
 May/June 2004 3

6545 Canal Rd.
Melbourne Village, FL 32904-3622
rlichtel@cfl.rr.com

Implementing a USB Equipment
Interface Using the Microchip

PIC16C745

By Dick Lichtel, KD4JP

COM ports are becoming scarce. Come learn how
to interface projects the modern way with USB.

Since the advent of personal com-
puters, Amateur Radio has
striven to connect equipment to

them. The primary interface has been
the ubiquitous serial port. Intel devel-
oped the Universal Serial Bus1 (USB)
in the early 90s, and while many PC
peripherals now support this inter-
face, Amateur Radio experimenters
and equipment manufacturers have
not kept up with the technology. Own-
ers of newer PCs have found the num-
ber of parallel and serial ports has
dwindled down to one of each, while
the number of available USB ports has
substantially increased (there are six

on my PC). It is likely that PCs in the
future will contain no EIA-232 serial
ports. The legacy-free system-require-
ments section of the PC2001 system
design specification requires the re-
moval of serial and parallel ports
(among other legacy ports) from the
PC hardware.2 As part of the specifi-
cation, USB ports are required on new
machines. Each USB port can support
up to 127 devices.

Many believe that a strong knowl-
edge of Windows programming, down
to the device-driver level, is needed to
support USB in their equipment. This
article attempts to show that this is
simply not true. Windows provides
default drivers that we can use and
that will take most of the work out of
programming the Windows interface.

Microchip has several parts that
include hardware support for USB 1.1.

Microchip provides sample PIC code
that implements the USB 1.1 proto-
col.3 In this article, I will explain how
to utilize the Microchip PIC16C745
microcontroller and discuss methods
for communicating with this device. I
have also included functional source
code for the PIC firmware as well as
PC based code to communicate with
the PIC.4

Microchip PIC16C7X5
Controllers

In 2000, Microchip introduced the
PIC16C7455 and PIC16C765 8-bit
microcontrollers with USB. These con-
trollers are similar in architecture and
instruction set to other PIC16C and
PIC16F series microcontrollers, which
are used in many Amateur Radio
projects. This compatibility should
make it easier to adapt many existing

1Notes appear on page 8.

4 May/June 2004

projects over to this PIC.
The PIC16C745/765 microcontroller

features 8 kB of program memory and
256 8-bit memory registers, 11 inter-
rupt sources, 22 ports (33 for the 765),
three timers, five 8-bit A/D (eight for
the 765) as well a USART and USB in-
terface. The PIC16C765 also offers a
parallel slave port.

Microchip supplies the develop-
ment tools needed to develop applica-
tions for their microcontrollers for
free.6 The tools include a macro assem-
bler, linker, librarian and MPLab In-
tegrated Development Environment
(IDE). The IDE also includes a PIC
simulator and debugger. Microchip
sells a C language compiler. There are
third-party C compilers such as Hi-
Tech (www.htsoft.com) that are sup-
ported by the MPLab IDE.

Microchip also sells PIC program-
mers; however, they are much more
expensive than third-party program-
mers, such as the Newfound Electron-
ics WARP-13a programmer (www.
newfoundelectronics.com). The
WARP-13a programmer is also
compatible with the Microchip
PICStart Plus! Programmer, so
microcontrollers can be programmed

inside of the MPLab IDE.
Microchip has written example

source code for the PIC16C7X5, which
provides the protocol for USB 1.1 in
both assembly and C.7 The example
source code is not immediately useful
since the routine necessary for bi-di-
rectional communications with the
device is commented out. The docu-
mentation supplied with the source
code describes how the firmware
implementation works and documents
the software methods.

In conjunction with this article, I
have supplied functioning firmware,
source code and MPLab project files
that support bi-directional communi-
cations with the PIC16C745. Because
the assembler is free and the C com-
piler is not, the source code for the
firmware is in assembly.

