80x86 because they are 
supported by the 80x86 instruction set directly. 
Unlike the 80x86 version, the 8051 version does not allow the use of standard C I/O 
functions inside the monitor initialization code, because the serial communication has 
not yet been set up at that time. 
Watch out for the difference in the stack implementation. The 80x86 uses the 
hardware stack that grows downward while the 8051 uses a software stack that 
grows upward. This does not cause a problem as long as you are not using variable 
argument lists in your functions. The problem comes about in the pointer arithmetic 
that is used in locating the first argument and the way the subsequent arguments 
are accessed; see Example 4. Although the function is called with a variable number 
of arguments, RCSC defines the function as having only one argument and uses 
pointer arithmetic to get the address to the first argument (because, unlike standard 
C, RCSC pushes arguments on the stack from left to right). CCARGC() is an RCSC 
run-time routine that returns the number of arguments passed on the stack. 
The different stack implementations require users to keep two versions of the source 
code, which is obviously unacceptable. To overcome this problem, I created M4 
macros to mimic the ANSI variable argument facility: va_list, va_arg, va_start, and 
va_end in the files STDARG51.M4 and STDARG86.M4. Functions with variable 
argument lists should be modified to use the stdarg macros to maintain a single 
source. Using stdarg macros also makes the program easy to understand; see 
Example 5. 
An example can be found in the LIB51 directory, where sprintf.va is the source and 
sprintf.c is the implementation-dependent file generated by using the M4 macro 
processor and the STDARG51.M4 macro definition file using the command M4 
..\BIN\STDARG51.M4 SPRINTF.VA > SPRINTF.C. 

An 8051 Example 

To demonstrated the portability of RCSC, I've used the dining philosopher example 
used in the original CSC article, replacing the asyn8250.c module with asyn8051.c. It 
uses the function puts to output to the serial port that connects to either a PC or an 
asynchronous terminal. This example also demonstrates that, to keep RCSC 
programs portable, hardware-dependent parts (such as serial communication) should 
be put in separate modules. 

Conclusion 



Since this is the first release of the 8051 implementation, emphasis is on producing 
correct rather than optimized code. Consequently, interrupt handling is not as fast as 
I would like it to be. Also, the M4 macro definitions do not explore the use of indirect 
addressing modes with ports 0 and 2 to access variables placed in external RAM, 
which could obviate the frequent reloading of the DPTR pointer. Furthermore, the 
issues of task termination and exception handling are still not being addressed in this 
release. The procedure for creating an 8051 executable is more complicated than I 
would like, due to the lack of an assembler that supports named public segments, 
separate assembly/linking, and a librarian.  
On the bright side, RCSC can be ported to new processors without modifying the 
compiler itself. This is achieved by separating the code-generation part from the 
compiler. The RCSC compiler now produces intermediate PCODE as output instead of 
assembler code. The M4 macro processor is used as the code generator to expand 
the PCODEs into target assembler code. Consequently, porting RCSC to a new 
processor only involves writing M4 macro definitions for the PCODEs and adapting 
the kernel and C libraries to the new environment. An embedded-systems engineer 
can now write a concurrent program in RCSC using all of its language-supported 
preemptive multitasking, synchronization and interrupt-handling capabilities; compile 
it once; and port it to different processors by simply running the code through the 
target-specific RCSC code generators. An RCSC concurrent program is portable if it 
does not use any processor-specific facilities such as pulse-width modulation, serial 
I/O, analog-to-digital conversion, and so forth. Since an embedded system is bound 
to use some of these facilities, it is a good practice to move such code into their own 
modules so that they can easily be replaced for a specific environment. 

 

Listing One 

/*  ** copy t to s  */strcpy(s, t) char *s, *t; { 
 
  char *d; 
  d = s; 
  while (*s++ = *t++) ; 
  return (d); 
  } 

Back to Article  

Listing Two 

TOSEG(2)CSCEXTRN 
ENDSEG(2) 
TOSEG(1) 
ENDSEG(1) 
TOSEG(2) 
DECLPUBLIC(_strcpy, 2) 
ENTER 
ADDSP(-2) 
GETw1s(6) 
POINT2s(-2) 
PUTwp1 
LABm(_2:) 
POINT2s(6) 
GETw1p(0) 
INCwp 
PUSH1 



