
Column #100: Get Your Motor Runnin’ 

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 117  

 
 
Column #100 August 2003 by Jon Williams: 
 
 

Get Your Motor Runnin’ 
 
 
Most people don't realize that the BASIC Stamp 2 has actually been around for quite a long time.  
Like the BASIC Stamp 1, it was designed to be a general-purpose embedded controller.  And it's a 
darned good one; just look how many copy-cat products exist today. 
 
Not long after the introduction of the first BASIC Stamp a new industry was created: the serial 
accessory industry.  It all started with Scott Edwards' "Stamp Stretcher."  After that, Scott created 
the serial LCD controller that we all take for granted (and has been copied by many) and a serial 
servo controller as well.  With Scott's success, others jumped into the fray and there is a multitude 
of serial accessories that will work with the BASIC Stamp and other micros. 
 
Even Parallax has created serial accessories for the BASIC Stamp; usually in the form of the 
"AppMod" that plugs into the expansion socket on the Board-of-Education.  There's an LED 
terminal, a sound module, a compass – like I pointed out earlier, there's a tremendous variety of 
accessories devices for the BASIC Stamp. 
 



Column #100: Get Your Motor Runnin’ 

Page 118 • The Nuts and Volts of BASIC Stamps (Volume 4) 

Figure 100.1: PWM Pal Fits Between BASIC Stamp and Socket 

 
 

PWM Made Painless 
 
The latest from Parallax is the PWMPAL.  It works very much like an AppMod (programmed 
through a serial connection and uses the AppMod protocol), but it is physically and mechanically 
different; it's configured as a "smart socket" (Figure 100.1).  This has been done by other 
companies and the guys at Parallax like the idea: pop the Stamp out of its socket, drop in the 
PWMPAL, plug the Stamp in to it and away you go.  By mounting the PWMPAL right under the 
Stamp so that they share pins, the Stamp is given new features.  Neato. 
 
So, you're wondering, "What is a PWMPAL, anyway?"  Let me tell you.  The PWMPAL is a four-
channel PWM generator/controller and background counter.  Any of the shared PWM pins [P12 – 
P15] that aren't used as PWM outputs can be used by the BASIC Stamp for any purpose.  The 
control and counter pins [P8 – P11] can be used as inputs by the BASIC Stamp even when they're 
being used for PWM control or counter inputs.  They can also be used by the BASIC Stamp as 
outputs to control a preset PWM channel that is running under hardware control.  More on this 
later. 



Column #100: Get Your Motor Runnin’ 

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 119  

 
Like the BASIC Stamp, the PWMPAL is a general-purpose device.  Instead of being dedicated to 
a single function (i.e., servo control, or DC motor control), the PWMPAL lets the 
programmer/engineer specify the "shape" of the PWM output.  With this flexibility comes a bit of 
responsibility, but it's not difficult to do and the benefits of a little effort are certainly worth it. 
 
Making Waves 
 
Before we get to programming the PWMPAL, let's review a couple of small points about PWM 
waveforms: period, frequency, and duty-cycle. 
 
Figure 100.2 shows the aspects of standard PWM output waveform.  In the PWM cycle, the output 
will be on for some amount of time, then off for some amount of time (note that this is different 
than the Stamp's PWM function which is designed to synthesize sine waves through an RC filter).   
 

Figure 100.2: Standard PWM Output Waveform 
 

 
 
 

The total time for the waveform, on-time plus off-time, is the period.  If we divide the period into 
one, we'll get the frequency (in Hertz) of the waveform. Finally, the duty-cycle of the wave is the 
ratio of on-time to period. 
 
Here are the essential formulas (and their derivatives) that we'll work with when programming the 
PWMPAL: 
 
  Period (s) = On-Time + Off-Time 
  Frequency (Hz) = 1 / Period 
  Duty Cycle (%) = On-Time / Period * 100 
 



Column #100: Get Your Motor Runnin’ 

Page 120 • The Nuts and Volts of BASIC Stamps (Volume 4) 

So how do we control these things with the PWMPAL?  Each PWMPAL channel has two, 16-bit 
timers; one for the on-time, another for the off-time.  For each count in these timers, we get 25 
microseconds.  Knowing this, we can calculate the proper values for a waveform we wish to 
create. 
 
Let's say, for example, we want to control a servo and start with it centered.  Knowing what we 
know about servos, we need the on-time to be 1.5 milliseconds and the off-time to be 20 
milliseconds.  The rest is simple math: 1.5 milliseconds divided by 0.025 milliseconds (25 
microseconds) is 60.  This will be our on-time count.  Next we take 20 milliseconds and divide by 
0.025 milliseconds to get 800.   
 