Communicating with the PC
Once your PIC is programmed with

the supplied firmware, the PIC will
simply await reception of eight bytes
of data and echo them back to the PC.
The number of bytes sent and received
is a function of a pair of variables set
in the firmware and is of fixed size.
One of the files included with the firm-

ware is a linker definition file that has
been adapted for this project; the de-
fault linker file provided by Microchip
with MPLab will not work with this
firmware.

To adapt this assembly code to work
with your specific project, you may
need to make a couple of changes in
descript.asm that depend upon your
implementation. Change only these
fields!

First, you must decide whether the
PIC is to be powered from an external
supply or from the USB connection. If
powered by the USB bus, you must
know how much current it will draw. If
the PIC circuitry will be self-powered,
set the hex values to 0. If it is to be pow-
ered from the USB bus, leave its value
at 0x80 and change the subsequent hex
value of 0x0D (26 mA) to the maximum
current your circuit will draw.

2
MaxCurrent

Value = (Eq 1)

Current is expressed in milliam-
peres, with a maximum draw of
100 mA. These variables are found in
the routine “Config1” as shown in
Code D.

Second, you should decide how

Fig 1—A screen shot of a USB PIC microcontroller as
recognized by Windows.

 May/June 2004 5

Code C

// default data size is 9 (8 data bytes + 1 for the report #)
CHIDDevice HIDDevice;
//The ID, product ID & version# are from the PIC firmware
DWORD dwVendorID(0x04D8),dwProductID(0x1234),dwVersionNumber(0x0079);
if(HIDDevice.Connect(&dwVendorID,&dwProductID,&dwVersionNumber))
{

byte abytes[9];
memset(abytes,0,sizeof(bytes));
memcpy(abytes+1,”1234”,4); // Byte[0] must always be 0
HIDDevice.Write(abytes);
HIDDevice.Read(abytes);
// HIDDevice automatically closes the device when it goes out of scope

} //end if

Code B

char HIDDevicePath[]=
“\\?\hid#vid_04D8&pid_1234#7&1bf5e077&0&0000#{4d1e55b2-f16f-11cf-88cb-001111000030}”;
FileHandle=CreateFile (HIDDevicePath,

GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE,
(LPSECURITY_ATTRIBUTES)NULL,
OPEN_EXISTING,
0,
NULL);

pagesel InitUSB ; These lines of code show the appropriate
call InitUSB ; way to initialize the USB. First, initialize

ConfiguredUSB ; wait until the enumeration process is
 complete.

CheckEP1 ; Check Endpoint 1 for an OUT transaction
bankisel Buffer ; point to lower banks
pagesel GetEP1
banksel Buffer
movlw Buffer ; Data to be recv’d will be put in Buffer
movwf FSR ; Point FSR to our buffer
call GetEP1 ; if data is ready, it will be copied.
Pagesel CheckEP1
btfss STATUS,C ; was there any data for us?
goto CheckEP1 ; Nope, check again.

PutBuffer
bankisel Buffer ; point to lower banks
pagesel PutEP1
movlw Buffer
movwf FSR ; Point FSR to our buffer
movlw 0x08 ; send 8 bytes to the Host
call PutEP1
pagesel PutBuffer
btfss STATUS,C ; was it successful?
goto PutBuffer ; No: try again until successful
pagesel CheckEP1
goto CheckEP1 ; Yes: restart loop

Code A

6 May/June 2004

large the data packet size needs to be.
Data exchanged between the PC and
the microcontroller is a fixed size. The
supplied code assumes the data ar-
rives and is sent in eight-byte blocks.
If you change the block size, two in-
stances of “report Count” need to be
changed. These values are found in the
routine “ReportDescriptor” in des-
cript.asm as shown in Code F. Low-
speed devices like this one are limited
to a maximum of eight-byte blocks.

Next, change the hex values for the
idVendor(0x4D8), idProduct(0x1234)
and bdcDevice(0x0079) values in
descript.asm as shown in Code E. These
don’t really need to be changed unless
they conflict with other USB devices in
your system or you plan on mass-pro-
ducing the part. If you are an equip-
ment manufacturer, you will need to
purchase your own unique Vendor ID.
More information on obtaining a Ven-
dor ID can be found at www.usb.org/
developers/vendor/. The default
idVendor is 0x04D8 and is the Micro-
chip Vendor ID. These values are found
in the routine “DeviceDescriptor.”

