

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

Sales:sales@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 1 of 12

Methods and Cogs
PROPELLER EDUCATION KIT LAB SERIES

Introduction
Objects are organized into code building blocks called methods. Spin commands in methods can use
other method’s names to pass program control and optionally parameter values to those methods.
When one method uses another method’s name to pass it program control, it’s called a method call.
When the method that got called runs out of commands, it automatically returns program control and
a result value to the line of code in the method that called it. Depending on how a method is written,
it may also receive one or more parameter values when it gets called. Common uses for parameter
values include configuration, defining the method’s behavior, and input values for calculations.

Methods can also be launched into separate cogs so that their commands get processed in parallel
with commands in other methods. The Spin language has commands for launching methods into
cogs, identifying cogs, and stopping cogs. When Spin methods are launched into cogs, global
variable arrays have to be declared to allocate memory for the methods to store return addresses,
return values, parameters, and values used in calculations. This memory is commonly referred to as a
stack or stack space.

This lab demonstrates techniques writing methods, calling methods, passing parameters to methods,
and returning values from methods. This lab also demonstrates using method calls in commands that
launch instances of methods into separate cogs, along with an overview of estimating how much stack
space will be required for one or more spin methods that get executed by a given cog.

Prerequisite Labs
Setup and Testing
I/O and Timing Basics

Parts List and Schematic
This lab will use six LED circuits and three pushbutton circuits (the same as I/O and Timing Basics)

(6) LEDs – assorted colors
(6) Resistors – 100 Ω
(3) Resistor – 10 kΩ
(3) Pushbutton – normally open
(misc) jumper wires

 Build the schematic shown in Figure 1.

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 2 of 12

Figure 1: LED Pushbutton Schematic

Defining a Method’s Behavior with Local Variables
The AnotherBlinker object below uses three local variables, pin, rate, and reps, to define its repeat
loop’s LED on/off behavior. With the current variable settings, it makes P4 blink at 3 Hz for 9 on/off
repetitions. Since the repeat loop only changes the LED state (instead of a complete on/off cycle),
the object needs twice the number of state changes at half the specified delay between each state
change. So, the reps variable has to be multiplied by 2 and rate has to be divided by 2. That’s why
the repeat loop repeats for reps * 2 iterations instead of just reps iterations, and that’s also why the
waitcnt command uses rate/2 instead of rate for the 3 Hz blink rate.

 Run the object, and verify that it makes the P4 LED blink at 3 Hz for 9 repetitions.
 Try a variety of pin, rate and reps settings and verify that they correctly define the repeat

loop’s behavior.

'' AnotherBlinker.spin

PUB Blink | pin, rate, reps

 pin := 4
 rate := clkfreq/3

 reps := 9

 dira[pin]~~

 outa[pin]~

 repeat reps * 2

 waitcnt(rate/2 + cnt)

 !outa[pin]

Calling a Method
The Blink method is used again in the next example object, CallBlink, along with another method
named Main. Figure 2 shows how the Blink method is called from within the Main method. Program
execution begins at Main, the first PUB block. When the program gets to the Blink line in the Main
method, program control gets passed to the Blink method. That’s a minimal version of a method call.
When the Blink method is done blinking the LED 9 times, program control gets passed back to the
Blink method call in the Main method. That’s the method return, or just the “return.”

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 3 of 12

Let's take a closer look at the CallBlink object’s main method. It starts by turning on the P9 LED, to
let the user know that the P23 pushbutton can be pressed. The repeat until ina[23] loop keeps
repeating itself until the P23 button is pressed and the program moves on, turning off the P9 LED
with outa[9] := 0. Then, it calls the Blink method, which blinks P4 at 3 Hz for 9 reps, and then
returns. The next command is waitcnt(clkfreq/2*3 + cnt) which pauses for 3/2 s. Then, the
outermost repeat loop in the Main method starts its next iteration. At that point, the P9 LED turns on
again, indicating that the P23 pushbuttton can again trigger the P4, 3 Hz, 9 reps sequence.

 Load the CallBlink object into the Propeller chip.
 When the P9 LED turns on, press/release the P23 pushbutton.
 Wait for the P9 LED to turn on again after the P4 LED has blinked 9 times.
 Press/release the P23 pushbutton again to reinitiate the sequence.

