
 1

SXSim

A Simulator for the SX Family of Microcontrollers for
Microsoft Windows®

Version 2.08.06

Copyright ©, 2005, 2006

by Günther Daubach

Im Eulenflug 25

D-51399 Burscheid, Germany

Tel./Fax: +49 2174 – 785 931

eMail: g.daubach@mda-burscheid.de

 2

Table of Contents

What is SXSim? ...5
Why SXSim? ..5

Installing SXSim..6
The SXSim User Interface..7

Manually Changing Register Contents ...9
Setting Breakpoints/Watchpoints..9
“One-Time” Breakpoints – “Run to Right-Click” Mode ..10
“Jump to Right-Click” Mode ..10
Automated Saving of SXSim Sessions...11
The Navigation Buttons ..11

CLR BPs ...11
Prev BP ...11
Next BP ...11
Find Main ..11
Find ISR ..11
Find PC ...11
Find Label ...12
Find Text ...12

The Commands Window ..12
The Status Display ..12
Step...12
Bck ..12
Step Over ..13
Walk ..13
- ...14
+ ..14
Brk. Walk...14
Run..14
Watchpt. ..14
Poll ..14
Stop...14
Reset...15
I/O Panel ...15
Load File ...15
Load Last ..15
Quit..15

The Run ISR Checkbox ..15

 3

The Check RETI Checkbox ..16
The Check RTCC Checkbox ..16
The Clock Section...17
The Stack Section...17
The RTCC display ..18

The “Smart” I/O Panel ..19
A Sample SXSim Session Featuring the I/O Panel ..20
The RTCC Input section ...22

The “SX Secrets”..23
The FIFO instruction (Op-Code $047) ..23
The PUSH and POP Instructions..23
The MOV W, !OPTION Instruction ($001) ..24
Other Unsupported “Secret Instructions” ..24

SXSim “Hyper Counters”..25
SXSim Error/Warning Messages..26

Errors: ...26
Bad call address, or wrong page!..26
Bad jump address, or wrong page! ...26
Bad jump or return address!..26
CALL nesting too deep!...26
Could not open the LST file passed via the command line! ..26
RESET directive not found!...26
RET without prior CALL! ...26
RETI without active interrupt! ..26
RETIW without active interrupt!...26
RETP without prior CALL! ...26
RETW without prior CALL! ..26
RETIW has caused an RTCC overflow...27
RTCC overflow within the ISR...27
The Program has no entry point..27
You may only open LST files with SXSim ...27

Warnings:..27
Address 0 not found. ...27
Label not found. ..27
List file has been modified - restore Breakpoints? ..27
List file has been modified by another application - reload it? ..27
No chip type specified – assuming SX18. Continue simulation?27
Text not found. ..27

 4

The SIM Files ...28
SX48/52 Support ..28
The End..28
Version History ...29

 5

What is SXSim?
SXSim is a software-emulation of the SX family of microcontrollers for PCs running the Win-
dows operating system (Win 98 and higher).

SXSim has a “built-in virtual” SX controller that is able to execute the commands contained in
a list file (LST) created by the current version of SASM which is integral part of the SX-Key
development software released by Parallax Inc. Please note that SXSim may not work cor-
rectly with LST files that were created by other versions, or other types of SX assemblers
because SXSim makes certain assumptions on the structure of the LST files, unique to the
SX-Key SASM.

SXSim is not only intended to be a simulator for the SX devices but it may also be used as
an analyzer for SX application programs, extending the debugging features of /n in-system
SX debugger, where on the other hand, SXSim lacks features of the in-system debugger,
especially the real-time execution speed.

SXSim is – by no means – yet finished, or fully tested, so don’t be surprised if certain SX
features are not correctly supported, or are not supported at all. Nevertheless, this version of
SXSim should give you an idea of what can be done. The current version of SXSim does
support all SX devices, i.e. SX 18/20/28/48/52, but not yet the two additional timer/counters
available in the SX48/52 devices.

Why SXSim?
On the SXTech List forum, I once found a message that read: “The best SX simulator is the
SX itself together with SX-Key”. I fully agree to that statement because one of the unique
features of the SX is that it can be debugged “on-line”, or “in-system” at real-time. But there
are always some matters that ask for improvements, like:

 Whenever you make a change in the SX program, the SX program memory must be
re-programmed for the next debugging session – with SXSim, you simply re-load the
list file after re-assembling the source code file, and you are ready for a new simula-
tion session.

 Due to the internal structure of the SX, you can only define one breakpoint at a time
with SX-Key or any other SX development system. SXSim allows you to define as
many breakpoints as you like, and it automatically saves the breakpoint positions
(plus other important project-related information), so that they are there again when
you re-load a LST file later.

 Due to the internal structure of the SX, you can not set a breakpoint on a NOP
instruction – SXSim makes it possible.

 Due to the internal structure of the SX, the “breakpointed” instruction is always exe-
cuted before the program execution stops. This means that breakpoints on JMP or
CALL instructions actually halt the program execution on the first instruction at the
JMP target, or at the first instruction of a subroutine. SXSim – on the other hand –
stops program execution before the “breakpointed” instruction is executed.

 SXSim displays some additional, useful information, like the status of the port direc-
tion registers, the stack memory, and the number of executed cycles, and the elapsed
execution time at a specified clock frequency. It also analyzes the clock cycles of the
ISR code, and displays the contents of the SX “secret registers” which will be de-
scribed later in this document.

 SXSim performs checks for subroutine stack underflow and overflow conditions. This
helps you to find out if your code contains RET instructions without prior CALL in-
structions, or if your subroutines are nested too deeply. It also displays a “Stack

 6

gauge”, which gives you an idea of how deeply you have nested subroutine calls in a
program.

 SXSim performs some other plausibility checks that can’t be done by in-system
debuggers, like jumps to un-programmed areas in program memory. These might
help you, detecting abnormal operation conditions in a program that are hard to be
found while debugging the “real silicon”.

 SXSim comes with a “Walk” mode, i.e. a “slow motion” mode where you may select
the speed. You can also select whether active breakpoints shall stop the “Walk”
mode, or not. Both settings are saved in the SIM file, and will be restored when you
re-load a project.

 SXSim has a “Step Over” function – this is a “Hyper Step” button, allowing you to skip
over subroutines in high speed while stepping through a program.

 When testing an SX application, you sometimes might want to know “what happened
before”. SXSim records the last 1000 instructions executed, allowing you to “un-do”
them, i.e. to “reverse-execute” the application under test.

 Many SX applications make use of delay timers, and while debugging a program, it is
annoying to step or walk over such delay loops, or setting breakpoints after such
loops, and “Run”ing them. Therefore, in SXSim you may assign the “Hyper Counter”
property to a file register. When this property is active, the registers will immediately
over-, or underflow as soon as an increment or decrement instruction is performed on
them.

 In programs with interrupts on RTCC roll-overs, it is often annoying when the interrupt
service routine is entered while single-stepping. Instead of setting a breakpoint on the
RETI or RETIW instruction, and “Running” over the ISR code, in SXSim, you have the
option to let it automatically execute the ISR code at full speed.

 SXSim also comes with a “smart” I/O panel configuring itself, depending on how the
TRIS port registers are configured by the simulated program. When a port pin is con-
figured as input, the panel activates a “virtual input button”, when a pin is configured
as output, the panel activates a “virtual LED”. Input buttons can be locked if neces-
sary in order to set more than one input pin to high level at the same time.

The I/O Panel also has a special “virtual input button” that becomes active when the
SX is configured to have the RTCC incremented by external pulses.

As you can see, SXSim comes with some features that are not available with “real-silicon”
debuggers. Nevertheless, SXSim’s target is not to replace such debuggers, like the SX-Key.
It has been designed as a utility for those users who like to “test before buy” a “real” SX de-
velopment system, and for SX developers who want to “test before flash” an application.

