
 Appendix C: Transmitting IR Remote Signals with the BASIC Stamp 2 · Page 189

Appendix C: Transmitting IR Remote Signals with
the BASIC Stamp 2

The activities in this text focused on programming the BASIC Stamp to receive and
decode IR remote signals. If you are also interested in encoding and transmitting the
same signals an IR remote would send, this appendix/activity provides a circuit and
example programs that can actually be used in place of the universal remote to send
SONY TV control commands to the Boe-Bot.

Other Protocols

Several IR remote protocols can be transmitted by the BASIC Stamp 2. Typically, if the 38
kHz transmit times and the delays between transmit times are greater than or equal to 0.6
ms, it’s possible to write a PBASIC program to make the BASIC Stamp 2 do the job. The
challenge is typically writing code to control the transmit and delay times. This code has to
be executed during the delays, and it contributes to the delays as well. If the code takes
longer to do the calculations than the protocol allows for the delays, it may be necessary to
use a different microcontroller (see Better Tools and Other Protocols, below).

There is usually more than one way to write code that calculates the 38 kHz transmit times,
and it can make a big difference in the delays between transmits. PULSOUT commands to
unconnected pins can further tune the delay times when they are critical to the protocol.
This kind of tuning involves monitoring the signals the BASIC Stamp sends with an
oscilloscope. (See Understanding Signals, which has a section on analyzing the SONY
protocol with the Parallax USB Oscilloscope. Both Understanding Signals and the Parallax
USB Oscilloscope are available at www.parallax.com)

Better Tools for Other Protocols

Although several different protocols can be mimicked by the BASIC Stamp 2 with the help of
the 555 timer circuit introduced in this activity, it really isn't the best tool for the job. It's kind
of like using a hammer and a nail to make a hole. It would be better to just use a drill.
Microcontrollers like the SX and Propeller are much better suited to precisely timing signals,
and they do not need an external 555 timer circuit. They are also reasonable next steps
after you have become comfortable with BASIC Stamp programs and circuits. Programs for
the Propeller and SX microcontrollers typically monitor an internal timer and turn the 38 kHz
signals on/off at the required time intervals.

For more information about the SX and Propeller microcontrollers, go to www.parallax.com.

Pulse Controlled 38 kHz Transmitter Parts

Next to the circuit from the previous appendix, the parts for the circuit in this appendix
are arguably the second least expensive form of wireless communication between BASIC
Stamps. Some of the parts listed here are not included in the Boe-Bot or IR Remote for

Page 190 · IR Remote for the Boe-Bot

the Boe-Bot kits. However, the missing parts are inexpensive, easy to obtain, and they
can also be ordered from Parallax. The Parallax part numbers for the extra parts are
included in the parts list below.

(1) Capacitor - 0.01 µF
(1) Resistor - 470 Ω (Yellow, Violet, Brown)
(2) Resistors - 220 Ω (Red, Red, Brown)
(1) IR LED
(6) Jumper wires

(1) Potentiometer - 10 kΩ
 Parallax Part#: 152-01031
(1) NE555N timer IC
 Parallax Part#: 604-00009

Pulse Controlled 38 kHz Transmitter Circuit

Figure C-1 shows the IR transmit circuit. The 10 kΩ potentiometer in this circuit has to
be adjusted so that it transmits 38 kHz. The BASIC Stamp can be programmed to
monitor and report the frequency transmitted by the 555 timer's Out pin with P7. When
the correct transmit frequency is established, the BASIC Stamp can then be programmed
to control the durations the 555 timer transmits 38 kHz by sending PULSOUT signals to the
555 timer's Res pin with P6.

√ If you are using the 10 kΩ potentiometer with the Parallax Part#: 152-01031,
pinch each of its legs with a needle-nose pliers to remove the kinks and
straighten them before inserting the part into the breadboard.

√ Build the circuit shown in Figure C-1 on a second board, which you will use to
beam IR remote messages to your board with a receiver circuit (or a Boe-Bot
with IR object detection circuits).

To learn more about designing 555 circuits for transmitting various frequencies and duty
cycles, download the Basic Analog and Digital PDF from www.parallax.com, and read the
first five pages of Chapter #6.

 Appendix C: Transmitting IR Remote Signals with the BASIC Stamp 2 · Page 191

Figure C-1

Tuning and Testing the 38 kHz Transmit Circuit

Test555Frquency.bs2 sets P6 high to enable the 555 timer, at which point its Out pin will
start sending high/low signals. P7 is connected to the 555 timer's Out pin, and the
command COUNT 7, 100, cycles stores the number of times it sends the high/low
signal in 100 ms. The command cycles = cycles * 10 gives adjusts the value to the
number of cycles per second, which is then displayed with a DEBUG command. The
potentiometer can then be adjusted for a target 555 timer output frequency of 38 kHz.