Figure 2: Calling a Method

Parameter Passing
The Blink method we just used sets the values of its pin, rate, and reps local variables with
individual var := expression instructions. To make methods more flexible and efficient to use, the
value of their local variables can be defined in the method call instead of within the method.

Figure 3 below shows how this works in the BlinkWithParams object. The modified Blink method
declaration now reads: Blink(pin, rate, reps). The group of local variables between the
parentheses is called the parameter list. Notice how the Blink method call in the BlinkTest method
also has a parameter list. These parameter values get passed to the local variables in the Blink
method declaration’s parameter list. In this case, the BlinkTest passes 4 to pin, clkfre/3 to rate,
and 9 to reps. The result is the same as the AnotherBlinker object, but now code in one method
can pass values to local variables in another method.

 Load BlinkWithParams into the Propeller chip and verify that the result is the same the
previous AnotherBlinker object.

 Try adjusting the parameter values in the method call to adjust the Blink method’s behavior.

'' CallBlink.spin

PUB Main

 repeat

 outa[9] := dira[9] := 1

 repeat until ina[23]
 outa[9] := 0

 Blink

 waitcnt(clkfreq/2*3 + cnt)

PUB Blink | pin, rate, reps

 pin := 4

 rate := clkfreq/3

 reps := 9

 dira[pin]~~

 outa[pin]~

 repeat reps * 2

 waitcnt(rate/2 + cnt)
 !outa[pin]

Method
Call

Method
Return

Next
Command

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 4 of 12

Figure 3: Parameter Passing

Methods can be re-used with different parameter values in each method call; here Blink is called
three times with different parameters, and a 1 s pause in between.

PUB BlinkTest

 Blink(4, clkfreq/3, 9)

 waitcnt(clkfreq + cnt)

 Blink(5, clkfreq/7, 21)
 waitcnt(clkfreq + cnt)

 Blink(6, clkfreq/11, 39)

Here is another example that blinks a different LED each time the pushbutton is pressed and released.
This is a variation of the CallBlink object’s Main method, with a local variable named led and a
repeat loop that sets the led variable to 4, 5, …, 8, 9, 4, 5, …8, 9, …. An updated Blink method call
passes the value in the led variable to the Blink method's pin parameter. Since led changes with each
iteration of the repeat led.... loop, the pin variable will receive a different value each time Blink is
called. The result? Each time the pushbutton is pressed (after P9 lights up), a different LED will
blink at 3 Hz for 9 reps.

PUB BlinkTest | led

 repeat
 repeat led from 4 to 9

 outa[9] := dira[9] := 1

 repeat until ina[23]
 outa[9] := 0

 Blink(led, clkfreq/3, 9)

 waitcnt(clkfreq/2*3 + cnt)

The BlinkTest method's local variable led could have been named pin because it’s a local variable,
so only code in the BlinkTest method uses it. Code in the Blink method also has a local variable pin,
but again, only code in the Blink method will be aware of that pin variable’s value.

 Try the two modified versions of BlinkTest just discussed and make sure they make sense.
 Try changing the parameters so that the P4 LED blinks four times, P5 blinks 5 times, and so

on.

'' BlinkWithParams.spin

PUB BlinkTest

 Blink(4, clkfreq/3, 9)

PUB Blink(pin, rate, reps)

 dira[pin]~~

 outa[pin]~

 repeat reps * 2

 waitcnt(rate/2 + cnt)

 !outa[pin]

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 5 of 12

Launching Methods into Cogs
All the methods in the objects up to this point have executed in just one of the Propeller chip’s cogs,
Cog 0. Each time the Blink method was called, it was called in sequence, so the LEDs blinked one at
a time. The Blink method can also be launched into several different cogs, each with a different set
of parameters to make the LEDs all blink at different rates simultaneously. The BlinkWithCogs
object shown in Figure 4 demonstrates how to do this with three cognew commands.

The first method in a top level object automatically gets launched into Cog 0, so the Blinker object’s
LaunchBlinkerCogs method starts in Cog 0. It executes three cognew commands, and then runs out of
instructions, so Cog 0 shuts down. Meanwhile, three other cogs have been started, each of which runs
for about three seconds. After the last cog runs out of commands, the Propeller chip goes into low
power mode.