You should also keep in mind that due to the fact that the SX is simulated on a PC, the pro-
gram execution is a lot slower compared to a “real” SX, i.e. SXSim can’t by no means run an
application in real-time as it is possible with the SX-Key.

Installing SXSim
SXSim is a Windows application written in Visual Basic 6.0. It has been tested with Windows
98, ME, XP, and 2000.

After you have downloaded the SXSim.ZIP archive, extract SXSim.EXE which is contained in
this archive into any folder you like. There is no special Setup program required, as SXSim
only makes use of DLL and OCX files that should be available on every Windows machine. If
you like, define a shortcut to SXSim on the Desktop, or in the task bar.

 7

Note: When you are using the new SX-Key IDE with integration of SXSim, it is important to
install new versions of SXSim in the folder “Tools\SXSim” which can be found in the main
folder of SX-Key.

The SXSim User Interface
The user interface of SXSim has been designed to come very close to the popular SX-Key
IDE, distributed by Parallax Inc.

Most controls of the SXSim user-interface come with integrated tool tip help messages, so
just move the mouse cursor on top of an item for more information.

Here is how the SXSim user-interface looks like after you have launched SXSim:

If you are familiar with the SX-Key IDE, you will find many similarities between SXSim and
SX-Key, but there are also some differences, and a couple of new items in the SXSim IDE.

First, you might notice that SXSim does not have a menu bar, like SX-Key. Instead, all
SXSim operations can be executed by clicking the buttons, or other items that are shown in
the “Main” and the “Commands” windows.

The “Commands” window, initially positioned to the right of the main window, acts as
SXSim’s “Control Center”, similar to the one in SX-Key, but it has some additional command
buttons. For now, there are only two or three buttons active in this area: “Load File”, “Load
Last” (in case you have opened a file with SXSim before) and “Quit”.

Before performing any meaningful operation with SXSim, it is necessary to load a list file cre-
ated from SASM while assembling the program, you want to simulate. In other words, any

 8

program to be simulated must first pass SASM, i.e. it must be assembled without any errors
(and warnings – if possible).

Click the “Load” button to open a file select dialog, where you can navigate through your
computer’s folders, and select the LST (list file) of the program that you like to simulate.

You may also drag and drop an icon assigned to a list file on the SXSim program icon in or-
der to start SXSim and have it automatically load this list file.

SXSim also accepts a list file name passed via the command line. The command line must
contain the full path specification, the file name and the .LST extension. For example:
SXSim c:\appdev\sx\project1\test.lst

When you activate SXSim from the SX-Key IDE, the list file generated from the source code
currently shown in the IDE Editor will be automatically loaded. If necessary, the IDE first runs
the assembler in order to generate the list file.

After you have selected a list file, the SXSim display will look similar to the next picure:

As in SX-Key, the upper half of the main window shows the “SX internals”, where the lower
area displays a view into the application’s list file that is currently open with its path/name in
the box on top of the list display. In SXSim, this file is not shown in a separate window that
can be moved, re-sized, or closed, but in the lower fixed area of the Main window instead.
Nevertheless, you may re-size the Main window, and the list section’s size will be automati-
cally adjusted, Please note that re-sizing the Main window is limited to a minimum, so that
the file register array at the top right, and at least four lines in the list section always remain
visible.

The Commands window has been defined to be always on top of other windows, including
the Main window.

In order to avoid that the Commands window overlaps the main window, it is “pushed” to the
right when the width of the main window is increased.

In the upper half of the Main window, the register contents of Bank 0 in hexadecimal, and
binary representation are shown, like SX-Key does. Note that the upper three bits of FSR’s
binary representation are highlighted because of their special meaning as bank-select bits.

 9

When SX48 or SX52 devices are simulated, bits 6, 5, and 4 are highlighted instead because
these are affected by the BANK instruction. Bit 7 is then highlighted differently to indicate that
this bit must be set by a separate instruction if necessary.

Similar to SX-Key, the contents of the M (MODE) and W registers are shown at the top cen-
ter of the window, together with the fields “INT” and “SKIP” that will become highlighted while
an interrupt is handled, or a skip will be executed next.

Note the blue text in the upper left corner of the main window, indicating the SX device that is
currently being simulated.

The center area, where SX-Key displays the current instruction codes does not exist in
SXSim. Instead, the “Next Instruction” field has been introduced showing the mnemonic of
the next instruction to be executed, together with any symbolic name of an operand or a label
(when defined). The remaining space in this area is used to display other important informa-
tion, like the setting of the port direction registers (TRIS) in binary representation, the setting
of the special port B configuration registers (WKEN_B, WKED_B, and WKPND_B), the “Next
Instruction”, and the CALL-Stack display. New since SXSim version 1.50 are the fields in this
area showing the status of the “internal SX secret registers”, like the 8-level FIFO buffer, and
the shadow stacks for W, STATUS, FSR, and PC. See the chapter “The SX Secrets” later in
this document for more details.

The buttons and displays in the lower area of the center part of the window deal with the SX
system clock.

We will address these sections in more details later in this text.

The area to the right of the main window contains the display array of the SX memory banks
above bank 0, similar to the SX-Key IDE.

According to the SX-Key IDE, the titles of the memory bank columns are “1x”, “3x”, etc. If you
prefer titles like “0x”, “1x”, etc. for “straight” addresses, left-click on any of these titles in order
to toggle the display mode. The current setting will be saved, and restored on a later session.

After you have loaded a list file, part of the file contents are displayed in the lower window
area, the so-called “list file area”.

Manually Changing Register Contents
As in SX-Key, you may manually change register contents. Left-click on the hexadecimal
representation of a register to activate the input mode. You will notice that the background
color of this area will change to blue.

Type in the new value, and hit Enter to accept the new value, or Esc to leave without chang-
ing the current value. You may also hit any of the arrow keys to accept the new value you
have entered. The up and down arrow keys move the blue edit marker to the previous or
next register address, and the left and right arrow keys move the blue edit marker to the pre-
vious or next bank of registers. This feature is new to SXSim Version 2.8, and it is handy
when you need to change subsequent register contents.

Alternatively, when a register also has a binary representation, you may left-click on any bit
to toggle its state.

Setting Breakpoints/Watchpoints
When you simulate an SX program at maximum speed with SXSim using the “Run” mode, it
often is helpful to stop program execution at a certain instruction in order to inspect the con-
tents of registers at that line, or to continue program execution in single steps in order to
analyze the further program flow from that point on. Therefore, SXSim allows you to set
breakpoints on any line in the list file that contains executable code.

 10

Sometimes, it makes more sense, not to halt program execution on a certain instruction, but
to update the display of register contents instead.

Due to internal limitations of a “real” SX, the SX-Key IDE only allows you to specify one
breakpoint at a time, and it does not allow to specify watchpoints at all. On the other hand,
SXSim allows you to specify as many breakpoints/watchpoints as you like.

The SXSim list file area looks similar to SX-Key’s list window with the exception that each
line has a small check-box to the left. Left-click on any check-box of a line containing execu-
table code in order to set a breakpoint/watchpoint there (when you click a check-box in a line
that does not contain executable code, nothing will happen at all). Check-boxes of lines that
are “breakpointed/watchpointed” have a small check marker. In order to remove a break-
point/watchpoint, simply click on a checked box again.

When the list file contains a BREAK directive, SXSim automatically sets a break-
point/watchpoint at the next executable line following the BREAK.

Usually, when SXSim executes a program in “Run” mode, program execution will stop on
each “breakpointed” line. As an option, marked lines can also act as “watchpoints” (see the
description of the Commands window for more details). With this option selected, program
execution does not stop on marked lines but the status display is refreshed instead.

Important Note: Other than the SX-Key IDE, SXSim will halt program execution on a
“breakpointed” line before the instruction in this line is executed where the SX-Key IDE (due
to the internal SX structure) halts program execution only after the instruction has been exe-
cuted.

