

USB HID Devices

Revision 1.0

GHI Electronics, LLC

Updated – June 22, 2006

This USB class includes vast range of HID devices. USBwiz HID driver
support those that has only output interrupt Endpoint for HID Report sending.

HID Report is the data that is retuned from the HID, HID Generate this Report
and send it to USB host – USBwiz - whenever it has new change like for
example when stroking button on USB Keyboard or moving USB mouse. And
USBwiz user then can get this Report by RH command.

HID Report Data is arranged in a standard way but it defers from device to
other. For simplicity, we added some example of accessing common HID
which are Keyboards, Mice and Joystick and how to parse HID Report Data.

To access HID:

First, this HID must be enumerated like any other USB device. We will
initialize HID which is Attached to USB port 1, to USB device handle 0 as
an example

UI 1>0

Second, HID Driver must be initialized to take care of this HID using the
registering command and USB pipe must be chosen to access the Output
Endpoint.

UH 0>3

Note: the previous initialization process is required to perform only once
after connecting HID

Then USBwiz will output Report Data size that is send by the HID which is
4 Bytes for Mice and 8 Bytes for Keyboards. Now the USBwiz is ready get
Data from HID which can be performed by Read HID Pipe. Data will be
not by translated into ASCII HEX so the data will appear as strange
characters if using Hyper terminal – which used to output incoming data
on serial port as characters - .

RH 3

If the HID has no report to send then USBwiz will return error code 0xB5
which is practically not an error.

USB Keyboard Report Structure:

Parsing Standard USB Keyboard Report data:
Report size: 8 Bytes

Byte1: Modifier Byte or Reserved Constant.
Byte2 –Byte7: Key arrays bytes Table 1-2

Modifier Keys Byte:
Every Button is represented in one bit 0=Button up 1=Button down

Modifier Key Bit Order

Left CTRL 0
Left SHIFT 1
Left ALT 2
Left GUI 3
Right CTRL 4
Right SHIFT 5
Right ALT 6
Right GUI 7

The following example shows the reports generated by a user typing
ALT+CTRL+DEL, using a bitmap for the modifiers and a single array for all other
keys taken from HID Specification:
Buttons Press Sequence Modifier Byte Array Byte

Left ALT down 00000100b 00h
Right CTRL down 00010100b 00h
DEL down 00010100b 4Ch
DEL up 00010100b 00h
Right CTRL up 00000100b 00h
Left ALT up 00000000b 00h

Key Array Bytes can be more or less than 6 bytes. And each byte represents a
pressed key. So a 6-byte Array accepts up to 6 pressed buttons at the same
time. But if the pressed keys exceeded 6, the key board will report a phantom
state index code “Error Rollover Usage ID =0x01” instead of pressed buttons
Usage ID codes.

The following example taken from HID specification that shows important cases
for 4-Byte array keyboard:

Key Event Modifier Byte Array Array Array Comment

None 00000000B 00H 00H 00H

RALT down 01000000 00 00 00

None 01000000 00 00 00 Report current key

 state even when no

 new key events.

A down 01000000 04 00 00

X down 01000000 04 1B 00

B down 01000000 04 05 1B Report order is

 arbitrary and does
 not reflect order of
 events.

Q down 01000000 01 01 01 Phantom state.

 Four Array keys

 pressed. Modifiers
 still reported.

A up 01000000 05 14 1B

B and Q up 01000000 1B 00 00 Multiple events in

 one report. Event
 order is
 indeterminate.

None 01000000 1B 00 00

RALT up 00000000 1B 00 00

X up 00000000 00 00 00

The following table shows Usage ID Codes of Standard Keyboards:
Usage
ID
(Hex)

Usage Name Remarks

00 Reserved (no event indicated) Status indicator, Not a physical Button

01 Keyboard ErrorRollOver Status indicator, Not a physical Button

02 Keyboard POSTFail Status indicator, Not a physical Button

03 Keyboard ErrorUndefined Status indicator, Not a physical Button

04 Keyboard a and A remapped for other languages

05 Keyboard b and B

06 Keyboard c and C remapped for other languages

07 Keyboard d and D

08 Keyboard e and E

09 Keyboard f and F

0A Keyboard g and G

0B Keyboard h and H

0C Keyboard i and I

0D Keyboard j and J

0E Keyboard k and K

0F Keyboard l and L

10 Keyboard m and M remapped for other languages

11 Keyboard n and N

12 Keyboard o and O remapped for other languages

13 Keyboard p and P remapped for other languages

14 Keyboard q and Q remapped for other languages

15 Keyboard r and R

16 Keyboard s and S remapped for other languages

17 Keyboard t and T

18 Keyboard u and U

19 Keyboard v and V

1A Keyboard w and W remapped for other languages

1B Keyboard x and X remapped for other languages

1C Keyboard y and Y remapped for other languages

1D Keyboard z and Z remapped for other languages

1E Keyboard 1 and ! remapped for other languages

1F Keyboard 2 and @ remapped for other languages

20 Keyboard 3 and # remapped for other languages

21 Keyboard 4 and $ remapped for other languages

22 Keyboard 5 and % remapped for other languages

23 Keyboard 6 and ^ remapped for other languages

24 Keyboard 7 and & remapped for other languages

25 Keyboard 8 and * remapped for other languages

26 Keyboard 9 and (remapped for other languages

27 Keyboard 0 and) remapped for other languages

28
Keyboard Return (ENTER) Keyboard Enter and Keypad Enter generate different

Usage codes

29 Keyboard ESCAPE

2A Keyboard DELETE (Backspace)