Figure 4: Parameter Passing

While Cog 0 accesses unused RAM that comes after the program codes to store method call return
addresses, local variables and intermediate expression calculations, other cogs that execute Spin
methods have to have variables set aside for them. Such variable space reserved in Global RAM for
those temporary storage activities is called stack space, and the data stored there at any given moment
is the stack. Notice that the BlinkWithCogs object in Figure 4 has a long stack[30] variable
declaration. This declares an array of long variables named stack with 30 elements: stack[0],
stack[1], stack[2], …, stack[28], stack[29].

The command cognew(Blink(4, clkfreq/3, 9), @stack[0]) calls the Blink method with the
parameters 4, clkfreq/3, and 9 into the next available cog, which happens to be Cog 1. The
@stack[0] argument passes the address of the stack[0] array element to Cog 1. So Cog 1 starts
executing Blink(4, clkfreq/3, 9) using stack[0] and upward for its return address, local variables,
and intermediate calculations. The command cognew(Blink(5, clkfreq/7, 21), @stack[10])

launches Blink(5, clkfreq/7, 20) into Cog 2, with a pointer to stack[10]’s address in RAM so it
uses from stack[10] and upwards. Then cognew(Blink(6, clkfreq/11, 33), @stack[20]) does it
again with different Blink method parameters and a different address in the stack array.

'' BlinkWithCogs.spin

VAR

 long stack[30]

PUB LaunchBlinkCogs

 cognew(Blink(4, clkfreq/3, 9), @stack[0])

 cognew(Blink(5, clkfreq/7, 21), @stack[10])

 cognew(Blink(6, clkfreq/11, 39), @stack[20])

PUB Blink(pin, rate, reps)

 dira[pin]~~

 outa[pin]~

 repeat reps * 2

 waitcnt(rate/2 + cnt)
 !outa[pin]

Launch into
Cog 2

Launch into
Cog 1

Launch into
Cog 3

Cog 1
Blinker(4, clkfreq/3, 9)
RAM @stack[0]

Cog 2
Blinker(5, clkfreq/7, 21)
RAM @stack[10]

Cog 3
Blinker(6, clkfreq/11, 39)
RAM @stack[20]

Cog 0
LaunchBlinkerCogs commands

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 6 of 12

 Load the BlinkWithCogs object into the Propeller chip and verify that it makes the three
LEDs blink at different rates at the same time (instead of in sequence).

 Examine the program and make notes of the new elements.

The unused RAM that Cog 0 uses for its stack can be viewed with the Object Info window shown in
Figure 5. The gray color-coded bytes are initialization codes that launch the top level object into a
cog, set the propeller’s clk register, and various other initialization tasks. The red memory addresses
store Spin program codes, the yellow indicates global variable space (the 30 long variable stack
array), and what follows is blue unused RAM, some of which will be used by Cog 0 for its stack. The
beginning RAM address of cog 0’s stack is hexadecimal 00F0.

Figure 5: Object Info Window

Stopping Cogs
With cognew commands, the Propeller chip always looks for the next available cog and starts it
automatically. In the BlinkWithCogs object, the pattern of cog assignments is predictable: the first
cognew command launches Blink(4, clkfeq/3, 9) into Cog 1, Blink(5, clkfreq/7, 21) into Cog 2,
and Blink(6, clkfreq/11, 39) into Cog 3.

Choose your Cog: Instead of using the next available cog, you can specify which cog you wish to launch by
using the coginit command instead of cognew. For example, this command will launch Cog 6:

coginit(6, Blink(4, clkfreq/3, 9), @stack[0])

The cogstop command can be used to stop each of these cogs. Here is an example with each reps
parameter set so that the object will keep flashing LEDs until one million repetitions have elapsed.
After a 3 second delay, cogstop commands shut down each cog at one second intervals using the
predicted cog ID so that none of the methods get close to one million reps.