“One-Time” Breakpoints – “Run to Right-Click” Mode
This handy feature is new to Version 2.08.06 of SXSim. In order to use it, make sure that the
“Run” radio button above the “FindPC” button is selected (the operation of “Jump to Right-
Click” will be explained in the next section).

Sometimes, you might want to execute an SX program to a certain code line, from there to
another line, etc. at highest speed. You could set a breakpoint on the first target line, click
“Run” to simulate the code to this breakpoint, remove the breakpoint, set another one to the
next line of interest, etc. This is a bit cumbersome, and when the program “hits” another
breakpoint which is eventually set, it will halt there, so you need to click “Run” again until the
target line is finally reached.

Right-clicking on any line in the List window that contains an executable instruction sets a
temporary breakpoint on this line, enters “Run” mode, and the program is simulated at full
speed until this temporary breakpoint is reached, while all other breakpoints are ignored in
this mode.

“Jump to Right-Click” Mode
When the “Jump to Right-Click” radio button (above the “Find Label” button) is selected,
right-clicking on a line in the List window that contains an executable instruction does not set
a temporary breakpoint, and let SXSim simulate the program at full speed up to the marked
line. Instead, the program counter (PC) is simply set to the address found in that program
line. When you do a “Step”, “Walk”, or “Run”, program simulation will continue with the
instruction in the line, you have right-clicked on. This is similar to double-clicking on a list line
in the SX-Key debugger.

Please note that this mode can cause some trouble: As the contents of the program counter
(PC) is modified, all instructions between the one previously addressed by the PC, and the
newly addressed instruction will be skipped. So, no register contents (including the flags in

 11

the status register, and the RTCC) will be updated, as it would be the case when the skipped
instructions were executed, as in the “Run to Right-Click” mode.

You should keep this in mind when using the feature. As SXSim does not “know” how many
instruction cycles the skipped instructions would take, it can no longer correctly update the
“Cycles”, and “Time” fields. Therefore, they are reset to zero as soon as you right-click on an
instruction line in this mode.

Other “strange” situations may occur when you use this feature. For example, when you
right-click an instruction line in a subroutine, and continue the simulation from there, you will
get a “RET without prior CALL” message as soon as SXSim executes the RET instruction
because the associated CALL instruction was skipped. A similar situation will occur when
you right-click on an instruction inside the ISR code when the RETI or RETIW instruction is
reached.

Automated Saving of SXSim Sessions
Whenever you load another list file, or quit SXSim, the active breakpoints, the position and
status of the windows and various other information of the current session will be saved to a
file with the list file’s name, and an “.SIM” extension in the folder from where the list file was
loaded. When you re-load this list file later, all breakpoints, the window positions and other
settings will be restored again from the associated SIM file.

The Navigation Buttons
Above the list file section, there are some buttons that are unique to SXSim. These buttons
can be used to quickly navigate through the list file, and to perform other helpful tasks.

CLR BPs
Click this button to clear all breakpoints that have been set.

Prev BP
Click this button to position the current list cursor on the previous line that contains a break-
point (if any).

Next BP
Click this button to position the current list cursor on the next line that contains a breakpoint
(if any).

Find Main
Positions the current list cursor to the line that contains the main program entry point, i.e. the
address that is specified with the RESET directive in the source code. Please note that
SXSim gathers this information from the RESET directive, i.e. it is not necessary to define a
specific label, like “Main”, or “ResetEntry” for this address, but there must be a RESET direc-
tive in the list file, or an error message will be displayed when the list file is loaded.

Find ISR
Positions the current list cursor to address 0 which is the entry point of the SX interrupt ser-
vice routine (if one has been defined).

Find PC
Positions the current list cursor to the location in program memory, currently addressed by
the PC register.

 12

Find Label
Click this button to open a dialog box where you can enter the name of a symbolic label. You
may enter names of global or local labels (with a leading colon). When the specified label ex-
ists, the current list cursor will be positioned on the line containing that label. This function is
not case-sensitive, i.e. it does not matter if you enter label names in upper-, lower-, or mixed
case.

When you activate the Find Label function again, previously searched labels are stored in-
ternally, i.e. you may select any of them from the drop-down list.

Find Text
This function is similar to “Find Label”, but it allows you to search for any text in the list file
(except in comments which are ignored by default). Again, the search is not case-sensitive,
and previous search patterns are internally stored so that you can select them again from the
drop-down list. Please note that this function always starts searching the text pattern from the
current list cursor position towards the end of the list file, and then continues the search from
the first line in the list file again.

Press F3 to continue the search for the most recently entered search pattern without the
need to click the “Find Text” button once again.

By default, the “Find Text” function does not search text in comments. Mark the “Search
comments” checkbox in the Find Text dialog to have SXSim search through all text, including
comments.

The Commands Window
This window contains the items that are used to control SXSim. Some of them are “well-
known” to SX-Key users, and some are unique to SXSim. You may drag this window to any
suitable position of the desktop. It’s position will be saved in the SIM file associated to the
current list file, i.e. when you re-open a list file, the window will be automatically placed at its
former location. The Commands window stays always on top of other windows, so that it
can’t be hidden when you maximize another window, like SXSim’s main window.

The Status Display
At the top of the Commands window, the current status of SXSim is shown:

 Idle – Waiting for a command, no simulation running.

 walking – The program is simulated in Walk mode.

 running – The program is simulated at maximum speed in Run mode.

Step
Click this button to execute the instruction that is currently highlighted by the list cursor in the
list file section of the SXSim Main window. Any changes to the SX registers will be displayed,
and recently changed registers are highlighted with a red background.

Bck
While single-stepping, stepping-over, walking, or running a program, it may happen that you
go “too fast”, e. g. you click the Step button once more before noticing some significant reg-
ister has changed, etc, or you click the Stop button too late while in the Walk or Run modes.

SXSim keeps track of the last 1000 instructions executed, and allows you to “roll them back”,
i.e. to “undo” them. Click the “Bck” button to revert to the previous step(s).

Note that this button is inactive when no instructions have been recorded so far, or when all
recorded instructions have been “un-done”.

 13

No matter, in what mode the instructions are executed (in Step, Step Over, Walk, or Run
Mode), they will all be recorded in the undo buffer. As this is a circular buffer, recording does
not stop when the buffer is full. Instead, the oldest recordings will be lost.

The vertical bar at the left of the Main Window acts as a “gauge” indicating the “fill level” of
this undo buffer.

The Undo feature can also become handy when SXSim reports an error or a warning. In
such cases, “stepping back” might help you finding out the reason for that specific error or
warning.

Step Over
This button acts similar to the Step button with the exception that subroutines will be
“stepped over”. When the next instruction to be executed is a CALL, and you click “Step
Over”, program execution runs at full speed until a matching RET, RETP, or RETW instruc-
tion is executed. When you have stepped “into” a subroutine, using the Step button, and click
Step Over “inside” the subroutine, the remaining commands, including the final RET, RETP,
or RETW instructions will be executed at full speed.

Step Over is a bit “tricky” with nested subroutines. SXSim keeps track of the nesting depth of
subroutines. Whenever you click Step Over on a CALL instruction, or inside a subroutine,
instructions are executed at full speed until a return instruction ends up at the same nesting
level when Step Over was clicked.

Here is an example:
Sub1
 nop ;1
 call Sub2 ;2
 nop ;3
 ret ;4

Sub2
 nop ;5
 nop ;6
 ret ;7

Main
 nop ;8
 call Sub1 ;9
 clr w ;10
 jmp Main ;11

When you click Skip Over in line 9, Sub1, and the nested calls to Sub2 and Sub3 will be exe-
cuted at full speed, and the execution finally halts at line 10. When you single-step into Sub1
to the nop in line 1, and click Skip Over there, the remaining instructions in Sub1 and the
nested calls to Sub2 and Sub3 are executed at full speed, and the execution again halts at
line 10.