POINT2s(4) 
GETw1p(0) 
INCwp 
MOVE21 
GETb1p(0) 
POP2 
PUTbp1 
NE10f(_3) 
JMPm(_2) 
LABm(_3:) 
GETw1s(-2) 
RETURN(2) 
ENDSEG(2) 
END 

Back to Article  

Listing Three 

CODE SEGMENT PUBLICASSUME CS:CODE, SS:DATA, DS:DATA 
extrn __eq: near 
extrn __ne: near 
extrn __le: near 
extrn __lt: near 
extrn __ge: near 
extrn __gt: near 
extrn __ule: near 
extrn __ult: near 
extrn __uge: near 
extrn __ugt: near 
extrn __lneg: near 
extrn __switch: near 
CODE ENDS 
 
 DATA SEGMENT PUBLIC 
DATA ENDS 
 CODE SEGMENT PUBLIC 
ASSUME CS:CODE, SS:DATA, DS:DATA 
PUBLIC _strcpy 
_strcpy: 
PUSH BP 
MOV BP,SP 
ADD SP,-2 
MOV AX,6[BP] 
LEA BX,-2[BP] 
MOV [BX],AX 
_2: 
LEA BX,6[BP] 
MOV AX,[BX] 
INC WORD PTR [BX] 
PUSH AX 
LEA BX,4[BP] 
MOV AX,[BX] 
INC WORD PTR [BX] 
MOV BX,AX 
MOV AL,[BX] 
CBW 
POP BX 
MOV [BX],AL 



OR AX,AX 
JNE $+5 
JMP _3 
JMP _2 
_3: 
MOV AX,-2[BP] 
MOV SP,BP 
POP BP 
RET 
CODE ENDS 
END 
 

Back to Article  

Listing Four 

SEG CODE include "runtime.i" 
 
SEG XDATA AT MNAME_var_at  
SEG CODE  
 
PUBLIC _strcpy: 
 
;;ENTER 
POP B 
POP ACC 
LCALL __enter 
 
;;ADDSP(-2) 
 
MOV DPTR,# 2 
LCALL __addsp 
 
;;GETw1s(6) 
MOV DPTR,# -3 
LCALL __getw1s 
;;POINT2s(-2) 
MOV DPTR,# 5 
LCALL __point2s 
;;PUTwp1 
MOV DPL,R5 
MOV DPH,R4 
MOV A,R2 
MOVX @DPTR,A 
INC DPTR 
MOV A,R3 
MOVX @DPTR,A 
 
_2: 
;;POINT2s(6) 
MOV DPTR,# -3 
LCALL __point2s 
;;GETw1p(0) 
MOV DPTR,# 0 
LCALL __getw1p 
;;INCwp 
MOV DPL,R5 
MOV DPH,R4 



INC DPTR 
MOVX A,@DPTR 
ADD A,#1 
MOVX @DPTR,A 
MOV DPL,R5 
MOV DPH,R4 
MOVX A,@DPTR 
ADDC A,#0 
MOVX @DPTR,A 
;;PUSH1 
LCALL __push1 
;;POINT2s(4) 
MOV DPTR,# -1 
LCALL __point2s 
;;GETw1p(0) 
MOV DPTR,# 0 
LCALL __getw1p 
;;INCwp 
MOV DPL,R5 
MOV DPH,R4 
INC DPTR 
MOVX A,@DPTR 
ADD A,#1 
MOVX @DPTR,A 
MOV DPL,R5 
MOV DPH,R4 
MOVX A,@DPTR 
ADDC A,#0 
MOVX @DPTR,A 
;;MOVE21 
 
MOV A,R3 
MOV R5,A 
MOV A,R2 
MOV R4,A 
;;GETb1p(0) 
MOV DPTR,# 0 
LCALL __getb1p 
;;POP2 
LCALL __pop2 
;;PUTbp1 
MOV DPL,R5 
MOV DPH,R4 
MOV A,R3 
MOVX @DPTR,A 
;;NE10f 
MOV A,R3 
ORL A,R2 
JNZ $+5 
LJMP _3 
;;JMPm(_2) 
LJMP _2 
 
_3: 
;;GETw1s(-2) 
MOV DPTR,# 5 
LCALL __getw1s 
;;RETURN(2)  



MOV DPTR,# -2-4 
LJMP __return 
 
END 
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