First unused RAM
address for Cog 0’s
stack

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 7 of 12

 PUB LaunchBlinkCogs

 cognew(Blink(4, clkfreq/3, 1_000_000), @stack[0])

 cognew(Blink(5, clkfreq/7, 1_000_000), @stack[10])

 cognew(Blink(6, clkfreq/11, 1_000_000), @stack[20])
 waitcnt(clkfreq * 3 + cnt)

 cogstop(1)

 waitcnt(clkfreq + cnt)
 cogstop(2)

 waitcnt(clkfreq + cnt)

 cogstop(3)

With some indexing tricks, the cogs can even be launched and shut down with repeat loops. Below
is an example that uses an index local variable in a repeat loop to define the I/O pin, stack array
element, and cog ID. It does exactly the same thing as the modified version of the LaunchBlinkCogs
method above. Notice that the local variable index is declared with the pipe symbol. Then, repeat
index from 0 to 2 increments index each time through the three cognew command executions.
When index is 0, the Blink method call’s pin parameter is 0 + 4, passing 4 to the Blink method’s pin
parameter. The second time through, index is 1, so pin becomes 5, and the third time through, it
makes pin 6. For the clkfreq sequence of 3, 7, 11 with index values of 0, 1, and 2, (index * 4) + 3
fits the bill. For 0, 10, and 20 as the array element, index * 10 fits the bill. To stop cogs 1, 2, and 3,
the second repeat loop sweeps index from 1 to 3. The first time through the loop, index is 1, so
cogstop(index) becomes cogstop(1). The second time through, index is 2, so cogstop(2), and the
third time through, index is 3 resulting in cogstop(3).

 PUB LaunchBlinkCogs | index

 repeat index from 0 to 2
 cognew(Blink(index + 4, clkfreq/((index*4) + 3), 1_000_000), @stack[index * 10])

 waitcnt(clkfreq * 3 + cnt)

 repeat index from 1 to 3

 cogstop(index)
 waitcnt(clkfreq + cnt)

 Try the modified versions of the LaunchBlinkCogs methods.

Objects can be written so that they keep track of which cog is executing a certain method. One
approach will be introduced in the Cog ID Indexing section on page 10. Other approaches will be
introduced in the Objects lab.

How Much Stack Space for a Method Launched into a Cog?
Below is a list of the number of longs each method adds to the stack when it gets called.

• 2 – return address
• 1 – return result
• number of method parameters
• number of local variables
• workspace for intermediate expression calculations

Assume you have an object with three methods, A, B and C. When Method A calls Method B, the
stack will grow, containing two sets of these longs, one for Method A, and one for Method B. If
Method B calls Method C, there will be a third set. When Method C returns, the stack drops down to
two sets.

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 8 of 12

The workspace is for storing values that exist during certain tasks and expression evaluations. For
example, the Blink method’s repeat reps * 2 uses the workspace in two different ways. First, the
reps * 2 expression causes two elements to be pushed to the stack: the value stored by reps and 2.
After the * calculation, 2 is popped from the stack, and the result of the calculation is stored in a
single element. This element stays on the stack until the repeat loop is finished. Inside the repeat
reps * 2 loop, two similar expansions and contractions of the stack occur with
waitcnt(rate/2 + cnt), first with rate/2, and again when the result of rate/2 is added to cnt.

In this case of the Blink method, the most it uses for workspace and intermediate expression
calculations is 3 longs: one long for holding the result of reps * 2 until the repeat loop is done, and
two more for the various calculations with binary operators such as multiply (*) and divide (/).
Knowing this, we can tally up the number of long variables a cog’s stack will need to execute this
method are listed below. So, the total number of stack space (long variables) a cog needs to execute
the Blink method is 10.

• 2 – return address
• 1 – return parameter (even though it was not declared, every method has a built-in return

 parameter, which will be introduced in the next section)
• 3 – pin, freq, and reps parameters
• 1 – time local variable
• 3 – workspace for calculations.
--
• 10 – Total

As mentioned earlier, one cog needs enough stack space to for all the memory it might use, along
with all the stack space of any method it calls. Some methods will have nested method calls, where
Method A calls Method B, which in turn calls Method C. All those methods would need stack
memory allocated if Method A is the one getting launched into the cog.

Err on the side of caution: The best way to set aside stack space for a cog that gets a Spin method launched
into it is to err on the side of caution and declare way more memory that you think you’ll need. Then, you can
use an object in the Propeller Tool’s object library (the folder the Propeller.exe file lives in) named
Stack Length.spin to find out how many variables the method actually used. The Objects Lab will feature a
project that uses the Stack Length object to verify the number of long variables required for a Spin method that
gets launched into a cog.