When you single-step into Sub2 to the nop in line 5, and click Step Over there, the two nop’s
and the ret will be executed at full speed, and execution halts on the nop in line 3 in Sub1.

Walk
Click this button to repeatedly execute instructions in “slow motion”, beginning with the cur-
rently highlighted instruction in the list file section. As in the “Step” mode, any changes of SX
registers will be displayed, and recently changed registers are highlighted with a red back-
ground.

Click the “Stop” button to cancel the “Walk” mode. Clicking the “Reset” button instead, will
also cancel the “Walk” mode, but it additionally performs a simulated SX reset.

The “Walk” speed can be adjusted by the controls that are described next.

 14

-
Left-click this button to decrease the delay between execution steps while the “Walk” mode is
active. (The current delay value in ms will be displayed in the field between the “-“ and “+”
buttons. Left-click on that field to restore the default value of 100 ms).

The “Walk” speed is saved in the SIM file, and will be restored when you re-load the list file
later.

+
Left-click this button to increase the delay between execution steps while the “Walk” mode is
active. (The current delay value in ms will be displayed in the field left of this button – left-
click into that field to restore the default value of 100 ms).

The “Walk” speed is saved in the SIM file, and will be restored when you re-load the list file
later.

Brk. Walk
When this box is checked, the Walk mode will terminate on any active breakpoints.

The status of this checkbox is saved in the SIM file, and will be restored when you re-load
the list file later.

Run
This starts SXSim’s run mode, which is a “hyper Walk mode”, i.e. the instructions will be exe-
cuted as fast as possible without refreshing the register display after each instruction but only
once, every second.

Click the “Stop” button to cancel the “Run” mode. Clicking the “Reset” button instead, will
also cancel the “Run” mode, but in addition, it performs a simulated SX reset.

Watchpt.
Usually (when this box is un-checked), a breakpoint set on an instruction line will halt pro-
gram execution in “Run” mode, allowing you to continue further program execution either in
single steps, in “Walk” mode, or in “Run” mode again.

With the “Watchpt.” box checked, the “Run” mode operates differently:

 The register display will no longer be refreshed every second (click the “Poll” button
instead at any time to force a refresh if necessary).

 Program execution is not halted on lines marked with a breakpoint. Instead, the regis-
ter display will be refreshed when such lines are executed. This means, that marked
lines are now used to trigger watchpoints, i.e. to automatically do a “Poll” instead of
breakpoints.

This feature may be handy, when you want to know the contents of a variable after a certain
instruction has been executed. As with breakpoints, you also my set more than one watch-
point at any time.

Poll
While the “Run” mode is active, the Main Window’s display will automatically be refreshed
every second. Click the “Poll” button at any time to refresh the display in between. When
watchpoints are active, the Main Window’s display will no longer be refreshed every second
but only when an instruction with a watchpoint is executed. In order to refresh the display in
between, you my click the “Poll” button at any time.

Stop
Click this button to terminate the “Walk” and “Run” modes at any time.

 15

Reset
Click this button to reset the simulated SX. This will also terminate active “Walk” and “Run”
modes. After a reset, various SX registers will be initialized to their defaults, where the file
registers will remain unchanged, similar to a “real” SX when the /MCLR pin is pulled low, and
released to high again.

Reset also clears the undo buffer.

PWR
This button performs the same actions as the Reset button. In addition, the file registers will
be initialized with random values, similar to a “real” SX when it is powered up.

PWR also clears the undo buffer.

I/O Panel
Click this button to display the I/O Panel window. We will address the I/O panel in more detail
in another chapter, below.

Load File
Click this button to open and load a list file after launching SXSim, or when you want to load
another list file while SXSim is already active. Whenever you open another list file, or when
you terminate SXSim, various settings of SXSim (like the active breakpoints) are saved in the
directory where the list file exists, using the list file name together with the “.SIM” extension.

When you load a new list file, SXSim automatically checks if a matching “.SIM” file exists,
and restores the most recent SXSim settings in that case. SXSim also keeps track if the list
file has been changed since the last version of the “.SIM” file has been saved. This may be
the case when you have re-assembled the related SX program in the meantime. As you may
have added, removed, or re-located instructions, the breakpoints that were eventually saved
at the end of the last SXSim session might no longer be correct. Therefore, when break-
points were defined, SXSim displays a dialog box in this case, allowing you to either restore
the breakpoints, or to ignore them.

While SXSim is running, it periodically checks if the currently loaded list file has been modi-
fied by another application in the meantime (e.g. by SX-Key). If this is the case, a dialog will
be shown, giving you the choice to update the list file, or to go ahead with the currently
loaded version.

Load Last
SXSim saves the name of the most recently opened list file in the Windows registry. To re-
load it, click the “Load Last” button. This is handy when you work on one project for a while.
So there is no need to select this file from the Open File dialog each time you want to simu-
late the project again. Leave the mouse cursor for a while over this button. The tooltip text
will then show you the file that will be loaded when you click the button.

Quit
The function of this button is obvious – it terminates SXSim after saving the current simula-
tion settings, as described before. Instead of clicking the “Quit” button, you may also click the
close-box at the top-left of the SXSim main window.

The Run ISR Checkbox
When single-stepping a program with an ISR controlled by RTCC roll-overs, it is often an-
noying to also have to single-step through the ISR instructions, or to run the ISR instructions
with a breakpoint set at the RETI, or RETIW instruction to continue single-stepping from
there. When the “Run ISR” checkbox is activated, ISR code will be executed at full speed
automatically when you “single-step”, or “walk” a program.

 16

This is a small demonstration program to show you how this works:
DEVICE SX28, TURBO, OSCHS2, OPTIONX
IRC_CAL IRC_FAST
FREQ 50_000_000
RESET Main

 ORG 0
ISR
 inc 8
 inc 8
 call FromISR
 mov w, #-50
 retiw

FromISR
 dec 8
 ret

Main
 clr 8
 clr 9
 mov w, #%10001000
 mov !option, w
Loop
 inc 9
 jmp Loop
end
Make sure that the “Run ISR” box is un-checked, and then single-step through this program,
and note how the ISR is entered when the RTCC overflows. After you have stepped through
the ISR code (including the subroutine called from there), check the “Run ISR” box and con-
tinue single-stepping while watching the contents of the RTCC. When it overflows $FF, you
will notice that stepping does not enter the ISR code but continues executing the main pro-
gram instructions. Nevertheless, the ISR code has been executed. You can prove this by
checking the contents of register $08 (it was incremented), and by the total cycles executed
(they were increased by the number of cycles required for the ISR code).

The Check RETI Checkbox
By default, when SXSim is about to execute RETI, or RETIW instructions, it checks if an in-
terrupt is currently active, and reports an error when this is not the case, as it is most likely
that program execution will continue in “nowhere land” in this case.

The now disclosed “secret instructions”, and the shadow stacks make it possible to use the
RETI and RETIW instructions for other purposes than returning from an interrupt. When you
simulate programs making use of such “features”, uncheck this box.

The Check RTCC Checkbox
For precisely timed applications using ISRs triggered by RTCC overflows, it is important that
an RTCC overflow never occurs while the ISR code is still being executed because in this
case, the next RTCC overflow interrupt would be lost.

By default, SXSim issues a warning message when RTCC overflows while the ISR code is
still being executed. SXSim will also issue a warning message when the final RETIW instruc-
tion in an ISR causes an RTCC overflow, i.e. when the current contents of RTCC plus the
contents of the W register yield in a value above 255.

When timing is not a major concern, you may turn off these warnings by un-checking this
box.

 17

The Clock Section
This section contains some information about the SX clock. When SXSim finds a FREQ di-
rective in the list file, the clock frequency specified together with this directive is displayed in
the “Clock/MHz” field, else the text “unknown” is shown.