The next step is to send these counts to the PWMPAL.  Part of the PWMPAL design is the fixed 
serial connection that is on P0 of the BASIC Stamp.  You'll have to keep this in mind as when 
you're designing the PWMPAL into your projects.  What we're going to do, then, is send the 
counts using the PWMPAL's version of the Parallax AppMod protocol.  The serial data string 
always starts with "!", is followed by the device identifier "PWM", then the command.  The 
command for sending "motor" counts is going to be "M", followed by the motor number. 
 
The PWMPAL's outputs correspond to Stamp pins P12 ("M1") through P15 ("M4").  If we want to 
connect the servo to P15, here's the command to send the centering counts: 
 
  SEROUT 0, 6, ["!PWMM4", 60, 0, 32, 3] 
 
Huh?  Why four bytes when we just have two counters?  Remember, the counters are 16 bits wide 
and SEROUT works with bytes.  Normally, what we're going to do is used Word variables for the 
counters and get some help with LOWBYTE/HIGHBYTE or BYTE0/BYTE1 modifiers.  And 
before I forget, I need to mention that the PWMPAL will automatically detect baud rates of 9600, 
19.2K and 38.4K. 
 
Since we're a learn-by-doing crowd, let's actually hook it up and make it do something – our 
example will use fairly-simple parts and demonstrate nearly all the capabilities of the PWMPAL.  
After playing with this demo, you should be able to make the PWMPAL work for you in just 
about any application.  What I've done is taken the separate projects from the PWMPAL docs 
(yes, I wrote them) and created a super project.  The idea is to show you the possibilities and let 
your imagination run wild from there. 
 
The circuits for this demo are pretty easy: an active-high push-button input, a buffer circuit 
(MOSFET) for a small DC motor, and a bi-color (red-green) LED.  We'll demonstrate the 
PWMPAL by setting P8 as a control channel for the motor; when the switch is pressed, the motor 
will run – this is all under control of the PWMPAL and does not burden the BASIC Stamp.  Since 



Column #100: Get Your Motor Runnin’ 

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 121  

P8 is an input, the BASIC Stamp program can monitor it and we'll do that to ramp the motor 
speed.  Finally, we'll demonstrate the phase control of the PWMPAL that will let us send an AC 
waveform to the LED, making it appear yellow by switching quickly between red and green.  This 
all sounds like quite a lot, but as you'll see, it's very easy to do. 
 

Figure 100.3: Example PWM Pal Control Circuitry 
 

 

 
 

 



Column #100: Get Your Motor Runnin’ 

Page 122 • The Nuts and Volts of BASIC Stamps (Volume 4) 

Rev It Up 
 
Author's Note: Please download the PWMPAL documentation (from the Parallax web site) for 
reference to the various commands as we work our way through this example. 
 
This program requires a bit of setup before we get to the heart of it.  The purpose of this setup 
section is to enable a counter channel on P8, clear that counter, then enable the motor output on 
P12 and set P8 as its control input.  As you can see, P8 serves two purposes: 1) it controls the 
operation of the motor and, 2) is serves as a counter.  What we'll be able to do, then, is to count the 
number of times we run the motor. 
 
Here's the code: 
 
Setup: 
  SEROUT PpPin, PpBaud, ["!PWMSP", %00000001] 
  SEROUT PpPin, PpBaud, ["!PWMX1"]  
  SEROUT PpPin, PpBaud, ["!PWMSS", %00010001] 
 
The first line enables the counter on channel 1 (P8).  Later, we'll resend the phase/counter byte to 
enable the LEDs; for the moment we want them off.  Next we'll make sure that the counter is clear 
by sending the "X1" command and, finally, we'll enable the motor under hardware control by 
setting the appropriate bits in the status/control byte.  Note that any disabled "motor" outputs float 
so these pins can be used by the BASIC Stamp for other functions. 
 
Since the main loop of the program is fairly large, we're going to break it up into logical sections.  
The first section monitors the button input and adjusts the motor speed while the button is being 
pressed.  Remember, the PWMPAL actually activates the motor when this input is high; we're 
using the BASIC Stamp to update the motor's speed. 
 
Main: 
  DO 
    IF (RunMotor = Yes) THEN 
      IF (mSpeed < 100) THEN 
        mSpeed = mSpeed + 1 MIN MinSpeed  
        GOSUB Set_Motor_Speed 
        update = Yes 
      ENDIF 
    ELSEIF (mSpeed > 0) THEN 
      mSpeed = 0 
      update = Yes 
    ENDIF 
 
As you can see, this first section is pretty straightforward; we monitor the switch input and when 
pressed, we compare the current speed value to 100.  If the speed is less than 100, well increment 



Column #100: Get Your Motor Runnin’ 

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 123  

the speed and send the new value to the motor.  We'll also set variable update so that the screen 
will reflect then new speed. 
 