Declaring a long variable array named stack in an object’s VAR code block is a way of setting aside
extra RAM for a cog that’s going to run a Spin interpreter. The name of the array doesn’t have to be
stack; it just has to be a name the Spin language can use for variable name. The names blinkStack or
methodStack would work fine too, so long as the name that is chosen is also the one whose address
gets passed to the cog by the cognew command. Remember that the @ operator to the left of the
variable name is what specifies the variable’s ram address.

About _STACK: The Spin language also has a _stack constant, which can be used in CON blocks to reserve
enough stack space for the top level method that gets launched into Cog 0. Unlike cogs that get launched with
cognew that have coded addresses of array stack space, the Spin interpreter that gets launched into Cog 0
when the Propeller chip boots uses unallocated RAM that immediately follows the last program code. In large
programs or programs that reserve a lot of memory, _stack can manually set aside enough memory for Cog
0’s stack in unused RAM.

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 9 of 12

Return Parameter
Method declarations can also specify a return parameter. A return parameter is the name of a variable
whose value gets sent back to the method call. Figure 6 shows an important use of this feature where
the value returned gets assigned to a variable, in this case with the command time :=

ButtonTime(23). This command stores the result of the ButtonTime(23) method call in the time
variable. Here’s how it works:

1. ButtonTime(23)method calls the ButtonTime method, passing 23 to it’s pin parameter.
2. :dt in the ButtonTime method declaration specifies the dt variable as its return parameter.
3. When the ButtonTime method returns, the method call becomes the value stored in the

method’s return parameter variable.
4. The time := ButtonTime(23) assignment operation copies the method’s return parameter to

the time variable so that the Main method can use it.

The ButtonBlink object’s ButtonTime method measures and returns the approximate amount of time
the button is pressed. The Blink(4, time, 10) command in the Main method passes this time
measurement value to the Blink method’s rate parameter. This in turn makes the P4 LED blink
on/off at a rate that matches the time the LED was held down. Each time you press and release the
P23 pushbutton, the ButtonBlink object uses the ButtonTime method to measure the time the
pushbutton was pressed and held, and then flashes the LED 10 times, with each on/off cycle lasting as
long as the pushbutton press.

 Load ButtonBlinkTime into the Propeller chip.
 Press and release the LED, and observe that the LED blinks ten times at a rate determined by

how long you held the button down.
 After the LED finishes blinking, press and hold the pushbutton down for a different amount

of time to set a different blink rate.
 Try various durations from a quick tap on the pushbutton to holding it down for a few

seconds.

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 10 of 12

Figure 6: Parameter Passing

The Result Variable
Whenever a method is called, it sets aside a local variable named result. Whenever a method is
done, it always returns the value stored by result, regardless of whether or not the optional return
parameter is specified. When a return parameter is specified, it actually just provides an alias to the
method’s result variable. This alias name is useful, especially for making the code self
documenting, but it is not required.

Below is a modified version of the ButtonTime method that demonstrates how the result variable can
be used instead of a declared alias name for the return parameter. The :dt has been removed from the
method declaration, and the last line now reads result := t2 – t1 instead of dt := t2 – t1. Keep
in mind that dt was really just an alias to the result local variable and methods always return the
value stored in result. So, from the method call’s standpoint, this revised method still functions
identically to the one in the ButtonBlink object.

PUB ButtonTime(pin) | t1, t2 ' Optional return parameter local variable name removed

 repeat until ina[pin]

 t1 := cnt

 repeat while ina[pin]
 t2 := cnt

 result := t2 - t1 ' Value stored by result is automatically returned

 Substitute this modified version of the ButtonTime method into the ButtonBlink object and

verify that it works the same.

'' ButtonBlink.spin

PUB Main | time

 Repeat

 time := ButtonTime(23)

 Blink(4, time, 10)

PUB Blink(pin, rate, reps)

 dira[pin]~~

 outa[pin]~

 repeat reps * 2

 waitcnt(rate/2 + cnt)
 !outa[pin]

PUB ButtonTime(pin) : dt | t1, t2

 repeat until ina[pin]
 t1 := cnt

 repeat while ina[pin]

 t2 := cnt
 dt := t2 - t1

(1) Button
method call

passes 23 to pin
parameter

(3) Button method
returns value stored
in dt

(2) dt is
return
parameter

(4) time variable
assigned Button

method’s return value
(what Button method’s

dt variable stored)

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 11 of 12

Cog ID Indexing
As mentioned earlier, objects can’t necessarily predict which cog a given method will get launched
into. Just like methods return values, the cognew command returns the ID of the cog it launched a
method into. Each time a method gets launched into a new cog, the cog ID the cognew command
returns can be stored in a variable. This makes it possible to keep track of what each cog is doing.