The “Cycles” field below the “Clock/MHz” field displays the total number of clock cycles that
have elapsed for program execution so far. The next field, below displays the execution time
that has elapsed so far. The contents of these fields will be cleared when you click the “Re-
set” button, or load another list file. You may also clear them in between by clicking the
“CLR” button to the right of the Time/µs field.

When the “Auto” checkbox to the right of the “CLR” button is marked, the two field are auto-
matically cleared when you click the “Run” button in the Commands window. This is handy
when you want to know the number of cycles required to execute a program between two
breakpoints, or between running from a breakpoint until the program is stopped at the same
breakpoint the next time.

The “ISR Cycles” field displays useful information about the ISR timing. By default, the
maximum number of clock cycles having been executed in the ISR so far is shown. Click the
button currently named “Max” to display the minimum number of clock cycles the ISR has
executed so far – the button’s caption will change to “Min” then. When you click this button
again, it’s caption changes to “Avg”, and the “ISR Cycles” field displays the average number
of clock cycles the ISR has executed so far. This value is calculated by dividing the total
number of ISR execution cycles by the number of ISR calls. It should give a good estimate
how many instruction cycles “remain” for the main program in average. Click the button again
to cycle back to the “Max” display mode.

Click the “CLR” button to the right of this field to clear the displayed value.

Note that active “Hyper Counters”, described later, don’t allow for further timing measure-
ments. In this case, these fields will display “???” when a “Hyper Counter” has been changed
its contents for the first time.

The Stack Section
The eight fields under the “Stack” caption are used to display the current contents of the call
stack. When a CALL instruction is executed, you will notice that the return address is dis-
played in the field at the bottom. In case the called subroutine calls another one, you will no-
tice that the already stored return address is advanced on position up, and that now the sec-
ond return address is displayed in the bottom field. The eight-level stack of the SX allows for
a nesting depth of eight. In a “real” SX, the first return address gets lost when this value is
exceeded. SXSim keeps track of the nesting level, and reports an error in case the nesting
level is exceeded.

When a RET, RETP, or RETW instruction is executed, you will notice how the lowest ad-
dress is “popped” off the stack, and that higher return addresses (if any) drop down one po-
sition.

Executing a RET, RETP, or RETW instruction without a prior CALL on a “real” SX leads to
unpredictable results leading the program flow into “Nirvana”. SXSim checks for such situa-
tions, and reports a Stack Underflow error when this option is selected.

As return addresses are pushed on the stack, you will notice that all fields that once held a
return address will be highlighted. When the addresses are “popped” off the stack again,
these highlights will remain active, acting as a “gauge” indicating the maximum “stack fill
level”. This is handy to check the maximum subroutine nesting in a program. The “gauge” is
cleared when you click the “Reset” button, or load another list file.

 18

Note: When the list file does not contain a STACKX, or OPTIONX directive, the stack is lim-
ited to two locations only, and only the lower two fields of the stack will be visible, and stack
nesting depth is limited to two.

The RTCC display
Usually, the special registers section in the main window looks like this:

The current contents of the RTCC register is displayed in hex notation in the
second field from top. The SX “maps” the RTCC register into RAM address 01
when bit 7 in the OPTION register is set.

When this bit is cleared, the W register (or WREG) is mapped into this address
instead. Both, the SX-Key debugger, and SXSim display the contents of the W

register in the second field in this case, and the field’s caption reads “W” instead of “RTCC”
in this case.

Thus, when the W register is mapped into address 01, you can no longer watch the contents
of RTCC.

Therefore, SXSim, versions 2.08.06 and higher display an additional “RTCC” field to the right
of the WREG field in order to show the contents of RTCC even
though it is no longer mapped into address 01, i.e. a mov $01, $ff
instruction will change the contents of W instead of RTCC. Never-
theless, even when W is mapped into address 01, RTCC will count
up (when enabled), and trigger an interrupt on roll-ower, and the

retiw instruction works as expected.

 19

The “Smart” I/O Panel
Click the “I/O Panel” button to display the I/O Panel window:

The I/O panel contains three major sections, named “Outputs”, “Inputs”, and “RTCC Input”.

The “Outputs” section contains the “virtual LEDs” that are connected to the SX port pins con-
figured as outputs. At start-up, there will be no LEDs active because by default, the SX sets
all pins to inputs.

Later, when you simulate a program, “LEDs” will become visible for all port pins as they be-
come configured as outputs, and the “LEDs” will be “turned on” when the output pin is set to
high level by the simulated program later.

Like in SX-Key, you may click on a bit in the binary representation of the port register in order
to toggle the bit. As an alternative, in SXSim, you may also click on an “LED” in the I/O Panel
in order to toggle the associated port output bit.

The “Inputs” section contains pushbuttons/switches that are “connected” to the input port
pins of the simulated SX. At start-up, or reset, there are pushbuttons available for all port
pins because the SX sets all pins as inputs then. When any of the port pins is set to an out-
put by the simulated program, the associated pushbutton will become invisible, and an “LED”
will be shown in the “Outputs” section instead.

When an input button is visible, you may either left-click it in order to “push” the button (the
assigned port pin will assume high level in this case as long as you keep the button
“pushed”), or right-click the button to toggle its state. Whenever a button is “pushed”, i.e. left-
clicked, or “toggled on”, it will be displayed in green.

The “RTCC Input” section contains one “virtual pushbutton” which represents the RTCC in-
put. Note that this pushbutton can only be “pushed”, i.e. clicked with the left mouse button – it
can’t be locked like the other input buttons. This button is visible as long as bit 5 in the

 20

OPTION register is set, i.e. as long as the external RTCC clock is enabled (the default at
start-up and reset). We will discuss this section a bit later.

Click the “Close” button at the top left to hide the I/O panel. In order to display the I/O panel
again, click the “I/O Panel” button in the “Commands” window again.

When terminating SXSim, or when you select another LST file by clicking the “Load File”
button, the current I/O Panel status (visibility, and position) is saved in the “.SIM” file for later
restore

A Sample SXSim Session Featuring the I/O Panel
Enter the program, below, using the SX-Key IDE, and assemble it using SASM (not the “old”
SX-Key Assembler). Next, launch SXSim, and click the “Load File” button.

In the file select dialog that opens next, navigate to the TestPortInt.lst file that was generated
by SASM, and open it.

When the SX-Key IDE has a launch button for SXSim, simply click this button after entering
the source code. The IDE will automatically assemble it, and then invoke SXSim (provided
that there are no errors in the code).

Here is the source code that is used to generate TestPortInt.lst:
LIST Q = 37
DEVICE SX28L, TURBO, STACKX, OSCHS2
IRC_CAL IRC_FAST
FREQ 50_000_000
RESET Main

 org $000
ISR
 mode $09 ; Select WKPND_B
 clr w
 mov !rb, w ; Exchange WKPND_B and w
 test w ; Any WKPND_B bits set?
snz
 jmp :RTCCInt ; No, must be an RTCC interrupt
 xor ra, w ; Toggle ra.1 or ra.0 depending on

; which WKPND_B it (1 or 0) is set
reti

:RTCCInt
 xor ra, #%00000100 ; Toggle RA.2
 mov RTCC, #250

reti
Main
 mode $0b ; Select WKEN_B
 mov !rb, #%11111100 ; Enable interrupts on RB.1 and RB.0
 mode $0a ; Select WKED_B
 mov !rb, #%11111101 ; Positive edge on RB.1, negative on
; RB.0
 mode $0f ; Select TRIS
 mov !ra, #%11111000 ; RA.2 ... RA.0 are outputs
 mov RTCC, #250
 mov !option, #%10101000 ; Enable RTCC interrupts, external

; RTCC clock, positive edges, no
; prescaler.

 jmp $

The Main code enables interrupts/wakeups on positive edges at port B.1 and on negative
edges at port B.0, and configures port A bits 2 through 0 as outputs.