2B Keyboard Tab

2C Keyboard Spacebar

2D Keyboard - and (underscore) remapped for other languages

2E Keyboard = and + remapped for other languages

2F Keyboard [and { remapped for other languages

30 Keyboard] and } remapped for other languages

31 Keyboard \ and |

32 Keyboard Non-US # and ~

33 Keyboard ; and : remapped for other languages

34 Keyboard ‘ and “ remapped for other languages

35 Keyboard Grave Accent and Tilde remapped for other languages

36 Keyboard, and < remapped for other languages

37 Keyboard . and > remapped for other languages

38 Keyboard / and ? remapped for other languages

39 Keyboard Caps Lock

3A Keyboard F1

3B Keyboard F2

3C Keyboard F3

3D Keyboard F4

3E Keyboard F5

3F Keyboard F6

40 Keyboard F7

41 Keyboard F8

42 Keyboard F9

43 Keyboard F10

44 Keyboard F11

45 Keyboard F12

46 Keyboard PrintScreen

47 Keyboard Scroll Lock

48 Keyboard Pause

49 Keyboard Insert

4A Keyboard Home

4B Keyboard PageUp

4C Keyboard Delete Forward

4D Keyboard End

4E Keyboard PageDown

4F Keyboard RightArrow

50 Keyboard LeftArrow

51 Keyboard DownArrow

52 Keyboard UpArrow

53 Keypad Num Lock and Clear

54 Keypad /

55 Keypad *

56 Keypad -

57 Keypad +

58
Keypad ENTER Keyboard Enter and Keypad Enter generate different

Usage codes
59 Keypad 1 and End

5A Keypad 2 and Down Arrow

5B Keypad 3 and PageDn

5C Keypad 4 and Left Arrow

5D Keypad 5

5E Keypad 6 and Right Arrow

5F Keypad 7 and Home

60 Keypad 8 and Up Arrow

61 Keypad 9 and PageUp

62 Keypad 0 and Insert

63 Keypad . and Delete

64 Keyboard Non-US \ and |

65 Keyboard Application

66 Keyboard Power

67 Keypad =

68 Keyboard F13

69 Keyboard F14

6A Keyboard F15

6B Keyboard F16

6C Keyboard F17

6D Keyboard F18

6E Keyboard F19

6F Keyboard F20

70 Keyboard F21

71 Keyboard F22

72 Keyboard F23

73 Keyboard F24

74 Keyboard Execute

75 Keyboard Help

76 Keyboard Menu

77 Keyboard Select

78 Keyboard Stop

79 Keyboard Again

7A Keyboard Undo

7B Keyboard Cut

7C Keyboard Copy

7D Keyboard Paste

7E Keyboard Find

7F Keyboard Mute

80 Keyboard Volume Up

81 Keyboard Volume Down

82 Keyboard Locking Caps Lock

83 Keyboard Locking Num Lock

84 Keyboard Locking Scroll Lock

85 Keypad Comma

86 Keypad Equal Sign

8A Keyboard International4

8B Keyboard International5

8C Keyboard International6

8D Keyboard International7

8E Keyboard International8

8F Keyboard International9

90 Keyboard LANG1

91 Keyboard LANG2

92 Keyboard LANG3

93 Keyboard LANG4

94 Keyboard LANG5

95 Keyboard LANG6

96 Keyboard LANG7

97 Keyboard LANG8

98 Keyboard LANG9

99 Keyboard Alternate Erase

9A Keyboard SysReq/Attention

9B Keyboard Cancel

9C Keyboard Clear

9D Keyboard Prior

9E Keyboard Return

9F Keyboard Separator

A0 Keyboard Out

A1 Keyboard Oper

A2 Keyboard Clear/Again

A3 Keyboard CrSel/Props

A4 Keyboard ExSel

A5-CF Reserved

B0 Keypad 00

B1 Keypad 000

B2 Thousands Separator

B3 Decimal Separator

B4 Currency Unit

B5 Currency Sub-unit

B6 Keypad (

B7 Keypad)

B8 Keypad {

B9 Keypad }

BA Keypad Tab

BB Keypad Backspace

BC Keypad A

BD Keypad B

BE Keypad C

BF Keypad D

C0 Keypad E

C1 Keypad F

C2 Keypad XOR

C3 Keypad ^

C4 Keypad %

C5 Keypad <

C6 Keypad >

C7 Keypad &

C8 Keypad &&

C9 Keypad |

CA Keypad ||

CB Keypad :

CC Keypad #

CD Keypad Space

CE Keypad @

CF Keypad !