Finally, you will want to change the
string descriptors, which designate the
product name and version of your PIC
(shown in Code G). You can also add
support for different languages. The
product name shows up in the Win-
dows Device Manager when you dis-
play the properties for the device. The
version string is useful if you want to
poll the firmware for version number.
These variables are found in the
“String” routines at the end of the
module (descript.asm).

The lines that can be changed are
noted with identifying comments;
search the file for the string
“****Change.”

The documentation supplied with
the Microchip sample code details the
USB methods. There are really only two
routines of interest to the programmer:
PutEP1 and GetEP1. These methods
send and receive data from the PC host.
Of secondary importance are InitUSB
and ConfiguredUSB. These methods
initialize the PIC and have it wait for
the device to be connected to a host com-
puter. Until the PIC is connected to a
computer, the code will stay in a loop
inside of ConfiguredUSB. Code A is a
snippet of code from main.asm that
shows how to read data from the PC
and send it back.

I have added a little more code in
my version of main.asm; if the PIC is
sent “?V” (without quotes), the firm-
ware will return the firmware version
string.

While the PIC16C745 runs off an
external 6 MHz clock, the PIC must

be configured to run internally at
24 MHz for the device to function prop-
erly running the USB firmware. Do
this by setting the PIC configuration
bit E4_OSC if you are using a clock
generator, or H4 if you are using a
crystal oscillator. The USB specific
code consumes about 1 kB of the 8 kB
program memory and 40 bytes of
memory in Bank 2.

Communicating with the
Microcontroller

Microchip implemented the USB
protocol so that the device appears as a
Human Interface Device (HID). This is
the same class of device as mouse, joy-
stick or keyboard. Windows provides
native support for HID devices.8 If the
firmware is implemented correctly,
when the device is plugged into a PC
Windows will recognize a new device
and automatically install the HID
driver (if its not already installed). If
you open the Windows Device Manager
you will see your device under the HID
device(s). Fig 1 shows the microcon-
troller as listed in the Windows Device

Manager. This microcontroller is also
recognized by LINUX as an HID device.
The methodology for communicating
with this device under Windows should
also apply to LINUX.

To communicate with the microcon-
troller, you need to know the path to
the device. Once this path is known,
the microcontroller can be opened as
a file; you then can read/write to the
device just like any other file.

There are two ways of finding the
path to the microcontroller. The first
method involves using the Microchip
developed HIDComm.ocx9 Active-X
control. This control provides a method
that browses the HID devices, display-
ing a dialog that allows the user to
pick the device and returns the full
path to the device. It also supplies
methods to search for the device based
upon vendor and product IDs (among
other fields). These are the variables
you may have changed when you
created the firmware. The Active-X
control is most useful to BASIC pro-
grammers. It can also be used with C
and C++; but some of the other meth-

Fig 2—PIC16C745 schematic, USB powered.
U1—PIC16C745, Digi-key part #PIC16C745/
JW-ND
J1—USB 4P Male Type BConnector, Digi-
key part #AE1085-ND

U2—6 MHz Epson Electronics CMOS/TTL
Oscillator, Digi-Key part #SE1206-ND

 May/June 2004 7

Code D

Config1 ...
retlw 0x80 ; bmAttributes attributes - bus powered ****Change this to 0 if your device is self powered
retlw 0x0D ; MaxPower 26 mA from the bus. ****Change this to match the current drawn by your circuit.
; Do not exceed 100mA otherwise Windows might not accept your device. The value is the max current/2.

ods require data conversion to adjust
for the way strings are implemented
in BASIC, which is very tedious for
C/C++ programmers.