After initializing the RTCC to 250, it enables RTCC interrupts, and sets the RTCC to be in-
cremented by positive signal edges applied to the external RTCC input with no prescaler.

Finally, an endless loop is entered.

 21

In the Interrupt Service Routine (ISR), the contents of the WKPND_B register and w are ex-
changed. As w is cleared before, WKPND_B is cleared afterwards (which is important to
avoid more interrupts before another bit in WKPND_B is set again).

When no bits in WKPND_B are set, execution is continued at :RTCCInt, else the contents of
WKPND_B is used to toggle the output pins RA1 and RA0. We will discuss the code follow-
ing :RTCCInt later).

After TestPortInt.LST has been loaded, click the “I/O Panel” button to display the I/O Panel. It
will display the default I/O port configuration, i.e. input buttons for all port pins and no output
“LEDs”.

If possible, position the SXSim main window and the I/O panel on the Windows desktop so
that both windows don’t overlap each other.

First, single-step through the instructions of the Main program section, and note how the
three “LEDs” assigned to RA2, RA1, and RA0 become visible, and how the input buttons are
hidden after the instructions for MOV !RA, #%11111000 have been executed.

Pins RA2...0 have been configured as outputs now, so you may no longer force these pins to
high or low level with pushbuttons “connected” to them. The I/O panel should now look like
this:

Other than real LEDs, the LEDs shown in the I/O panel are “clickable”. A left-click on any of
the LEDs toggles the state of the associated output. Note how the port state displayed in the
main window changes as you click an LED. This is similar to clicking a single bit in the binary
representation of the ports in the main window.

As you step over the instructions to set the OPTION register, you will notice that the symbol
right of the RTCC input button has changed from to . This is because bit 4 in the
OPTION register is cleared now, which selects positive (rising) edges to trigger the RTCC,
where the default is negative (falling) edges, i.e. OPTION.4 = 1.

 22

Next, “Walk” the program, and left-click and hold the RB.1 input button. In the SXSim main
window, you will see how the program flow enters the ISR, and how the “LED” assigned to
RA.1 is turned on. Note that the ISR code is entered as soon as you “push” the button be-
cause RB.1 is configured to trigger interrupts on positive edges. Release and push the button
again for several times, and note how the RA.1 “LED” is toggled.

Next, click and hold the RB.0 input button for a while. You will notice that the ISR code will
not be executed before you finally release this button again because RB.0 was configured to
trigger interrupts on negative edges. Click and release this button a couple of times, and
watch how the RA.0 “LED” is toggled.

The RTCC Input section
As bit 5 in the OPTION register is set, i.e. external RTCC clock signals are enabled. There-
fore, the button in the RTCC Input section is visible (which is the default at start-up, or after a
reset). As mentioned before, the “edge symbol” indicates which signal edge triggers the
RTCC.

When bit 6 in the OPTION register is cleared, i.e. RTCC interrupts are enabled, you will no-
tice that the text “Interrupts enabled” is displayed in the RTCC Input section.

After you have tested the port B interrupts as described above, continue “Walking” the pro-
gram.

Please notice that the field “ISR Cycles” should display 13 after you have clicked one of the
two buttons assigned to RB1 and RB0 at least once, indicating that the ISR execution has
taken 13 clock cycles (this includes the cycles required to enter the ISR, and to execute the
final RETI instruction.

Now click the button in the RTCC Input section several times. Note how the RTCC register
increments each time you click that button. When RTCC overflows from FF to 00, the ISR

 23

code will be executed, but this time, it branches to :RTCCInt, where it toggles bit RA.2, and
the “LED” “connected” to that output confirms this.

Now, check the contents of the “ISR Cycles” field again. It should display 18, i.e. the code to
handle the RTCC interrupt took longer than the code to handle the port B interrupts. The
“ISR Cycles” field, by default, displays the maximum number of ISR cycles required for an
ISR execution so far. Click the “Max” button once to display the minimum ISR cycles (the
button’s title has changed to “Min”). Click the button once more to display the average num-
ber of ISR cycles required so far.

The “SX Secrets”
The designers of the SX silicon have implemented some instructions and internal storage
dedicated to support “on-chip debugging” that were not published so far. In the meantime,
Ubicom has allowed that this information may be disclosed. Therefore, SXSim now supports
most of these “secret instructions”.

Please note that using any of these instructions may cause that debugging such a program
on a “real” SX chip may be no longer possible, or may cause erroneous results. On the other
hand, SXSim can easily simulate these features.

The FIFO instruction (Op-Code $047)
The SX has an internal 8-level FIFO (first-in-first-out) buffer, normally used to store informa-
tion while a debug session is performed but this buffer can also be handy as temporary stor-
age without using RAM locations for this purpose.

The FIFO is organized as an 8 byte circular buffer with the W register as the data “source”
and “sink”.

Whenever a FIFO instruction is executed, the contents of W are pushed on that stack, and
the contents of the eighth level are rolled into W.

Simulate the following program to see how it works:
LIST Q = 37
DEVICE SX28L, TURBO, STACKX, OSCHS2
IRC_CAL IRC_FAST
FREQ 50_000_000
RESET Main

FIFO macro
dw $047
endm
org $000
Main
mov w, #1
Loop
fifo
jmp Loop

While single-stepping through the code, note how the contents of W (01) is transferred into
the lowest level of the FIFO buffer after the first execution of the FIFO macro. After this, W
holds 00 (the value, rolled from the topmost (8th) buffer level into W).

Continue single-stepping through the code, and note how the 01 “advances up” in the FIFO
buffer until it “arrives” in W again after the 9th execution of the FIFO macro.

The PUSH and POP Instructions
When the SX enters into the interrupt service routine, the contents of the registers W,
STATUS, FSR and PC are automatically saved in so-called “shadow” registers, and when a

 24

RETI or RETIW instruction is executed these registers are automatically restored from these
“shadow” registers. This great feature makes it unnecessary to explicitly save and restore
any of these register contents within the interrupt service routine.

But this is only the “half of the truth”. Actually, the “shadow registers” for each of the W,
STATUS, FSR, and PC registers are “mini stacks” with two levels. When an interrupt occurs,
the contents of the W, STATUS, FSR, and PC registers are pushed into the first level of
these “mini stacks”, and they are popped-off again when a RETI, or RETIW instruction is
executed.

Again, the 2nd level of the “mini stacks” was implemented by the SX designers for on-chip
debugging purposes.

When debugging is not required, one level of the “mini stacks” may be used to store tempo-
rary values outside of the “regular” SX file registers. In applications without interrupts, even
both levels may be used.

SXSim versions 1.50 and higher display the current contents of the “mini stacks” in the
“Shadow” column. Note that the PC-stack is 12 bits wide, where the other stacks are 8 bits
wide.

SXSim supports the following “secret instructions” that deal with the “mini stacks”:

PUSH W ($048) - pushes the contents of W on the W stack

PUSH STATUS ($049) - pushes the contents of W on the STATUS stack

PUSH FSR ($04a) - pushes the contents of W on the FSR stack

PUSH PC ($04b) - pushes the contents of the lower 4 bits of M, and W on the PC
 stack

POP W ($04c) - pops off the recently pushed value from the W stack into W

POP STATUS ($04d) - pops off the recently pushed value from the STATUS stack
 into W

POP FSR ($04e) - pops off the recently pushed value from the FSR stack into W

POP PC ($04f) - pops off the recently pushed value from the PC stack into
 M (4 bits) and W

Using these PUSH and POP instructions, applications might push certain values on the “mini
stacks”, and later use a just one RETI instruction to pop off values into the W, STATUS,
FSR, and PC registers.

In this case, RETI is not used to return from an interrupt service routine. By default, SXSim
keeps track of active interrupts, and reports an error when a RETI, or RETIW instruction is
going to be executed when no interrupt is active. To overrun this test, un-check the “Check
RETI” box below the Stack section in the SXSim window.