Updating the motor speed is a fairly simple matter of using the speed value as the on-time count 
and subtracting this count from 100 for the off-time.    
 
Set_Motor_Speed: 
  IF (mSpeed < 100) THEN 
    tOn = mSpeed                                ' set duty cycle 
    tOff = 100 - mSpeed 
  ELSE 
    tOn = $FFFF                                 ' full on for 100% 
    tOff = $0001 
  ENDIF 
 
  SEROUT PpPin, PpBaud, ["!PWMM1", 
                         tOn.BYTE0, tOn.BYTE1, 
                         tOff.BYTE0, tOff.BYTE1] 
  RETURN 
 
The exception, of course, is for 100% as we cannot have a zero off-time.  What we'll do is "cheat" 
a bit and set the on-time value to the maximum ($FFFF) and the off-time to the minimum ($0001).  
What we actually end up with is a duty cycle of 99.9985% -- that should be close enough to 100% 
to run the motor at full speed. 
 
Now, if the button isn't pressed and the current speed is greater than zero (as when the button is 
first released), we'll set the mSpeed value to zero and set the update variable.  Notice that we don't 
have to send the zero speed to the PWMPAL.  The reason is that we've enabled hardware control 
of the motor, so it will stop as soon as we release the button. 
 
The next section of the main loop retrieves the counter channel from the PWMPAL.  Like PWM 
control,  counting happens without intervention of the Stamp; we simply need to retrieve the count 
when required.  
 
    SEROUT PpPin, PpBaud, ["!PWMC1"] 
    SERIN  PpPin, PpBaud, [runCount.BYTE0, runCount.BYTE1] 
 
The first thing we have to do is tell the PWMPAL to send a counter value back to the BASIC 
Stamp.  Immediately following this command, we'll use SERIN to capture the counter value – low 
byte, then high byte. 
 



Column #100: Get Your Motor Runnin’ 

Page 124 • The Nuts and Volts of BASIC Stamps (Volume 4) 

The final section will handle the update variable and serves two purposes: it will display the 
current motor speed and cycle count, and it will update the LED modulation based on the current 
motor speed. 
 
    IF (update) THEN 
      DEBUG HOME, 
            "Speed.... ", DEC mSpeed, CLREOL, CR, 
            "Cycles... ", DEC runCount, CLREOL 
 
      LOOKDOWN mSpeed, <=[24, 80, 95, 100], ledState 
      IF (ledState <> lastLed) THEN 
        ON ledState GOSUB Led_Off, Led_Green, Led_Yellow, Led_Red 
        lastLed = ledState 
      ENDIF 
      update = No 
    ENDIF 
    PAUSE 100  
   LOOP 
 
The DEBUG section needs no explanation.  I will remind you, however, that with PBASIC 2.5 
you can spread comma-delimited lists across multiple lines.  This is an especially good idea when 
using DEBUG, SEROUT and SERIN as these functions are [internally] complicated and take a lot 
of code space.  By using one DEBUG statement instead of three, we save EEPROM space that 
may come in handy later. 
 
The final section of the main loop updates the LED.  I like LEDs and I am particularly fond of bi-
color LEDs because they can be so useful.  By connecting the PWMPAL, we can actually get 
three colors out of a two-color LED.  How does that happen? 
 
The bi-color LED is actually a red LED and green LED that are connected back-to-back in the 
same package.  When current flows one direction through the leads, the red LED will light.  When 
the current is reversed, the green will light.  If we can manage to switch the two back-and-forth 
very rapidly, our eyes will mix the colors and we'll perceive yellow.  It's a cool trick. 
 
One of the unique features of the PWMPAL comes into play to make this happen: the ability to set 
the phase of the outputs.  What this is actually doing is allowing us to tell the PWMPAL to start on 
its high phase or its low phase.  With careful programming, we can set two pins to run at opposite 
phase and the same frequency and duty cycle to create a TTL AC waveform.  I'm going to use it to 
modulate the LED, but my buddy Chuck (who created the PWMPAL) has used this ability with 
suitable buffering to provide AC to a specialized sensor. 
 



Column #100: Get Your Motor Runnin’ 

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 125  

Back to the code.  A LOOKDOWN table uses the current motor speed to set the value of ledState.  
If ledState has changed since the last loop through, we'll call the appropriate update routine.  The 
first is simple, it extinguishes the LED by disabling both its PWM outputs. 
 