The CogStartStopWithButton object demonstrates keeping track of cog IDs with an array variable in
an application that launches a new cog each time the pushbutton is pressed and released. It uses the
same ButtonTime method from the previous example object to measure the time the pushbutton was
held down. Then, it launches the Blink method into a new cog with the time measurement
determining the blink rate. The result, an application where each time you press and release the
pushbutton, another LED starts blinking at a rate that matches the time you held down the pushbutton.
After the sixth pushbutton press/release, the next six pushbuttons press/releases will shut down the
cogs in reverse sequence. Since all the cog starting and stopping is nested into a repeat loop with no
conditions, the 13th time you press/release the P23 pushbutton will have the same effect as the first
press/release.

 Load CogStartStopWithButton into the Propeller chip, and use the P23 pushbutton to
successively launch Blink cogs.

 Try a variety of button press times so that each LED is obviously blinking at a different rate.
 Make sure to press/release the P23 pushbutton at least twelve times to launch and then shut

down cogs 1 through 7.

'' File: CogStartStopWithButton.spin

VAR

 long stack[60]

PUB ButtonBlinkTime | time, index, cog[6]

 repeat

 repeat index from 0 to 5

 time := ButtonTime(23)
 cog[index] := cognew(Blink(index + 4, time, 1_000_000), @stack[index * 10])

 repeat index from 5 to 0
 ButtonTime(23)

 cogstop(cog[index])

PUB Blink(pin, rate, reps)

 dira[pin]~~

 outa[pin]~

 repeat reps * 2

 waitcnt(rate/2 + cnt)

 !outa[pin]

PUB ButtonTime(pin) : delta | time1, time2

 repeat until ina[pin] == 1

 time1 := cnt
 repeat until ina[pin] == 0

 time2 := cnt

 delta := time2 - time1

Copyright © Parallax Inc. ● Methods and Cogs v0.8 ● 12/24/2006 ● Page 12 of 12

Inside ButtonBlinkTime
The CogStartStopWithButton object’s ButtonBlinkTime method is declared with eight local variables,
time, index, and an array named cog with six elements. The repeat command under the method
declaration repeats the rest of the commands in the method since they are all indented further.
Because this repeat command has no conditions, the rest of the commands in the method get repeated
indefinitely.

PUB ButtonBlinkTime | time, index, cog[6]

 repeat

The first nested repeat loop increments the index variable from 0 to 5 each time through. The first
command it repeats is time := ButtonTime(23), which gets a new button time measurement each
time it’s called. Next, cog[index] := cognew… launches Blink(index + 4, time, 1_000_000) into a
new cog. The cognew command returns the cog ID, which gets stored in cog[index]. The first time
through, index is 0, so the command becomes cog[0] := cognew(Blink(4, time, 1_000_000),

@stack[0]). The second time through, it’s cog[1] := cognew(Blink(5, time, 1_000_000),

@stack[10]). The third time through, it’s cog[2] := cognew(Blink(6, time, 1_000_000),

@stack[20]), and so on. So, cog[0], cog[1], up through cog[5] each stores the cog ID for a different
cog that a different version of Blink was launched into.

 repeat index from 0 to 5

 time := ButtonTime(23)

 cog[index] := cognew(Blink(index + 4, time, 1_000_000), @stack[index * 10])

After the sixth button press/release, the code enters this repeat loop. Notice how the ButtonTime
method gets called, but its return value doesn’t get stored in the time variable. That’s because this
method is just being used to wait for the next pushbutton press/release so that it can shut down the
next cog. Since nothing is done with its return parameter, it doesn’t need to be stored by the time
variable. This repeat loop goes from 5 to 0. So the first time through, cogstop will shut down the
cog with the ID stored in cog[5]. The second time through, it will shut down the cog with the ID
stored in cog[4], and so on, down to cog[0].

 repeat index from 5 to 0

 ButtonTime(23)

 cogstop(cog[index])