The MOV W, !OPTION Instruction ($001)
This “secret instruction” is also supported by SXSim, Version 1.50 and higher.

Other Unsupported “Secret Instructions”
There are some more “secret instructions”, like activating the debug mode ($044), shift the
OSC pin in/out W ($045), and setting the breakpoint register ($046) that are not supported by
SXSim.

 25

SXSim “Hyper Counters”
Even on a fast Windows PC, simulated SX programs run a lot slower, compared to the exe-
cution times on a “real SX silicon”. For example, when your application contains timer count-
ers that are decremented in nested loops within the ISR to achieve a delay of – say – one
second, with SXSim, it may take hours to run this kind of code until the counters all read
zero, even in “Run” mode.

On the other hand, once, you have checked that such counters decrement as expected, for
example, it is not necessary to confirm that the next hundreds of decrements are also done
correctly. Therefore, you may declare any of the global registers at address $08…$0F, and
any of the registers in the register banks as “Hyper Counters”.

Right-click on the hex display section of any of these registers to toggle between the “Hyper
Counter” and “regular” modes. When the “Hyper Counter” property is selected for a register,
its background color is displayed in green.

The following instructions are handled differently when the fr-part of the instruction refers to
a register with active “Hyper Counter” property:

dec fr
The contents of fr will immediately assume zero, and the Z flag is set.

decsz fr
The contents of fr will immediately assume zero, and the Z flag is set, i.e. the skip will be
executed.

inc fr
The contents of fr will immediately assume zero, and the Z flag is set.

incsz fr
The contents of fr will immediately assume zero, and the Z flag is set, i.e. the skip will be
executed.

movsz w, ++fr
The contents of w is set to 0, fr is set to 255, and the Z flag is set, i.e. the skip will be exe-
cuted.

movsz w, --fr
The contents of w is set to 0, fr is set to 1, and the Z flag is set, i.e. the skip will be executed.

Please note that SXSim can no longer keep track of the number of cycles executed, or the
elapsed execution time when “Hyper Counters” are active, and any of the above listed in-
structions are applied to a “Hyper Counter”, i.e. in this case, the displayed information about
clock cycles or total execution time is no longer accurate. The same is true, when any of the
instructions listed above is applied to a “Hyper Counter” register from within the ISR – in this
case, the “ISR cycles” field is no longer accurate. Therefore, as soon as a “Hyper Counter”
has been changed, the fields in the Main Window display “???” instead of clock cycles, or
elapsed time values.

 26

SXSim Error/Warning Messages
As SXSim “runs” a simulated SX controller, it can perform several plausibility checks while
code is executed which a debugger running on “real SX silicon” can’t do.

Here is a list of the messages:

Errors:
When SXSim detects an error, it stops program simulation when the Walk or Run modes are
active, and displays one of the following messages:

Bad call address, or wrong page!
A CALL instruction refers to an area in program memory where no code exists, possibly be-
cause of a missing PAGE instruction.

Bad jump address, or wrong page!
A JMP instruction refers to an area in program memory where no code exists, possibly be-
cause of a missing PAGE instruction.

Bad jump or return address!
A JMP or RET instruction points to an area of the program memory where no code exists.
Check if a PAGE instruction exists before the JMP, or use RETP instead of RET.

CALL nesting too deep!
The maximum subroutine call nesting has been exceeded (8 in default, or 2 in “Compatibility”
mode), i.e. the subroutine return stack has overflowed.

Could not open the LST file passed via the command line!
This error is reported when SXSim cannot find the list file in the directory passed together
with the file name in the command line.

RESET directive not found!
SXSim searches the list file for a RESET directive in order to find out where program execu-
tion shall begin. If this directive is missing, SXSim can’t simulate the program.

RET without prior CALL!
A RET instruction outside of a subroutine was found.

RETI without active interrupt!
An RETI instruction outside of the interrupt service routine was found.

You may disable this check by un-marking the “Check RETI” checkbox in the SXSim main
window when using the “secret SX instructions”.

RETIW without active interrupt!
An RETIW instruction outside of the interrupt service routine was found.

You may disable this check by un-marking the “Check RETI” checkbox in the SXSim main
window when using the “secret SX instructions”.

RETP without prior CALL!
An RETP instruction outside of a subroutine was found.

RETW without prior CALL!
An RETW instruction outside of a subroutine was found.

 27

RETIW has caused an RTCC overflow
The RETIW instruction adds the contents of W to the RTCC register. This warning is issued
when the result of this addition is greater than 255. In applications that rely on precisely
timed interrupts, such situations should be avoided. RTCC checking can be de-activated by
un-checking the “Check RTCC” box in SXSim’s main window.

RTCC overflow within the ISR
While the last interrupt is still being serviced by the ISR, another RTCC overflow has oc-
curred. This is the case when the total number of instruction cycles in the ISR is greater than
the interrupt period defined with the last RETIW instruction. RTCC checking can be de-acti-
vated by un-checking the “Check RTCC” box in SXSim’s main window.

The Program has no entry point
SXSim requires that the entry point of the main program is specified in the list file, i.e. that
the source code file contains a RESET directive in order to begin the simulation at one well-
defined address.

You may only open LST files with SXSim
This error is reported when you try to drag and drop a file icon that is not assigned to a list
file on the SXSim icon, or pass a file name with an extension other than “LST” on the com-
mand line.

Warnings:
Address 0 not found.
The “Find ISR” function did not find valid code at address 0 (the ISR entry-point).

Label not found.
The “Find Label” function could not find the requested label.

List file has been modified - restore Breakpoints?
This message shows up when you re-load a list file that has been modified by the SxKey IDE
since the last SXSim session. When you have modified the original SRC file by adding or
removing instructions, the breakpoints saved in the associated SIM file and the new resulting
list file may no longer match.

Click “No” to not restore the breakpoints. When you click “Yes”, you should check the loca-
tions of the defined breakpoints using the “Prev. BP” and “Next BP” functions.

List file has been modified by another application - reload it?
SXSim periodically checks if the list file stored on the hard disk differs from the one currently
loaded. When a difference has been detected, this message appears, and you have the
choice to re-load the modified file, or to continue the simulation with the currently loaded ver-
sion.

No chip type specified – assuming SX18. Continue simulation?
SXSim requires an information about the chip type to simulate in order to select the right
memory sizes, I/O ports, etc. Similar to SASM, SXSim assumes an SX18 when the list file
does not contain a DEVICE SX?? direction. Click “Yes” to continue. In case, you want to
simulate a different chip type, click “No”, add the desired DEVICE specification to the source
code, assemble it again, and then start the simuilation.

Text not found.
The “Find Text” function could not find any matching text in the currently loaded list file.
When searching for text in comments, make sure that the “Search comments” box is
checked in the “Find Text” dialog box.

 28

The SIM Files
Whenever you open a list file with SXSim, and close it later, SXSim saves a file with the
name of the list file, but an “.SIM” extension in the folder where the list file is located. This file
is used to save information about the current SXSim session. When you open the same list
file later, the most important settings of the previous session will be restored from the SIM
file:

 Recent date/time stamp of the LST file in order to detect if the LST file has been
modified between two SXSim sessions.

 The breakpoints.

 The status of the Brk.Walk checkbox.

 The position of the Commands window.

 The visible status of the I/O panel window.

 The position of the I/O panel window.

 The mode of the register column headers.

 The position and size of the main debug window.

 The status of the Check RETI and Check RTCC checkboxes.

 The selected Walk speed.

 The “Hyper Counter” properties of the file registers.

This makes it easy to continue a simulation session with a specific list file after having a
break.

SX48/52 Support
New since version 2.01 of SXSim is the support of the “large” SX48/52 devices. SXSim
parses the DEVICE setting when loading a list file, and automatically adjusts itself to the SX
type specified. This means that the size of the simulated program memory, the size of the
available RAM (File Registers) and the addressing modes for file registers is adapted to the
“silicon under simulation”.

