
HOW TO GENERATE A SIN WAVE WITH DSP

Nowadays, there exists, lot of complex methods to generate all
kind of signals on a DSP, this paper shows you how to generate
sinusoidal wave on a DSP without using look up tables (table filled
of values, previously prepared to be sent to the DAC).

Lets start saying that this algorithm uses IIR filter for wave
generating, Infinite Impulse Response (IIR) systems are part from
wide theory, in this paper I’ll explain nothing about IIR’s, but
following steps everybody will understand the way of sin wave
generation using IIR’s.

SOME DEFINITIONS:

S
F =Sample frequency (is the frequency at wich DAC will compose

the signal).
Π=3.1416.

A
F =Frequency of the sinwave to be generated.

KEY EQUATIONS:








 •Π•
•=∆

S

A

F

F
COS

2
21 







 •Π•
=∆

S

A

F

F
SIN

2
2

 (1) (2)

 Sn(0)=0 Sn(1) = 2∆

(3) (4)

 Sn(n)=([1∆ * Sn(n-1)]-[Sn(n-2)]) (5)

HOW TO USE:

Suppose you need to generate a sinwave; first of all, you need

to know the sample frequency, (you can obtain it from DAC
Datasheets…).

Then decide what’s the frequency for the sinwave to be

generated (frequency should meet Nyquist criteria, so desired sin
frequency should not be higher than half the sample frequency. This
means that DAC, directly puts limit to the maximum signal
frequency it can generate, as a rule of thumb, the faster DAC the
higher sample frequency, the higher sinwave generated frequency,
the most expensive DAC).

Next step, is to obtain 1∆ 2∆ , , is easy to obtain, but be

careful!!!, the trick is to operate in radians, as math lab does, so your
calculator should be on “rad” mode when performing sin a cosine
operations.

Once you have these two parameters, you’ll need an array, for

start running the algorithm, it’s strongly recommended, to use
complete cycles array, unless follow this rule, you will experiment
phase changes during generation.

First of all, fill an array with samples using this algorithm, and

then use this samples to feed ADC, restarting from the beginning of
the array every time loop achieve last position (circular array).

Fill first position of the array with “0” value (see (3)) and

second position of the array with “ 2∆ ” value (see(4)); fter that, start
filling the array from the third position, using formula (5).

Note that for filling the third position of the array, you’ll use

values on first and second positions, for the fourth value, you’ll use
values second an third, and so on…This philosophy is

mathematically expressed on Sn(n-1) and Sn(n-2).

Sn(n-1) means the value on the array just one position
before the actual value being calculated Sn(n).

Sn(n-2) means the value on the array just before Sn(n-1)
,or two positions before Sn(n).

Sn(n) means the value that is being calculated.

As you can see, for every step on array filling, you’ll

need the closer two previously calculated values, and in the
first time, the two previous values needed are filled using
(3) and (4) rules.

Of course this algorithm can be used on

microcontrollers, not only on DSP, the only needed thing is
the DAC!!!.

Hope you to find it useful…

POLOCERO

 May 2006