Led_Off: 
  SEROUT PpPin, PpBaud, ["!PWMSS", %00010001] 
  RETURN 
 
The next routine works very much like the 100% motor update by setting the green LED on nearly 
all of the time and the red LED off nearly all of the time.  The LED will look green – you'll never 
see the one cycle blip of red.  Notice that the phase bits are set opposite of each other with the M3 
output starting on its high cycle.  The red LED control code is identical; the counter values and 
phase controls are simply reversed. 
 
Led_Green: 
  SEROUT PpPin, PpBaud, ["!PWMM3", $FF, $FF, $01, $00] 
  SEROUT PpPin, PpBaud, ["!PWMM4", $01, $00, $FF, $FF] 
  SEROUT PpPin, PpBaud, ["!PWMSP", %01000001] 
  SEROUT PpPin, PpBaud, ["!PWMSS", %11010001] 
  RETURN 
 
Making the LED look yellow is a not tough, but just a tad trickier than you might think at first.  
When I first wrote this program, I set the duty cycle to 50% -- it didn't look yellow at all; in fact, it 
looked down-right red.  The reason is that red and green LEDs are made from different materials 
and given the same current, the red LED will light a bit brighter.  I experimented until I found a 
satisfactory duty cycle that caused the LED to look yellow.  It turned out to be about 18%. 
 
Led_Yellow: 
  SEROUT PpPin, PpBaud, ["!PWMM3", $12, $00, $04, $00] 
  SEROUT PpPin, PpBaud, ["!PWMM4", $04, $00, $12, $00] 
  SEROUT PpPin, PpBaud, ["!PWMSP", %01000001] 
  SEROUT PpPin, PpBaud, ["!PWMSS", %11010001] 
  RETURN 
 
 
Time To Get My Robots Runnin' 
 
Well, that's about it.   As you've just seen, the PWMPAL is pretty easy to deal with and at the 
same time offers up quite a bit of flexibility.  Keep your eyes on the Parallax web site for 
application notes – like every new product, people will find interesting things to do with it over 
time and we'll certainly make that information available to everyone. 
 



Column #100: Get Your Motor Runnin’ 

Page 126 • The Nuts and Volts of BASIC Stamps (Volume 4) 

Finally, some of you may wonder why I did such a simple interface to the motor, and didn't go 
into H-Bridges and all that kind of circuitry.  I didn't because my old pal Scott Edward already did 
– back in the January 1997 issue.  Don't have it?  No problem, you can order reprints of this 
column in "The Nuts & Volts of BASIC Stamps" book series from Nuts & Volts or Parallax.  And 
if you really don't want to have a book handy (which would be silly, of course), you can still 
download electronic reprints of the column from the Parallax web site. 
 
Have fun with the PWMPAL -- I've got a couple robots to update with it and I'd better get started.  
One of them uses a Sony PlayStation controller as a leash.  I've you liked Aaron Dahlen's neat 
article on PSX controller interfacing in June, then be sure to tune in next month as I will be 
showing you some "inside tricks" that will help you get the most out of it. 
 
Until then, Happy Stamping! 



Column #100: Get Your Motor Runnin’ 

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 127  

 
' ========================================================================= 
' 
'   File....... PWM_Pal_Demo.BS2 
'   Purpose.... PWM Pal Demo Program 
'   Author..... Jon Williams 
'   E-mail..... jwilliams@parallax.com 
'   Started.... 
'   Updated.... 19 JUN 2003 
' 
'   {$STAMP BS2} 
'   {$PBASIC 2.5} 
' 
' ========================================================================= 
 
 
' -----[ Program Description ]--------------------------------------------- 
 
' Demonstrates the features of the Parallax PWM Pal co-processor. 
' 
' NOTE: Do not connect DC motors directly to the Stamp/PWM Pal.  A buffer 
'       (transistor, MOSFET, etc.) must be used to handle motor currents. 
 
 
' -----[ Revision History ]------------------------------------------------ 
 
 
' -----[ I/O Definitions ]------------------------------------------------- 
 
PpPin           PIN     0                       ' PWM Pal Serial I/O 
RunMotor        PIN     8                       ' motor run input 
 
 
' -----[ Constants ]------------------------------------------------------- 
 
T9600           CON     84 
T19200          CON     32 
T38400          CON     6 
PpBaud          CON     T38400 
 
Yes             CON     1                       ' for active-high 
No              CON     0 
 
MinSpeed        CON     25                      ' minimum DC to spin motor 
 
 
' -----[ Variables ]------------------------------------------------------- 
 
mSpeed          VAR     Byte                    ' duty cycle (0 - 100%) 
tOn             VAR     Word                    ' pwm timing 
tOff            VAR     Word                    ' pwm timing 