The second method, which is prob-
ably more appealing to C/C++ pro-
grammers, utilizes a couple of routines
from the Windows Driver Develop-
ment Kit (DDK). It involves enumer-
ating the HID devices, searching the
list for your device, and then getting
the path. The Windows DDK is free
(nearly) from Microsoft (www.
microsoft.com/ddk/). The DDK itself
is free but Microsoft insists on charg-
ing $15 for priority shipping.

Once you know the path to device,
a Windows API call can be used to con-
nect to the device. Notice in snippet
Code B, that the path is rather com-
plex. Also note that the vendor and
product IDs (from the firmware) show
up in the path.

I have included a C++ class devel-

oped for communicating with the PIC
microcontroller. Along with the C++
class, I have included the HID
library(hid.lib) and header file(hid.h)
which are needed to use the C++
class. Since the DDK library only sup-
ports C, I have adapted the hid.h
header file so it can be used with both
C and C++. Code C shows how to use
my C++ class for communicating with
the PIC.

While the firmware is configured to
send and receive eight bytes, the USB
protocol requires an additional byte
for the report number. The firmware
expects the report number as the first
byte and for it to always be 0. So, the
PC needs to send nine bytes, the first
byte always being 0 and the remain-
ing eight bytes being your data. The
PC will receive nine bytes with the
first byte being 0 and the remaining
eight bytes containing the data.

Another important consideration

when sending multiple byte numbers
to the PIC is that the PC formats num-
bers in Little Endian format10 and the
equipment you have interfaced to the
PIC may expect numbers in Big
Endian format.

Fig 2 shows a schematic for a self-
powered PIC16C745. Because the de-
vice operates as a slow-speed USB
device, D– (pin 15) is tied to VUSB (pin
14) via R2. The power coming from the
PC can be rather noisy, so a large ca-
pacitor is used across the supply. R1
is not strictly necessary and MCLR
could be tied directly to VCC.

I wrote a benchmark program to
measure the data rate for sending and
receiving eight bytes of data (18 bytes
total exchanged including the report-
number byte) over 1000 cycles. The
data rate was calculated a little more
than 2 kB/s. Because the PIC is a low-
speed USB device, this is the maxi-
mum data rate.

Code G

String1_l1
retlw String2_l1-String1_l1 ; length of string
DT 0x03 ; string descriptor type 3
DT’M’,0x00,’i’,0x00,’c’,0x00,’r’,0x00,’o’,0x00,’c’,0x00,’h’,0x00,’i’,0x00,’p’,0x00

String2_l1 ;****Change this string to match your product name
retlw String3_l1-String2_l1 ;
DT 0x03
DT ‘P’,0x00,’I’,0x00,’C’,0x00,’1',0x00,’6',0x00,’C’,0x00,’7',0x00,’4',0x00,’5',0x00,’ ‘,0x00
DT ‘S’,0x00,’A’,0x00,’M’,0x00,’P’,0x00,’L’,0x00,’E’,0x00
global String3_l1

String3_l1 ;****Change this string to match your product version
retlw String4_l1-String3_l1
DT 0x03
DT ‘V’,0x00,’1',0x00,’.’,0x00,’0',0x00,’0',0x00

Code F

ReportDescriptor
...
DT 0x95,0x08 ; report count (8) (fields) .. ****Change 0x08 to the # of bytes you need, max of 8 ...
DT 0x95,0x08 ; report Count (8) (fields).. ****Change 0x08 to the # of bytes you need, max of 8

Code E

StartDevDescr
....
DT 0xD8,0x04 ; idVendor 0x04D8 ****Change this to uniquely ID your PIC. Note low order byte 1st
DT 0x34,0x12 ; idProduct 0x1234 ****Change this to uniquely ID your PIC. Note low order byte 1st
DT 0x79,0x00 ; bcdDevice 0x0079 ****Change this to uniquely ID your PIC (device version#) low byte 1st

8 May/June 2004

Summary
In summary, this paper has pro-

vided the reader with basic informa-
tion for integrating a USB interface
into Amateur Radio hardware. Our
goal as Amateur Radio operators has
always been to develop hardware and
software that furthers the state of the
art; but in this area, we have clearly
fallen somewhat behind. I hope this
paper has shown that USB can be eas-
ily adopted, and that programming for
USB is not all that difficult. With the
supplied PIC firmware and Windows
C++ class, the task of developing the
hardware and software to utilize the
USB PC interface has been made even
easier. Finally, I hope this article also
inspires the major equipment manu-
facturers to stop relying on serial ports
for their PC interfaces and begin to

integrate USB technology into their
products.
Notes
1A good overview of the Universal Serial Port

Implementation can be found at www.
quatech.com/support/techoverview. php.