√ Enter, save, and run Test555Frequency.bs2
√ Adjust the potentiometer knob with a screwdriver until the Debug Terminal

reports a frequency in the 37 to 39 kHz range (your target frequency is 38.0
kHz).

Example Program: Test555Frquency.bs2
' IR Remote for the Boe-Bot - Test555Frequency.bs2
' Displays 555 timer frequency for potentiometer adjustment and tuning.

' {$STAMP BS2}
' {$PBASIC 2.5}

cycles VAR Word

DO

 HIGH 6
 COUNT 7, 100, cycles

Page 192 · IR Remote for the Boe-Bot

 LOW 6
 cycles = cycles * 10
 DEBUG HOME, "Frequency = ", DEC5 cycles, " Hz"

LOOP

Transmitting the SONY IR Remote Signal

Since high/low signals to the 555 timer's Res pin turn the 555 timer's signal on/off, you
can now use the PULSOUT command to send 38 kHz signals for precise amounts of time.
For example, to send a 2.4 ms start pulse, you can use the command PULSOUT 6, 1,
1200. To send a 1.2 ms binary-1 pulse, you can use the command PULSOUT 6, 1, 600,
and to send a 0.6 ms binary-0 pulse, the command PULSOUT 6, 1, 300 does the job.

TransmitIrRemoteButtons.bs2 has a subroutine that automates transmitting IR remote
button information. Simply set the remoteCode variable to the button or value you want
to transmit, then call the program’s Send_Ir_Remote_Code subroutine like this.

remoteCode = ChUp
GOSUB Send_Ir_Remote_Code

In practice, it's best to send, between 5 to 10 copies of the same code, since that's what
happens when you press and release a button on the remote. So, your code might actually
look like this.

FOR counter = 1 to 5
 remoteCode = ChUp
 GOSUB Send_Ir_Remote_Code
NEXT

In Chapter 1, you calculated the number of times per second an IR remote repeats its
message. Depending on the remote and the code that was sent, it was probably in the
neighborhood of 40 to 50 ms per message. This can be considered the period (T) of the
message cycle. The frequency (f) of messages is f = 1/T, and that's the number of
messages sent per second the remote sends if you hold your finger on one of the remote's
buttons for one second.

fmessages = 1 ÷ 0.045 s = 22.2.. Hz

TransmitIrRemoteButtons.bs2 emulates the signal coming from a remote for the
sequence of key presses listed below.

 Appendix C: Transmitting IR Remote Signals with the BASIC Stamp 2 · Page 193

• CH+ for 2 seconds
• VOL+ for 1 second
• VOL- for 1 second
• CH- for 2 seconds
• Power for 0.45 seconds
• 3 for 0.45 seconds

Example Program: TransmitRemoteButtons.bs2

The goal with this program is to send commands to a Boe-Bot that is running
IrMultiBot.bs2 from Chapter 3, Activity #2. Then, when you run
TransmitRemoteButtons.bs2 while pointing the IR LED at the Boe-Bot's IR receiver
while maintaining line of sight and close proximity, it will make the Boe-Bot do the
following.

• Forward for 2 seconds
• Rotate right for 1 second
• Rotate left for 1 second
• Backward for 2 seconds
• Power for 1/2 a second followed by 3 for 1/2 a second switches the Boe-Bot to

mode-3, object following.

If you have just a BASIC Stamp board with the receiver circuit (but not a Boe-Bot),
download IrRemoteButtons.bs2 to your receiver board instead of IrMultiBot.bs2. Then, use
the Debug Terminal to display the messages the receiver board receives.

√ Connect your board (or a second Boe-Bot) with the 555 timer circuit to the

programming cable.
√ Enter, save, and run TransmitIrRemoteButtons.bs2.
√ Disconnect your transmit board from the programming cable.
√ Connect your receiver board to the serial cable.

If your receiver board is on a Boe-Bot chassis:

√ Open IrMultiBot.bs2 with the BASIC Stamp Editor, download it to your Boe-
Bot and disconnect the serial cable.

√ Make sure the 3-position switch on the Boe-Bot that will receive messages is set
to 2.