Column #100: Get Your Motor Runnin’ 

Page 128 • The Nuts and Volts of BASIC Stamps (Volume 4) 

runCount        VAR     Word                    ' motor run cycles 
update          VAR     Bit                     ' update DEBUG screen? 
ledState        VAR     Nib                     ' LED color 
lastLed         VAR     Nib                     ' last LED color 
 
 
' -----[ EEPROM Data ]----------------------------------------------------- 
 
 
' -----[ Initialization ]-------------------------------------------------- 
 
Setup: 
  SEROUT PpPin, PpBaud, ["!PWMSP", %00000001]   ' enable counter 1 
  SEROUT PpPin, PpBaud, ["!PWMX1"]              ' clear counter 1 
  SEROUT PpPin, PpBaud, ["!PWMSS", %00010001]   ' enable motor & ctrl 
 
  update = Yes 
  lastLed = 5 
 
 
' -----[ Program Code ]---------------------------------------------------- 
 
Main: 
  DO 
    ' check motor control 
    ' 
    IF (RunMotor = Yes) THEN                    ' button pressed? 
      IF (mSpeed < 100) THEN 
        mSpeed = mSpeed + 1 MIN MinSpeed        ' update speed 
        GOSUB Set_Motor_Speed 
        update = Yes 
      ENDIF 
    ELSEIF (mSpeed > 0) THEN 
      mSpeed = 0 
      update = Yes 
    ENDIF 
 
    ' get button counter 
    ' 
    SEROUT PpPin, PpBaud, ["!PWMC1"] 
    SERIN  PpPin, PpBaud, [runCount.BYTE0, runCount.BYTE1] 
 
    ' update screen 
    ' 
    IF (update) THEN 
      DEBUG HOME, 
            "Speed.... ", DEC mSpeed, CLREOL, CR, 
            "Cycles... ", DEC runCount, CLREOL 
 
      ' modify LED for speed 
      ' 



Column #100: Get Your Motor Runnin’ 

The Nuts and Volts of BASIC Stamps (Volume 4) • Page 129  

      LOOKDOWN mSpeed, <=[24, 80, 95, 100], ledState 
      IF (ledState <> lastLed) THEN 
        ON ledState GOSUB Led_Off, Led_Green, Led_Yellow, Led_Red 
        lastLed = ledState 
      ENDIF 
      update = No 
    ENDIF 
    PAUSE 100                                   ' ramp/scan delay 
   LOOP 
 
  END 
 
 
' -----[ Subroutines ]----------------------------------------------------- 
 
Set_Motor_Speed: 
  IF (mSpeed < 100) THEN 
    tOn = mSpeed                                ' set duty cycle 
    tOff = 100 - mSpeed 
  ELSE 
    tOn = $FFFF                                 ' full on for 100% 
    tOff = $0001 
  ENDIF 
 
  SEROUT PpPin, PpBaud, ["!PWMM1", 
                         tOn.BYTE0, tOn.BYTE1, 
                         tOff.BYTE0, tOff.BYTE1] 
  RETURN 
 
 
Led_Off: 
  SEROUT PpPin, PpBaud, ["!PWMSS", %00010001] 
  RETURN 
 
 
Led_Green: 
  SEROUT PpPin, PpBaud, ["!PWMM3", $FF, $FF, $01, $00] 
  SEROUT PpPin, PpBaud, ["!PWMM4", $01, $00, $FF, $FF] 
  SEROUT PpPin, PpBaud, ["!PWMSP", %01000001] 
  SEROUT PpPin, PpBaud, ["!PWMSS", %11010001] 
  RETURN 
 
 
Led_Yellow: 
  SEROUT PpPin, PpBaud, ["!PWMM3", $12, $00, $04, $00] 
  SEROUT PpPin, PpBaud, ["!PWMM4", $04, $00, $12, $00] 
  SEROUT PpPin, PpBaud, ["!PWMSP", %01000001] 
  SEROUT PpPin, PpBaud, ["!PWMSS", %11010001] 
  RETURN 
 
 



Column #100: Get Your Motor Runnin’ 

Page 130 • The Nuts and Volts of BASIC Stamps (Volume 4) 

Led_Red: 
  SEROUT PpPin, PpBaud, ["!PWMM3", $01, $00, $FF, $FF] 
  SEROUT PpPin, PpBaud, ["!PWMM4", $FF, $FF, $01, $00] 
  SEROUT PpPin, PpBaud, ["!PWMSP", %10000001] 
  SEROUT PpPin, PpBaud, ["!PWMSS", %11010001] 
  RETURN 