Please note that this version does not support the two multi-purpose timers/counters that are
available on the SX 48/52 chips. I think I should create a new window in a future version of
SXSim to display the states of these timers/counters.

The End
This ends the SXSim documentation for now. Please stay tuned, more features will be com-
ing soon (or whenever I have the time)…

If you have any comments, suggestions, wishes, or found a bug, please feel free to contact
me at any time.

Günther Daubach

g.daubach@mda-burscheid.de

 29

Version History

October 27, 2004 (Version 1.42 - RTCC bug fixed)

November 14, 2004 (Version 1.43 - RL/RR bug fixed)

December 07, 2004 (Version 1.44 - IREAD bug fixed)

December 08, 2004 (Version 1.45 - JMP PC+W bug fixed)

December 11, 2004 (Version 1.50 - supports “secret” SX instructions)

December 13, 2004 (Version 1.51 - allows to turn off RETI/RETIW checking)

December 21, 2004 (Version 1.52 - handling of the “shadow stacks” fixed)

December 22, 2004 (Version 1.53 - new single-step undo feature)

January 05, 2005 (Version 1.54 - several bug-fixes and new features)

January 12, 2005 (Version 1.55 - bug-fixes and new “Hyper Counter” feature - see the new
doc file)

January 15, 2005 (Version 1.56 - bug-fixes, enhanced “Hyper Counters”, RTCC checks, en-
hanced undo, random register values on reset, error messages when SX 48/52 files are
opened - see the new doc file)

January 19, 2005 (Version 1.57 – bug in undo function fixed in order to correctly restore the
M register, and the highlight in the list window).

January 30, 2005 (Version 2.01 – several bug-fixes and enhancements, like an option to
pass the list file name via the command line, and enhanced ISR cycle statistics – plus last,
not least, SX48/52 support).

January 31, 2005 (Version 2.02) – a bug fixed in the SX48/52 simulation.

February 02, 2005 (Version 2.03) – several bugs in the SX58/52 simulation fixed. SX18 as-
sumed when no device is specified in the list file. LST file icons may now be dragged and
dropped on the SXSim icon in order to launch SXSim with that file.

February 05, 2005 (Version 2.03)

Bugs fixed:

 When a value was moved into a port register, the states of the input lines were over-
written.

 After reloading a list file after it was modified by another application the window posi-
tions and sizes were restored to their defaults.

 On systems with two video monitors, an overflow run-time error could occur when the
Commands window, or the I/O panel was moved to an extremely right screen posi-
tion.

 When the main window was minimized, a run-time error “A form can’t be moved or re-
sized while it is minimized” occurred before.

 Clicking the “Find Main” button caused an error message “Bad jump or return ad-
dress”.

 When modifying registers in the highest register bank of a simulated SX48/52, an
overflow run-time error could occur.

 OPTION bit 6 was ignored, i.e. whenever there was a RTCC roll-over, an interrupt
was executed.

 30

New features:

 A new option “Run ISR” allows to execute ISR code at full speed while “single-step-
ping”, or “walking” a program.

 The “LEDs” in the I/O panel can now be clicked in order to toggle the state of the
associated outputs.

 When a port bit state is changed by clicking on the bit in the main window, the “LED”
in the I/O panel changes its state accordingly.

 When there is no STACKX, or OPTIONX device directive in the list file, OPTION bits
7 and 6 are now treated as read only.

 When the main window is widened, the Commands window is “pushed” to the right in
case the main window would overlap it.

 OPTION bit 7 is respected now. This means when this bit is set, the RTCC is mapped
into address $01, when the bit is clear, the W register is mapped into this location.

March 05, 2005 (Version 2.05)

 Fixed the add pc+w (jmp px+w) command which could result in bad jump addresses.

 Bad handling of "hyper counters" in upper memory banks fixed.

 Last device category ("small" or "large") is now saved in the SIM file. When the cate-
gory gets changed by an external application since the last session, a message box
signals that the session settings can't be restored.

 Separate display fields for “Cycles” and “Time/µs” instead of one field with a toggle
button.

 New “Auto” checkbox. When checked, the cycle counter is automatically cleared
when the Run button is clicked. This is handy to measure the cycles starting from a
breakpoint until this breakpoint is reached again.

 Mode register will be initialized to 0x1F on reset for SX 48/52 devices now.

 Mode register is saved/restored on interrupts for SX48/52 devices now.

 Added an API call to keep the Commands window always on top.

June 10, 2005 (Version 2.06)

 Elapsed time field and title is now adjusted to µs, ms, or s.

 Added display for which port configuration register is currently addressed by the M
register

 On reset, RTCC is initialized to 0 now, and FSR is initialized to a random value.

 Changed parsing of the cross reference section in a list file in order to handle long
symbol names

 Changed parsing of lines containing device settings to only read settings from lines
with a leading DEVICE directive

 Fixed wrong handling of the MOV PC, W instruction

 Adapted highlighting of the FSR bits affected by a BANK instruction depending on the
current device type

 The current list file name/path is no longer displayed in the main window’s caption as
long names were truncated. Instead, the name is now displayed in a box above the
list display.

 Changed parsing of DEVICE SX?? directives to correctly determining the device type
when the list file contains conditional assembly.

 31

 The results of MOV Rx, w instructions are now internally buffered. This means that
port output bits are now correctly set when a later MOV !Rx, w instruction follows that
turns inputs into outputs.

Version 2.07

 Various bugs fixed, and several suggestions from users implemented.

Version 2.08.03

 New “Watchpoint” feature introduced. As an option, program execution halts on
marked lines as before (breakpoints), or continues running the program, updating the
variable display instead. When the Watchpoint mode is active, the display will no
longer be automatically updated every second while the Run mode is active.

 Editing of register contents enhanced. Using any of the arrow keys confirms the
change made to the current register, and marks the previous/next register, or bank for
editing.

 New “PWR” button added. Clicking PWR resets SXSim, like “Reset” does. Similar to
a power-on with a “real” SX, the contents of the file registers will contain random val-
ues. The “Reset” button now simulates the behavior of a “real” SX with a low-high
transition on the /MCLR pin, i.e. a reset is performed but the register contents remain
unchanged.

Version 2.08.04

 Bad handling of RTCC prescaler fixed.

 Wrong cycle count of skip instructions fixed.

Version 2.08.05

 Added display for internal program counter

 Allow for “odd” clock frequencies

 Handling of SKIP instruction fixed, i.e. both instruction codes $0602, and $0702 are
handled as SKIP now.

Version 2.08.06

 Added RTCC display that comes up when WRED is mapped into address $01 to al-
low for watching the RTCC.

 In RUN mode, the list display no longer jumps back to the first line.

 When SXSim is terminated with the main window minimized, it will be opened with its
default size when the associated LST file is opened again later.

 When TRIS bits are changed, the I/O Panel is updated correctly now in RUN mode.

 Breakpoints now work on targets of JMP w instructions.

 Fixed wrong clock cycle count of skip instructions, clocks are incremented by 2 in
case of a skip, instead of 3.

 Fixed display of SKIP status. Former versions always highlighted the SKIP indicator,
no matter if a skip would follow, or not.

 Added a new “Run-To” and “Jump-To” mode, i.e. right-clicking on a valid instruction
line in the list window when the “Run-To” mode is selected, sets a temporary
breakpoint on that line, and activates the “Run” mode. The program is executed until
this temporary breakpoint has been reached – all other breakpoints are ignored in this
mode. When the “Jump-To” mode is selected instead, the program counter (PC) will
be set to the address found in the instruction line, and all instructions between the
former PC, and the new location will be skipped.

 32

 Added a status display in the Commands window, showing the current status: “Idle”,
“running”, or “walking”.