Page 194 · IR Remote for the Boe-Bot

√ Press/release the reset button on the Boe-Bot that will receive messages.
√ Establish line of sight and close proximity between the top of the transmitting IR

LED and the face of the IR receiver.
√ Press and release the Reset button on your transmitter board.
√ The Boe-Bot should perform the maneuvers and mode changes discussed earlier.

As it turns, you will probably need to adjust the position of your transmitter
board to maintain line of sight.

If your receiver board is not on a Boe-Bot chassis:

√ Open IrRemoteButtons.bs2 with the BASIC Stamp Editor, download it to your
receiver board, and leave the serial cable connected.

√ Establish line of sight and close proximity between the top of the transmitting IR
LED and the face of the IR receiver.

√ Press and release the Reset button on your transmitter board.
√ The Debug Terminal should display the various codes for the amounts of time

listed earlier, except for the last code, 3, which will persist until you press/release
the transmitter board's reset button again.

' -----[Title]---
' IR Remote for the Boe-Bot - TransmitIrRemoteButtons.bs2
' Transmit SONY TV protocol IR remote codes to a Boe-Bot using a second
' Board of Education and BASIC Stamp with a 555 timer circuit to supply
' the 38 kHz carrier signal to an IR LED. The BASIC Stamp's P6 I/O pin
' is connected to the 555 timer's Res pin, which shuts off the signal
' with a low signal and turns it back on with a high signal.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[EEPROM Data]---

' Button press and number of times each message should be re-sent.

Buttons DATA ChUp, VolUp, VolDn, ChDn, Power, 3, 255
Reps DATA 44, 22, 22, 44, 10, 10, 0

' -----[I/O Definitions]---

tPin PIN 6 ' Transmit pin
fPin PIN 7 ' Frequency sense pin

' -----[Constants]---

' SONY TV IR remote constants for non-keypad buttons

 Appendix C: Transmitting IR Remote Signals with the BASIC Stamp 2 · Page 195

Enter CON 11 ' Enter
ChUp CON 16 ' Channel +
ChDn CON 17 ' Channel -
VolUp CON 18 ' Volume +
VolDn CON 19 ' Volume -
Power CON 21 ' Power on/off

' -----[Variables]---

' SONY TV IR remote variables

remoteCode VAR Word ' Stores remote code
cycles VAR Word ' Stores 555 timer frequency

' EEPROM and message repetition counting variables

index VAR Byte ' EEPROM index
messageCnt VAR Byte ' Number of IR message reps
counter VAR Byte ' General purpose counter

' -----[Initialization]--

 HIGH 6 ' Enable 555 timer
 COUNT 7, 1000, cycles ' Measure frequency
 LOW 6 ' Disable 555 timer
 DEBUG HOME, "Frequency = ", DEC5 cycles, ' Display frequency
 " Hz", CR, "Transmitting..."

' -----[Main Routine]--

DO ' Main loop
 READ Buttons + index, remoteCode ' EEPROM button -> remoteCode
 READ Reps + index, messageCnt ' EEPROM reps -> messageCnt
 IF remoteCode = 255 THEN EXIT ' remoteCode = 255? Exit loop
 FOR counter = 1 TO messageCnt ' Repeat messageCnt times
 GOSUB Send_Ir_Remote_Code ' Send current remoteCode
 NEXT
 index = index + 1 ' Increment EEPROM index
LOOP ' Repeat main loop

DEBUG CR, "Done!" ' Desplay "Done!" message

END ' BASIC Stamp -> Sleep mode

' -----[Subroutine - Send_Ir_Remote_Code]--------------------------------

' Sends pulses to 555 timer that causes the IR LED connected to the Out
' pin to send 38 kHz signals of about the same durations as an IR
' remote set to send SONY TV signals.

Page 196 · IR Remote for the Boe-Bot

Send_Ir_Remote_Code:

 ' Change button values to remote codes.

 IF (remoteCode = 0) THEN remoteCode = 10
 IF (remoteCode <= 10) THEN remoteCode = remoteCode - 1

 remoteCode.BIT7 = 1 ' Set bit-7 = 1 for TV

 LOW tPin ' 555 signal off
 PAUSE 23 ' Rest between messages
 PULSOUT tPin, 1200 ' Start pulse