D0 Keypad Memory Store

D1 Keypad Memory Recall

D2 Keypad Memory Clear

D3 Keypad Memory Add

D4 Keypad Memory Subtract

D5 Keypad Memory Multiply

D6 Keypad Memory Divide

D7 Keypad +/-

D8 Keypad Clear

D9 Keypad Clear Entry

DA Keypad Binary

DB Keypad Octal

DC Keypad Decimal

DD Keypad Hexadecimal

DE-DF Reserved

E0 Keyboard LeftControl Used if modifier byte is not supported

E1 Keyboard LeftShift Used if modifier byte is not supported

E2 Keyboard LeftAlt Used if modifier byte is not supported

E3 Keyboard Left GUI Used if modifier byte is not supported

E4 Keyboard RightControl Used if modifier byte is not supported

E5 Keyboard RightShift Used if modifier byte is not supported

E6 Keyboard RightAlt Used if modifier byte is not supported

E7 Keyboard Right GUI Used if modifier byte is not supported

E8-
FFFF Reserved

USB Standard Mouse Report Structure:

Parsing Standard USB Mouse Report data:
Report size: 4 Bytes

Byte0
5bits 3bits

Byte1 Byte2 Byte3

Reserved Buttons
b0 left
b1 right
b2 middle

X position Y position Scroll Position

Constant Variable Variable Variable Variable
NULL Absolute Relative to

the last
position

Relative to the
last position

Relative to the
last position

0 Up=0
Down=1

-127 +127 -127 +127 -127 +127

Example 1:

Accessing USB Keyboard:

After starting USBwiz and running the firmware from boot loader by R
command. GHI Electronics Header will appear followed by Firmware
version, then commands can be used to access USB keyboard as
following: commands are in blue and they are always followed by Carriage
return to be executed. USBwiz output is in Red.

GHI Electronics, LLC

 USBwiz (TM) 2.08

!00

UI 0>0 Enumerate USB Device on Port 0 to USB device handle 0

!00

UH 0>1 Register device of handle 0 as an HID and use pipe number 1 to get HID report data

!00

$08 USBwiz states that HID report size is 8 bytes which is the standard size for USB keyboards

!00

RH 1

!00

8 bytes will be sent if available – i.e. someone stroke a key or more – user
can store this data in some array and parse it according the Keyboard Report
Structure

!00

For example if the 8 bytes were:
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
0x03 0x04 0x06 0x00 0x00 0x00 0x00 0x00
According to USB Keyboard Report Structure stated previously in this tutorial,
Left SHIF and Left CTRL are pressed and button A and button C are down.
Byte 0 is 0x03 = 0b00000011 so the first two bits are 1s, the first one means Left
CTRL is pressed and the second one means that Left SHIF is pressed according
to Modifiers Keys Bytes table.
Byte 1 is 0x04 means button A is down
Byte 2 is 0x06 means button C is down
It more that 7 buttons apart from modifiers buttons, Report data will be all 0x01
from Byte 1 to Byte 7 stating an error.

Example 2:

Accessing USB Mouse:

After starting USBwiz and running the firmware from boot loader by R
command. GHI Electronics Header will appear followed by Firmware
version, then commands can be used to access USB mouse as following:
commands are in blue and they are always followed by Carriage return to
be executed. USBwiz output is in Red.

GHI Electronics, LLC

 USBwiz (TM) 2.08

!00

UI 0>0 Enumerate USB Device on Port 0 to USB device handle 0

!00

UH 0>1 Register device of handle 0 as an HID and use pipe number 1 to get HID report data

!00

$04 USBwiz states that HID report size is 4 bytes which is the standard size for USB keyboards

!00

RH 1

!00

4 bytes will be sent if available – i.e. someone stroke a key or more – user
can store this data in some array and parse it according the Mouse Report
Structure

!00

For example if the 4 bytes were:
Byte 0 Byte 1 Byte 2 Byte 3
0x01 0x04 0xFD 0x00
According to USB Mouse Report Structure stated previously in this tutorial, Left
mouse button is pressed, and the mouse is moved 4 dots to the left and 3 dots
down relatively to the old position and scroll wheels are not changed.
Byte 0 is 0x01 = 0b00000001 means the first one means Left button is pressed.
Byte 1 is 0x04 means movement 4 dots to right
Byte 2 is 0xFD means movement 3 dots down

References:
• USB Device Class Definition for Human Interface Devices www.usb.org
• USB HID Usage Table www.usb.org

There is no guarantee on the data in this document. Always consult www.usb.org