2Intel and Microsoft Corporation, PC 2001 V
10, Chapter 3.

3The USB 1.1 and 2.0 specifications can be
found at www.usb.org/developers/docs/.

4You can download this package from the
ARRLWeb www.arrl.org/qexfiles/. Look
for 0504Lichtel.zip.

5Microchip, PIC16C745/765 datasheet Rev
DS41124C; www.microchip.com/1010/
p l ine /p icmicro /ca tegory /per ic t r l /
14kbytes/devices/16c745.

6Microchip development tools can be ob-
tained from: www.microchip.com/1010/
pline/tools/picmicro/devenv/mplabi/
mplab6/index.htm.

7Assembly and C based firmware can be
obtained from: www.microchip.com/ !!

1010/pline/picmicro/category/perictrl/
14kbytes/devices/16c745/index.htm.

8OSR2 is required for Win95. NT 4 users
should install the latest service pack.

9HIDComm can be obtained from www.
microchip.com/1010/suppdoc/appnote/
codxamp/9073/.

10Dr. W. T. Verts, “An Essay on ‘Endian’ Or-
der,” www.cs.umass.edu/~verts/cs32/
endian.html, April 1996.

Dick was first licensed in 1977 and
in 1999 upgraded to Extra. He is an
ARRL life member. Dick graduated from
Siena College in 1979 with a BS in
Physics. He has worked for Harris Semi-
conductor and Intel and is now some-
what retired. He has authored several
IEEE papers and is an inventor on four
patents on semiconductor processing.
Dick wrote PakTerm (later licensed by
AEA and became PcPackratt II) and
PcPakratt for Windows.

REQUEST FOR INFORMATION
ON GIGAHERTZ AND
TERAHERTZ SPECTRUM

ARRL seeks information on spec-
trum requirements and preferred fre-
quency bands in the spectrum above
275 GHz toward studies now underway
by the United States Government and
the International Telecommunication
Union (ITU). The preliminary agenda
for the 2010 World Radiocommuni-
cation Conference includes an item to
consider frequency allocations between
275 GHz and 3000 GHz. Other studies
are being conducted on bands well
above 20 THz.

While no frequencies have been al-
located above 275 GHz, there is grow-
ing interest, particularly for scientific
and space applications. Amateurs can
presently use any frequency above
300 GHz but this could eventually
change if the ITU makes allocations to
radio services. Amateur spectrum re-
quirements and preferred frequency
bands in the range 275-1000 GHz have
been documented by the International
Amateur Radio Union in www.iaru.
org/ac-spec02.html and are being
studied by the ITU along with similar
information from other radio services.
The preferred bands in the 275-1000
GHz range were chosen primarily be-
cause they are bands where atmo-
spheric attenuation is low.

The need is for information on fre-
quencies above 1000 GHz:

• What is the best scientific data avail-
able on the attenuation (or other
propagation phenomena) in parts of
this band? (Please see Figs 1 and 2,
which pertain only to vertical paths.)

• What are the anticipated amateur

and amateur-satellite uses of
these bands?

• How much bandwidth is required for
these uses?

• If sharing is necessary, which other

Fig 1—Absorption (shaded area) of a standard atmosphere along a vertical path.

Fig 2—Absorption (shaded area) above 10 THz of a standard atmosphere along a vertical
path.

radio services would be the pre-
ferred sharing partners and why?
Please provide information to ARRL

Chief Technical Officer Paul Rinaldo,
W4RI; e-mail prinaldo@arrl.org.

!!