 PULSOUT tPin, remoteCode.BIT0 * 300 + 300 ' Bit-0 pulse
 PULSOUT tPin, remoteCode.BIT1 * 300 + 300 ' Bit-1 pulse
 PULSOUT tPin, remoteCode.BIT2 * 300 + 300 ' Bit-2 pulse
 PULSOUT tPin, remoteCode.BIT3 * 300 + 300 ' Etc...
 PULSOUT tPin, remoteCode.BIT4 * 300 + 300
 PULSOUT tPin, remoteCode.BIT5 * 300 + 300
 PULSOUT tPin, remoteCode.BIT6 * 300 + 300
 PULSOUT tPin, remoteCode.BIT7 * 300 + 300
 PULSOUT tPin, remoteCode.BIT8 * 300 + 300
 PULSOUT tPin, remoteCode.BIT9 * 300 + 300
 PULSOUT tPin, remoteCode.BIT10 * 300 + 300
 PULSOUT tPIn, remoteCode.BIT11 * 300 + 300

 RETURN

How TransmitIrRemoteButtons.bs2 Works

The Send_Ir_Remote_Code subroutine in TransmitIrRemoteButtons.bs2 is shown
below. It sets tPin (P6) low to turn off the 555 timer's signal. The command
remoteCode.BIT7 = 1 sets bit-7 in the remote code variable to 1, which is what it
always is for SONY TV messages. Then, it pauses for 23 ms. This, plus the processing
time for the READ commands causes a typical message to repeat every 45 ms. After that,
PULSOUT tPIn, 1200 sends the start pulse. Next, a series of PULSOUT commands
calculates and sends the pulses of the correct durations for binary-1 and 0. For example,
if remoteCode.BIT3 is 1, the command PULSOUT tPin, remoteCode.BIT3 * 300 +
300 sends a PULSOUT of 600, which is 1.2 ms, which is a binary 1 pulse. However, if
remoteCode.BIT3 is 0, then the PULSOUT command only sends a pulse of 300, which
lasts 0.6 ms, which transmits a binary-0 pulse.

 Appendix C: Transmitting IR Remote Signals with the BASIC Stamp 2 · Page 197

Send_Ir_Remote_Code:
 ' Change button values to remote codes.
 IF (remoteCode = 0) THEN remoteCode = 10
 IF (remoteCode <= 10) THEN remoteCode = remoteCode - 1

 remoteCode.BIT7 = 1 ' Set bit-7 = 1 for TV

 LOW tPin ' 555 signal off
 PAUSE 26 ' Rest between messages
 PULSOUT tPin, 1200 ' Start pulse

 PULSOUT tPin, remoteCode.BIT0 * 300 + 300 ' Bit-0 pulse
 PULSOUT tPin, remoteCode.BIT1 * 300 + 300 ' Bit-1 pulse
 PULSOUT tPin, remoteCode.BIT2 * 300 + 300 ' Bit-2 pulse
 PULSOUT tPin, remoteCode.BIT3 * 300 + 300 ' Etc...
 .
 .
 .
 RETURN

Each PULSOUT command in the Send_Ir_Remote_Code subroutine has an argument that
multiplies one of the bits in the remoteCode variable by 300 before adding 300. Without
parenthesis, the order of operation is left to right. If remoteCode.BIT2 = 0 then the
result of remoteCode.BIT2 * 300 + 300 is 0 * 300 + 300 = 300. If

remoteCode.BIT3 is 1, then the result of remoteCode.BIT3 is 1 * 300 + 300 = 300 +
300 = 600. More generally, the result of these expressions in each PULSOUT command's
duration argument is 600 if the given bit is 1, or 300 if it's 0, which causes the PULSOUT
command to turn the 555 timer's 38 kHz signal on, either for a duration of 1.2 ms or 0.6
ms.

Even though the same results can be obtained by the FOR...NEXT loop below, it won't
work in the program because of signal timing considerations. Unlike the
remoteCode.BITX * 300 + 300 calculation, which takes around 500 µs, the code
block below takes well over a millisecond. While a SONY TV set might or might not be
forgiving enough to decode the signal, the example programs from this text that receive
and decode IR messages are not that forgiving.

FOR index = 0 TO 11
 IF remoteCode.L0WBIT(index) = 1 THEN
 duration = 600
 ELSE
 duration = 300
 ENDIF
 PULSOUT tPin, duration
NEXT

Page 198 · IR Remote for the Boe-Bot

The reason the way the code is written makes such a big difference in IR remote
transmission is because the calculations are performed between PULSOUT commands.
The FOR...NEXT loop shown above, which takes more than a millisecond, throws the
timing off so much, that this text's example programs can no longer decode the messages.
On the other hand, the calculation remoteCode.BITX * 300 + 300 takes about 500 µs,
which is really close to the 600 µs rests between pulses shown in Figure 1-4 on page 6. It
works, both with the Boe-Bot and SONY TVs.

